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Abstract

Maximum a-posteriori methods used in image restoration usually result in a
single most-probable image, with no additional statistical information. Further,
complex formulations of the problem, resulting in poorly conditioned systems,
can make direct solution and even regularization techniques infeasible. Markov
Chain Monte Carlo (MCMC) techniques sample the posterior distribution to
obtain statistical information about the reconstructed image and can potentially
provide a solution to both these problems.

Sections 1–4 of this report describe the Bayesian interpretation of image re-
construction and discuss an application using the Maximum Entropy image prior.
Section 5 discusses the application of MCMC techniques to obtain error estimates
in the context of component-fitting of radio interferometric images. Such image
analysis has traditionally been based on likelihood techniques applied to decon-
volved images. This analysis usually ignores uncertainties arising from fitting
components to extended emission as well as from the process of deconvolution
itself. We present an approach in which a Bayesian image analysis is performed
to fit elliptical gaussian components to sub-regions of the dirty image, taking
full account of the point spread function. Our method samples the posterior dis-
tribution to estimate the relative probabilities and uncertainties associated with
the number of components and their parameters. This information can augment
the process of object detection and characterization.
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1 Bayesian Inference

1.1 Bayes theorem

Bayes theorem can be used to formulate the problem of image reconstruction in terms
of images modeled as random variates of a multi-dimensional conditional probability
distribution. It shows how existing (a priori) information about an image can be
modified by new information (in the form of observed data) to generate information
about the actual image that was observed. The conditional probability P (IM |D,M) of
an image IM given the observed data D and a priori information M can be calculated
from the following posterior distribution.

P (IM |D,M) =
P (D|IM ,M)P (IM |M)P (M)

∫

M
P (D|M)P (M)

∝ P (D|IM ,M)P (IM |M) (1)

where IM = ΣiPi denotes the model image as a collection of flux components.

P (D|IM ,M) is the likelihood distribution, and gives a measure of the distance between
an image IM and the data D. The noise in the data measurements is taken to be
Gaussian (N(0, σ2) and uncorrelated. The residual (noise) per data point i is given as
Di−A(IM)i where IM is an image, and A is a transform from the image to data space.
The probability of obtaining this residual will be

P (Di|I
M
i ,M) = e

− 1
2

(Di−A(IM )i)
2

σ2
i (2)

Since each data point is independent, the joint probability P (D|IM ,M) over all mea-
sured data points is given as follows.

P (D|IM ,M) = e−
1
2

P

i

(Di−A(IM
i

))2

σ2 ∝ e−
1
2
χ2

(3)

For deconvolution in radio interferometry,

χ2 = Σ
(

V obs − S.V M
)2

(4)

where V obs represents the observed visibilities, S is the visibility sampling function and
V M = F.IM represents the Fourier transform of the model image IM to the visibility
(data) space. Maximizing the likelihood function is equivalent to an unconstrained
minimization of χ2.

Equivalently, in the image domain,

χ2 = Σ
(

ID2
− IM

[

ID + IR
]

)

(5)

where ID is the dirty image and IR is the residual image.
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∫

M
P (D|M)P (M) is the marginal distribution of the data and serves as a normalizing

constant for the posterior distribution. For a known model M , P (M) is also a constant.

P (IM |M) is the prior distribution which provides a measure of how well the model
image IM conforