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Abstract Phased-array feeds are possibly the best option for the 240 to 1200 MHz band on VLA 
antennas due to their wide bandwidth and relatively small size. One of the greatest assets of these 
antennas is the ability to produce a shaped beam by appropriately phasing the elements allowing 
in some cases nearly uniform aperture illumination with minimal ground-directed spillover. The 
beam-forming properties of Vivaldi focal plane arrays are explored here using detailed calculations 
that account for the true beam shapes of Vivaldi elements and the geometry of the VLA antennas. 
We find that the beam-forming properties of Vivaldi arrays are well suited for the VLA. Some 
additional properties of focal plane array beam-forming are presented as well. 

1 Introduction 

This memo describes how GraspS [1] and realistic focal plane array element patterns can be used to under¬ 
stand better the properties of focal plane arrays. It is a follow-up to EVLA Memo 53 [2], but with much 
more realistic calculations. Focal plane arrays are currently being explored by a number of radio astronomy 
observatories. The potential for inexpensive, high performance, high bandwidth feeds, especially for radio 
wavelengths longer than about 5 cm is compelling. 

At a discussion in Charlottesville, VA in May 2003 several unexplored details emerged, each of which could 
complicate the deployment of focal plane arrays for very demanding radio astronomy applications. These 
issues include: resistive losses, matching to LNAs, truncation effects of finite arrays, element spacing effects, 
manufacturing issues, noise coupling between elements, spillover cancellation, and wide-band beam-forming. 
The simulations presented here attempt to shed light on the spillover cancellation and beam-forming aspects 
of a finite array, using a realistic antenna model and realistic array element patterns. All of the simulations 
discussed are in the context of a 240 to 800 MHz focal plane array suitable for use on a VLA antenna. 

2 Simulation 

The simulations described here can be broken down into three distinct processes, explained in detail in the 
following sections. The first phase of the simulation is the beam pattern calculation for each element via 
Method of Moments (MoM). Each of these elements is then used to feed a VLA antenna from the primary 
focal plane. GraspS is then used to compute the corresponding antenna pattern for each element. Finally 
beam-forming is performed using the properties of the antenna beam patterns. 

2.1 Conventions 

Right-handed Cartesian coordinate systems are used throughout the calculations. The positive z axis is 
always aligned with the principle radiation axis. In several instances polar coordinate systems are used. The 
two coordinates are 9, the angle from the z axis, and 0, the azimuthal angle which is zero along the x axis 
and increases counter-clockwise toward the y axis. MKSA units are used (i.e., meters (m), volts (V), seconds 
(s), and ohms (fi)). These calculations are performed in the transmission case. Reciprocity guarantees that 
the results obtained this way are correct for the receive case as well. 

2.2 Element pattern calculation 

The focal plane array chosen for this simulation consists of 180 Vivaldi elements arranged on a square grid. 
They are electrically connected with each other (cf. [3] and references therein). The eight-fold symmetry 
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reduces to 25 unique element radiation patterns that are computed using a MoM algorithm. The element 
gridding is shown in Figure 1; it is made of "Rao-Wilton-Glisson" basis functions [4]. The designations of 
these 25 unique elements are given in Figure 2. The remaining 155 elements' patterns are derived from 
symmetry. The ith element's radiation pattern for a one volt excitation and a 100 series impedance, 
Ee,i{9, <{>), is computed over the forward hemisphere of the elements and sampled every 4.73 degrees in 9 and 
18 degrees in 0 using MoM. The 25 patterns are shown for three frequencies in Figures 22-24 in Appendix B. 
The array simulated consists of dielectric-free metallic plates attached to a ground plane of infinite extent. 
A more realistic array consisting of metal-plated dielectric on an appropriately sized ground plane will be 
analyzed later. The median-line symmetries of the array were exploited to reduce the complexity of the 
calculations, running 16 times faster and in one quarter the memory that the same calculation would have 
had the symmetries not been used. Somewhat more time and memory were saved by exploiting the diagonal- 
line symmetry as well. A special treatment was applied to the basis functions and sources crossing the planes 
of symmetry. Convergence towards the infinite-array solution has been verified. 

Figure 1: The MoM grid used to compute currents on Figure 2: The locations and designations of the 25 
each array element. 132 unknown currents computed unique elements. Each horizontal and vertical seg- 
per element in the MoM calculations. ment corresponds to one of the 180 elements in the 

array. 

2.3 Antenna pattern calculation 

The GraspS software package is used to compute currents on metal surfaces that are induced by radiation 
sources and later compute the radiation patterns of the surfaces. An exact model of a VLA antenna would 
be very hard to analyze due to compute time limitations and uncertainties in the scattering properties of 
some antenna components, so some approximations are made. Although the exact beam patterns, especially 
in the far sidelobes and backlobes, probably differ from those computed here, the results are still useful in 
understanding beam-forming and spill-over cancellation. The upgraded VLA antennas have a feed cone that 
stands about 1.8 m above the antenna surface with a 5° sloped roof to redirect reflected radiation away 
from the subreflector. It also has a 110° sector missing to allow space for the large L-band feed. In the 
GraspS model, the feed cone is represented by a circularly symmetric cone with a 5° slope that meets the 
dish surface at the inner edge of the panels (2 m from the center). The second approximation is at the 
apex of the antenna. Since the focal plane array's scattering properties are not modeled, a model of the 
VLA subreflector is used as the scatterer at the apex. The combined effects of these two approximations 
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cannot dominate the primary beam or near sidelobe calculations. The effects of these approximations should 
only become important around the fifth sidelobe due to the sizes of these scatters relative to the size of the 
primary. It should be noted that the scattering off the support legs (struts) uses physical optics code meant 
for struts at least A/6 in cross section. This condition is barely met for the lowest frequencies studied. 

For each of the 25 unique element patterns, Ee,i{9, <t>), a corresponding VLA antenna pattern, Ea^O, $) is 
computed using the GraspS software package. GraspS computes the antenna radiation pattern by successive 
illuminations of sources by other sources. This requires the user to explicitly program the sequence of 
operations. For this application, this sequence can be summarized as: 

F —>1,1 
F, Li —► P 

P —> L2 
P, L2 —> S 

F, P, La, S —> B 

Each arrow refers to the illumination of the scatterer on the right from the source(s) on the left side. The 
objects represented by letters are: feed (F), support legs (Li and L2), primary reflector (P), subreflector (S), 
and the antenna beam (or radiation pattern) (B). The legs have two opportunities to scatter the radiation, 
hence the two separate simulation passes over the struts. The scripts used to drive GraspS are shown in 
Appendix A. Future studies of this kind should include the Li —* B scattering which was inadvertently not 
included in these simulations. Had this scattering been included, the computed system temperatures would 
probably be a bit, but not substantially, higher, due to additional scattered power. 

It should be noted that at the higher frequencies, the primary is not formally in the far-field of the array 
since 2D^TTay/\ ~ 11 m, which is greater than their separation of about 9 m. At these higher frequencies 
the radiating portion of the array shrinks to an area on the order of one square wavelength when a single 
element is excited, so the use of far-field element patterns is valid. 

The radiated field is calculated on two grids. The first, a full Nyquist sampled 4ir steradian far-field 
spherical grid, is used in the beam optimization calculation as described in the next section. The second is 
a small oversampled far-field sine-projected beam pattern centered on 9 = 0 out to a couple sidelobes, used 
to reconstruct the beam pattern on the sky. All 25 unique antenna patterns at three specific frequencies are 
displayed in Figures 25-27 in Appendix C. 

2.4 Beam optimization 

To achieve maximum on-axis sensitivity with a radio telescope, the ratio of forward gain to system temper¬ 
ature (essentially a signal-to-noise ratio) is maximized. The parameters that are varied to achieve maximal 
gain are the complex weights assigned to each element in the array. The optimal weight vector, w, which 
consists of the dimensionless element weights, Wi, is unique up to a complex scale factor. Since each linear 
polarization is to be independently optimized, each will have its own set of weights. The symmetries inherent 
in this particular problem cause the optimization of the X and Y polarizations to be equivalent, so only the 
case of X polarization is considered further. In practice it will likely be the two senses of circular polarization 
that are produced by this phasing, but the analysis follows in the same manner. 

The total VLA antenna far-field radiation pattern, E&{9, </>), is a linear combination of the VLA antenna 
patterns corresponding to each element: 

E,(e,4>) = Y,wt^M<t>y, (1) 
i 

it is a complex-valued function with dimensions of volts. The true electric field corresponding to this antenna 
pattern is then 

E(r,9,4,)=E,(e,4>)e-^-. (2) 

From the antenna pattern, the system temperature and forward gain and thus our figure of merit can be 
computed. From this optimal weight vector, the pattern of the phased-array, Ec{9,0) is similarly computed: 

Ec(9,<t)) = Y^WiEc,^, (f>). (3) 
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From this pattern, the illumination of the primary can be examined. Also, the direct spillover onto the 
ground from the phased-array can be seen. 

The power pattern is related to the radiation pattern by 

dP I | 12 
=-\e^)\ . (4) 

The free-space impedance, 77 is defined as The total power transmitted is thus 

C dP 
Ptot = J (5) 

This can be expressed as a quadratic form of the weight vector 

Ptot{w) = wH • P ■ w, (6) 

where the superscript H refers to the conjugate transpose and the Hermitian matrix P is defined by its 
elements, 

P ri3 ^JdnStyE^. (7) 

It is useful to note that P is a positive definite matrix, meaning that all of its eigenvalues are real and 
positive. Likewise the X polarized power pattern is 

§ = ^|4(0,0). ex|2 (8) 

The linear X polarized forward gain, Gx, which is the numerator of the ratio to maximize, is simply 

2 

(9) Gx = 4^ JaM) - ^ 
i?a(0,0) • ex 

ot ?? 

where ex is the linear X polarization basis vector. Note that any polarization may by optimized by replacing 
ex with the appropriate basis vector. Gx may be expressed as a ratio of quadratic forms: 

„ , _s wH ■ Gx -w , s Gx{w) = „—— (10) W 

where the Hermitian matrix Gx has elements 

2-n 

V 
Gxij — — 0) • ex) ^-Ea,j(0,0) - ex) (11) 

Because Gx(w) must be real and can never be less than zero, all eigenvalues of Gx must be real and 
non-negative. 

The system temperature is the numerator of the ratio to optimize and consists of a constant receiver 
temperature, TTec added to the radiation temperature seen by the receiver. For all simulations, a value for 
Trec of 20 K was used. If an array of this type is to be competitive with a high-performance horn antenna, 
a value not much greater than this must be realized in the hardware. It is implicitly assumed that the 
receiver noise in each element is uncorrelated with that of other elements. The radiation temperature is the 
gain-weighted average of the surrounding radiation temperature. The radiation temperature model that will 
be used here is 

rp (p i\ / ^sky above ground r„d(M) = | belowground , (12) 

where Tground = 290K and Tsky = ^[GHz]-2 5 x 3K for frequencies below 1 GHz, and T^y = 3K above 
1 GHz. All simulations were done the the antenna pointing at the zenith. With this temperature model, the 
system temperature can be computed as 

^ fdn (Trad(0,4>)+Trcc)P(0,4>) 
D ■ 
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This can also be expressed as a ratio of quadratic forms: 

^, ..x w*1 ■ T • w /1 A\ 
T(w) = _,H _ (14) 

wH■P•w 

where the positive-definite Hermitian matrix T consists of elements 

Tii = k,JdQ (Tr''d(s'0)+Tm) ^(15) 

For an infinitesimal bandwidth, the quantity to be maximized in order to produce the most sensitive 
beam is the ratio, -R(w), of linear X polarized forward gain to the system temperature, or 

m s = (i6) 
T(w) wH ■ T ■ w 

Since the matrix T is positive definite and Hermitian, it can be expressed as the product of a lower triangular 
matrix, L and its conjugate transpose, LH, (i.e., T = L LH) by Cholesky decomposition. Thus, with a 
change of basis, 

W = LH 1 • 2 (17) 

wH = zH ■ L-1 (18) 
S

 
hJ II X 
O

 (19) 

R can be rewritten as 
zH - M ■ z 

m (20) 

It is clear that R(z) is greatest when 2 is proportional to the eigenvector of M corresponding to the greatest 
eigenvalue. In fact, the greatest value that R{z) can attain is the greatest eigenvalue of M. Because (a) both 
Gx and T are Hermitian, (b) T is positive definite, and (c) Gx is non-negative definite, all eigenvalues of M 
must be real and non-negative. The greatest eigenvector can be isolated by repeatedly multiplying a guess 
value of 2 by the matrix M. For the application here, the greatest eigenvalue is greater than the second- 
greatest eigenvalue by many orders of magnitude, so after only a couple such multiplications, the vector 
result will converge to the greatest eigenvector. To ensure that the guess vector contains some contribution 
from the greatest eigenvector, many randomly generated vectors are screened; the best performing of these 
vectors is then used as the guess vector. This method is often called the Power Method [5]. The optimal 
value of w is then determined though Eqn. 17 after the repeated multiplication (i.e., wopt = -M" -iguess 
for large n). A very similar method has been applied to adaptive beam-forming for mobile communications 
[6]- 

3 Results of optimizations 

Optimization was performed at eight frequencies: 266, 288, 311, 460, 480, 500, 760, and 780 MHz. Several 
performance parameters for these frequencies are tabulated in Table 1. Note that the performance at 780 MHz 
is far worse than at 760 MHz. It appears that something went awry in the generation of antenna patterns 
from the element patterns (something didn't converge?) The 780 MHz data will not be further considered 
here. 

More detailed plots for 311, 500, and 760 MHz follow in Figures 4-15. For each of these frequencies, the 
optimized phased-array pattern, Ee, and the corresponding antenna pattern, E& are shown. Also shown are 
the azimuthally averaged antenna pattern spanning the full 180° of boresight angles and a diagram showing 
the optimized weight vectors. The spillover cancellation is shown dramatically in Figures 6, 10, and 14. 
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V (MHz) 266 288 311 460 480 500 760 780 
A (m) 1.124 1.038 0.964 0.652 0.625 0.600 0.394 0.384 
TTec (K) 20 20 20 20 20 20 20 20 
Tsky (K) 82.2 67.4 55.6 20.9 18.8 17.0 6.0 5.6 
Aground (K) 290 290 290 290 290 290 290 290 
Gain (dBi) 36.3 37.0 37.6 40.8 41.1 41.5 44.7 42.8 
-4eff (m2) 425.3 426.8 422.6 407.0 403.9 403.5 362.2 223.3 
V 0.87 0.87 0.86 0.83 0.82 0.82 0.74 0.45 
Tsys (K) 107.6 91.9 80.0 43.9 41.6 39.8 29.1 56.9 
Tspui (K) 5.3 4.5 4.4 3.0 2.8 2.8 3.1 31.3 
-^eff/^sys (m2/K) 3.95 4.65 5.28 9.26 9.72 10.14 12.46 3.93 

Table 1: Parameters of the array at the eight frequencies studied. The top section contains the parameters 
used in for that column's optimization. The bottom section contains the resultant performance parameters 
after optimization. Efficiency, 77, is the effective area, Acff, divided by the unblocked aperture area (490.1 m2 

for a VLA antenna). The figure of merit that is optimized is effective area divided by system temperature. 
The spillover temperature, Tspni, is defined here as TSyS - Troc - Tsky. 

Freq [GHz] 

Figure 3: The EVLA sensitivity goal (solid line) and the estimated focal plane array performance (marks) 
at 266, 288, 311, 460, 480, 500, and 760 MHz. 80% of the calculated performance is used as the estimate for 
these frequencies, allowing for some resistive loss, phasing inefficiency, and other processing losses. 

4 Tuning range 

The useful tuning range of the array is limited by its performance at the extremes. At the lower frequencies 
explored, the wavelength approaches the array's size. This reduces the array's ability to efficiently illuminate 
the primary. This is because exciting the higher phased-array pattern multipoles become less easily excited. 
At higher frequencies where the wavelength is less than about two element spacings, grating lobes are formed 
causing higher system temperature due to insufficient sampling of the focal plane field. The power that is 
redirected to sidelobes is taken from the intended primary beam. For the array studied, the useful tuning 
range spans the frequencies studied, but does not likely extend much below 240 MHz (A = 1.2 m) or above 
800 MHz (A = 0.38 m). A physically larger array would be required to extend high performance to frequencies 
lower than ~240 MHz. Smaller, more densely packed elements would be needed to extend performance above 
800 MHz. It would probably make sense to use two arrays to cover the full 240 to 1200 MHz frequency range. 
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Figure 4: The phased-array pattern optimized for 
311 MHz. The contours show electric field magni¬ 
tude, EP , in the forward hemisphere of the phased 

array. A contour is drawn every 10% of the peak 
value. The inner grey circle marks angle subtended 
by the unpaneled portion of the primary. The outer 
gray circle is rim of the primary. The dark black 
circle denotes 90 degrees from boresight. This pat¬ 
tern should be compared with the individual element 
patterns in Figures 22 and 25. 

Figure 5: The antenna pattern optimized for 
311 MHz. The black contours show the co-polarized 
gain. Contours are drawn every 3dB. The gray con¬ 
tours show the cross-polarized gain. Again contours 
are drawn every 3dB. The peak cross-polarized gain 
is 33dB below the peak co-polarized gain. 
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Figure 6: Azimuthally averaged power pattern at 
311 MHz of a single center element (dashed) and of 
the optimally phased-array (solid). 

Figure 7: A representation of the optimal element 
weights at 311 MHz. The weight amplitude for a 
given element is proportional to the length of the 
triangle centered on that element. The phase is equal 
to the angle of the triangle. 

5 Co-phased bandwidth 

While the tuning range spans the entire range of frequencies tested, a weight vector that optimizes perfor¬ 
mance at one frequency will perform well only over a relatively small band about that frequency. Table 2 
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Figure 8: The phased-array pattern optimized for 
500 MHz. Note that optimization reduces the power 
hitting the feed cone as this portion of the primary 
does not contribute to forward gain. 

Figure 9: The 500 MHz optimized antenna pat¬ 
tern. The peak cross-polarized gain (gray contours) 
is 32dB lower than the peak co-polarized gain (black 
contours). Contours are spaced at 3dB intervals. 
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Figure 10: Azimuthally averaged power pattern at Figure 11: The weight pattern at 500 MHz. 
500 MHz of a single center element (dashed) and of 
the optimally phased-array (solid). 

shows 77phase the ratio of the performance at the test frequency, latest, using the weight vector from the 
optimize frequency, i^opt, to the performance using weights optimized for ^test- 

Table 2 suggests that around 500 MHz, the 70% performance bandwidth is about 65 MHz, or 13%. The 
50% performance bandwidth is estimated to be about 100 MHz, or 20%. Simply tapering the weights of the 
outer array elements may increase the phasing efficiency at a minimal cost of center frequency performance 
since these weights change most rapidly with frequency. 

A generally better and more uniform performance across a band of interest could likely be obtained by 
optimizing over a finite bandwidth (dv of bandwidth at center frequency ^o)- In the continuum limit, such 
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Figure 12: The phased-array pattern optimized for 
760 MHz. 

Figure 13: The 760 MHz optimized antenna pat¬ 
tern. The peak cross-polarized gain (gray contours) 
is 32dB lower than the peak co-polarized gain (black 
contours). Contours are spaced at 3dB intervals. 
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Figure 14: Azimuthally averaged power pattern at 
760 MHz of a single center element (dashed) and of 
the optimally phased-array (solid). The increase in 
gain around 75° is due to scattering off the struts. 
Enhanced gain between about 9 and 30° arises from 
diffraction around the secondary. Note that the 
phased beam illuminates the subreflector much less 
than the just the central element and thus has much 
reduced scattered power in this angular range. 

Figure 15: The weight pattern at 760 MHz. 

a function to optimize might be 

ru0+Su/2 . GvM ■ 
R(w-, vo, Su) = / du W{u) _H 

X j 

Ju0-5v/2 WH-T{U)-1 
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^opt (MHz) 266 266 288 288 460 460 480 480 500 
k'test (MHz) 288 311 266 311 480 500 460 500 460 
Gain (dBi) 36.2 34.0 35.7 35.9 40.7 40.1 40.8 41.1 40.6 
^eff (m2) 362.6 187.5 376.2 285.4 368.7 289.7 405.2 369.6 389.1 
Tsys (K) 102.8 127.9 124.6 106.6 46.1 63.0 49.9 45.72 62.2 
TSpii\ (K) 15.4 52.2 22.4 31.0 7.3 26.0 9.0 8.75 21.3 
Aeff/Tsys (m2/K) 3.53 1.47 3.02 2.68 7.99 4.60 8.12 6.26 8.08 
Vphase 0.76 0.28 0.76 0.51 0.82 0.45 0.88 0.80 0.68 

Table 2: Table showing performance measured at frequency j/tcst for an array optimized for best performance 
at frequency f0pt. The fractional performance loss due to this mismatch is the "phasing efficiency", ?7phase- 

where W(i/) is a band shaping function that can be used to match the bandpass to a desired form and the 
two Hermitian matrices have gained frequency dependence. Optimizing this is no longer a simple exercise. 
True wide-band optimization will be deferred to a future test. 

6 Phased-Array Field of view 

The performance optimization can be performed for Gains in directions other than boresight. By replacing 
the boresight direction (0,0) in Eqn. 11 with a general direction, (0beam, '/'beam)) performance can be opti¬ 
mized for any desired direction. One may wish to observe off axis if there are multiple targets within the 
phased-array field of view that span multiple primary beams and if the back-end electronics can handle mul¬ 
tiple simultaneous array phasings. The best attainable performance for an offset beam depends on (#beam, 
•^bearn)- As #beam increases, the focal spot moves away from the center of the focal plane. When a substantial 
fraction of the focal spot power is no longer intercepted by the array efficiency drops quickly. Also, as #beam 
increases, the projected area of the primary decreases, which is usually a much less substantial effect. The 
optimized performance as a function of beam direction at 500 MHz is shown in Figure 16. It is worth noting 
that the response as a function of displacement rolls off smoothly at 500 MHz. At 760 MHz, there are local 
maxima in the performance at displacements which center the focal spot on a receiving element, an indica¬ 
tion that at this frequency the spacing of the elements is important (Figure 17). This can be understood as 
the beams in the sky narrowing as frequency increases to the point where neighboring element beams do not 
overlap sufficiently and the sensitivity "between the beams" worsens. Polarization performance must suffer 
in these circumstances since the X and Y polarized elements are not co-located. The optimized antenna 
pattern becomes more asymmetric with larger sidelobes as flbeam increases as is shown in Figure 18. The 
usable field of view for the simulated array is about 4°. 

7 Phasing errors 

The performance of the array depends on the precision of the phasing. Errors in characterizing the absolute 
patterns, including phase, and in setting weights will lead to weighting errors. The effect of weighting errors is 
explored here by randomly dithering optimal weights. Independent normal-distributed errors were added to 
the real and imaginary parts of each weight ranging in magnitude from zero to 10% of the value of the greatest 
weight and the sensitivity was evaluated. This was repeated 1000 times for each error magnitude. The mean 
sensitivity (solid line) and the sensitivity range encountered (gray region) are shown in Figures 19-21. 

Depending on the mechanism used to phase the array, different forms of phase errors may be more 
important. Table 3 summarizes the effects of pure phase errors and pure amplitude errors. Here the 
amplitude errors are relative to each weight's amplitude, rather than the amplitude of the greatest weight. 
The errors are again drawn from Normal distributions. The amplitudes of these errors causing IdB and 3dB 
performance losses are listed. 

The 311 MHz data is most sensitive to phasing errors. This likely arises from the extreme oversampling 
(i.e., more degrees of freedom exist than are required to fully sample the focal plane) that occurs at this low 
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Figure 16: 500 MHz optimal performance as a func¬ 
tion of beam placement. The innermost contour rep¬ 
resents 1.5dB performance loss, about 3° from bore- 
sight. Each additional contour is 1.5dB worse. At 
about 4° the center of the focal spot leaves the focal 
plane. 

Figure 17: 760 MHz optimal performance as a func¬ 
tion of beam placement. The innermost contour rep¬ 
resents IdB performance loss, about 3° from bore- 
sight. Each additional contour is IdB worse. At 
this frequency the element spacing is approaching 
A/2 and spacing effects cause the corrugated perfor¬ 
mance which peaks when the focal spot centers on 
an element. 

V (MHz) 311 500 760 
Phase errors IdB loss (deg) 6 6.5 18 

3dB loss (deg) 11 18 35 
Amp. errors IdB loss (%) 3.5 11 33 

3dB loss (%) 6.5 22 65 

Table 3: The effect of pure phase errors and pure amplitude errors on performance. The values in the table 
reflect the tolerances for the two types of errors required to achieve performance within IdB and 3dB of the 
expected performance. For example, on average an 18 degree RMS phase error will reduce the 500 MHz 
performance by 3dB. 

frequency which causes neighboring elements to be nearly degenerate. The addition of -\-8w to one element's 
weight and —5w to its neighbor's has almost no effect on the phased antenna pattern in over-sampled cases. 
However, the addition of antisymmetric weights to neighboring elements makes the phasing more sensitive 
to phasing errors. It is seen that optimization takes advantage of these extra degrees of freedom and results 
in a weight pattern with significantly anti-correlated neighboring weights as is shown in Figure 7. 

Thus it is seen that the optimal weights derived for the lower frequencies are optimal only in a theoretical 
sense. More stable weights with greater phasing bandwidths and a less stringent requirement on front end 
linearity and dynamic range, are likely possible to derive by enforcing more smoothly varying weights or by 
optimizing over a finite bandwidth. This may come at a modest cost in center frequency performance. 
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Figure 18: 500 MHz beam shapes produced when forming beams off boresight. The displacements are in the 
top row, left to right: (10,10), (2°, 2°), and (3°,3°), and in the bottom row, left to right: (4°,4°), (3o,0o), 
(0°, 3°). Note that the beam starts to degrade quickly once the displacement reaches about 4°. All contours 
are at 3dB intervals starting 3dB below the peak gain. 

RMS rejm error [% of peak] 

Figure 19: The effect of phasing errors on performance at 311 MHz. The solid line is the mean sensitivity 
relative to the optimal weight vector for weight perturbations up to 10% of the value of the greatest element 
weight. The shaded area represents the range of sensitivities encountered by the 1000 trials. 
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Figure 20: The effect of phasing errors on performance at 500 MHz. 
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Figure 21: The effect of phasing errors on performance at 760 MHz. 

8 Nulling 

A current hot topic in radio frequency interference mitigation is nulling the antenna response in the direction 
of a known interferer, (0int,0int)- This can be naturally incorporated in the formulation of optimization in 
Section 2.4 by adding to the radiation temperature, Trad(^, 0) an additional contribution from this unwanted 
source: 

Tint(0,0) = K5{e- 0int) <5(0 - 0int), (22) 

where K is a very large number; in particular, its value should be the equivalent brightness temperature of 
the RFI source. The Dirac delta functions above could be replaced with any pattern representing the true 
extent of the interferer if it is not a point. The null is made deeper with a larger value of K. The on-axis 
performance decreases as the null is made deeper and wider. Multiple interferers can be simultaneously 
nulled, with a correspondingly larger impact on performance. 
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9 Conclusions 

The simulated array appears to perform well over a substantial tuning range and has a useful co-phased 
bandwidth of at least 13%. The performance is comparable to or better than other options for low frequency 
feeds for the VLA. These positive results hinge on a few assumptions. Here we assumed that the receiver 
temperature is 20 K at room temperature. Performance at this level has yet to be demonstrated. The 
combination of matching and resistive loss is assumed small enough to ignore. For this feed to be competitive 
with high performance (and expensive to deploy) prime focus horn receivers, these losses must not exceed 
about 25%. 

There is still more work to do before Vivaldi arrays as focal plane feeds are understood at a useful level. 
Three major questions should be addressed in upcoming studies : (1) How can the array be optimized over 
a wider bandwidth with a given set of weights? (2) How effective is interference nulling and what impact 
does it have on performance. (3) How does receiver noise coupling affect performance? Practical experience 
using hardware will help understand additional aspects such as noise coupling, resistive losses, manufacturing 
issues, dynamic range/linearity requirements for the front ends, and achievable phasing precision. 
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A GraspS input files 

I this section, example GraspS files are shown. Only the script portion for element 12 evaluated at 500 MHz 
is shown. The following is the GraspS "Ticra Object Repository" or ".tor" file used to describe the geometry 
of the feed, antenna, and the two grid surfaces on which fields were computed. Note that the input files 
vla_pri.sfc and 500MHz_feed_12.cut are not listed here due to their length. 

Field_Frequency frequency 
( 

list_freq : sequence(0.500000 GHz) 
) 
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VLA_pri_surf rotational 
( 

f ile_naine vla_pri.sfc 
r_unit m. 
z_unit m. 
r.factor 1.0, 
z_factor 1.0, 
n_points 500, 
tip off, 
list off 

) 
VLA_pri_rim elliptical_rim 
( 

centre 
half _etxis 
rotation 

struct(x:0 m, y:0 m), 
struct(x:12.5 m, y:12.5 m), 
0 

) 
VLA_primary reflector 
( 

surface : ref(VLA_pri_surf), 
rim : ref(VLA_pri_rim) 

VLA_pri_P0_12 standard_po 
( 

frequency 
scatterer 
po_points 
ptd_points 
filename 

ref(Field_Frequency), 
ref(VLA_primary), 
struct(pol:150, po2:400), 
sequence(struct(edge:1, ptd:< 
VLA_pri_12.cur 

VLA_sub_surf regular_grid 
( 

f ile_naine 
xy_unit 
z_unit 
xy.factor 
z_factor 
list 

vla_sub.sfc, 
m, 
m, 
1.0, 
1.0, 
off, 

) 
VLA_sub_rim elliptical_rim 
( 

centre 
half_axis 
rotation 

struct(x:-0.115561 m, y:0 m), 
struct(x:1.163585 m, y:1.15210) 
0 

) 
VLA_sub reflector 
( 

surface : ref(VLA_sub_surf), 
rim : ref(VLA_sub_rim), 
centre_hole_radius : 0 m 

) 
VLA_sub_P0 standard_po 
( 

frequency 
scatterer 
po_points 

ref(Field_Frequency), 
ref(VLA_sub), 
struct(pol:30, po2:90). 



ptd_points : sequence(struct(edge:1, ptd:90)), 
) 

Strut_Coor_Sys_l coor_sys 
( 

origin 
x_axis 
y_axis 

struct(x:7.550000 m, y:0.000000 m, z:1.594036 m) 
struct(x:0.777846, y:0.000000, z:0.628455), 
struct(x:-0.000000, y:1.000000, z:0.000000) 

Strut_Coor_Sys_2 coor_sys 
( 

origin 
x_axis 
y_axis 

struct(x:0.000000 m, y:7.550000 m, z:1.594036 m) 
struct(x:0.000000, y:0.777846, z:0.628455), 
struct(x:-1.000000, y:0.000000, z:0.000000) 

Strut_Coor_Sys_3 coor_sys 
( 

origin 
x_axis 
y_axis 

struct(x:-7.550000 m, y:0.000000 m, z:1.594036 m) 
struct(x:-0.777846, y:0.000000, z:0.628455), 
struct(x:-0.000000, y:-1.000000, z:0.000000) 

Strut_Coor_Sys_4 coor_sys 
( 

origin 
x_axis 
y_axis 

) 

struct(x:-0.000000 m, y:-7.550000 m, z:1.594036 m) 
struct(x:-0.000000, y:-0.777846, z:0.628455), 
struct(x:1.000000, y:-0.000000, z:0.000000) 

VLA_struts polygonal_struts 
( 

cross_section : sequence( 
struct(x:0.400000 m, y:0.135000 m), 
struct(x:0.000000 m, y:0.135000 m), 
struct(x:0.000000 m, y:-0.135000 m), 
struct(x:0.400000 m, y:-0.135000 m) ), 

position : sequence( 
struct(coor_sys:ref(Strut_Coor_Sys_l), 
struct(coor_sys:ref(Strut_Coor_Sys_2), 
struct(coor_sys:ref(Strut_Coor_Sys_3), 
struct(coor_sys:ref(Strut_Coor_Sys_4), 

zl:0 m, z2:9.799569 m), 
zl:0 m, z2:9.799569 m), 
zl:0 m, z2:9.799569 m), 
zl:0 m, z2:9.799569 m) ) 

VLA_struts_P0 polygonal_struts_po 
( 

frequency 
scatterer 
po_points 
ptd_points 

ref(Field_Frequency), 
ref(VLA_struts), 
sequence(struct(side:-l, n_length:80, n_phi:6) 
sequence(struct(edge:-l, ptd:80) ), 

Feed_Coor_Sys_12 coor_sys 
( 

origin 
x_axis 
y_axis 

struct(x:0.000000 m, y:-0.630000 m, z:9.000000 n 
struct(x:1.000000, y:0.000000, z:0.000000), 
struct(x:0.000000, y:-1.000000, z:0.000000) 

16 



) 
Feed_Pattern_12 tabulated_feed 
( 
frequency : ref(Field_Frequency), 
file_name : 500MHz_feed_12.cut 

) 
Feed_System_12 feed 
( 
coor_sys : ref(Feed_Coor_Sys_12), 
feed_definition : ref(Feed_Pattern_12), 
frequency : ref(Field_Frequency) 

) 

Full_Beain_12 spherical_field_grid 
( 
frequency : ref(Field_Frequency), 
grid_type : theta_phi, 
x_range : struct(start:0, end:179.250000, np:240) 
y_range : struct(start:0, end:359.462687, np:670) 
polarisation : theta_phi, 
file_name : 500MHz_full_beam_12.grd 

Beain_12 spherical_f ield_grid 
( 
frequency : ref(Field_Frequency), 
grid_type : uv, 
x_range : struct(steurt:-0.130900, end:0.130900, np:79) 
y_range : struct(start:-0.130900, end:0.130900, np:79) 
polarisation : linear, 
file_name : 500MHz_beam_12.grd 

Below is the "Ticra Command Input" or ".tci" file that executes the antenna ana 

FILES READ ALL "C:\Documents and Settings\brisken\Desktop\500MHz\500MHz.tor" 
# 
COMMAND OBJECT VLA_struts_PO get_currents ( source : ref(Feed_System_12)) Cmd_J 
COMMAND OBJECT VLA_pri_P0_12 get_composite_currents ( source : & 

sequence(ref(Feed_System_12),ref(VLA_struts_PO))) Cmd_134 
COMMAND OBJECT VLA_struts_PO get_composite_currents ( source : & 

sequence(ref(Feed_System_12),ref(VLA_pri_P0_12))) Cmd_135 
COMMAND OBJECT VLA_sub_P0 get_composite_currents ( source : & 

sequence(ref(VLA_struts_P0),ref(VLA_pri_P0_12))) Cmd_136 
COMMAND OBJECT Full_Beam_12 get.field ( source : ref(Feed_System_12)) Cmd_137 
COMMAND OBJECT Full_Beam_12 add.field ( source : ref(VLA_pri_P0_12)) Cmd_138 
COMMAND OBJECT Full_Beam_12 add.field ( source : ref(VLA_sub_P0)) Cmd_139 
COMMAND OBJECT Full_Beain_12 add.field ( source : ref(VLA_struts_PO)) Cmd_140 
COMMAND OBJECT Beain_12 get_field ( source 
COMMAND OBJECT Beam_12 add_field ( source 
COMMAND OBJECT Beam_12 add.field ( source 
COMMAND OBJECT Beam_12 add_field ( source 
# 

ref(Feed_System_12)) Cmd_141 
ref(VLA_pri_P0_12)) Cmd_142 
ref(VLA_sub_P0)) Cmd_143 
ref(VLA_struts_P0)) Cmd_144 
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B Element patterns 

Element patterns for the 25 unique elements identified in Figure 2 are shown for 311 MHz, 500 MHz, and 
760 MHz in Figures 22 23, and 24 respectively. Note their variation with frequency and position within 
the array. Because the array was modeled with an infinite backplane, there is no emission from beyond 90° 
boresight angle, thus only the forward hemisphere is shown. 
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Figure 22: 25 element beam patterns at 311 MHz. Contours are drawn every 20% in voltage. The inner 
grey circles represent the angle subtended by the unpaneled portion of the primary. The outer gray circles 
represent the rim of the primary. 
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Figure 23: 25 element beam patterns at 500 MHz. Contours are drawn every 20% in voltage. The inr 
grey circles represent the angle subtended by the unpaneled portion of the primary. The outer gray circ' 
represent the rim of the primary. 
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Figure 24: 25 element beam patterns at 760 MHz. Contours are drawn every 20% in voltage. The inn 
grey circles represent the angle subtended by the unpaneled portion of the primary. The outer gray circl 
represent the rim of the primary. 

20 



C Antenna patterns 

Antenna patterns for the 25 unique elements identified in Figure 2 are shown for 311 MHz, 500 MHz, and 
760 MHz in Figures 25 26, and 27 respectively. Note their variation with frequency and position within the 
array. 

Figure 25: 25 antenna beam patterns corresponding to the 25 unique element patterns at 311 MHz. Contours 
are drawn at 3dB intervals 
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Figure 26: 25 antenna beam patterns corresponding to the 25 unique element patterns at 500 MHz. 
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Figure 27: 25 antenna beam patterns corresponding to the 25 unique element patterns at 760 MHz. 
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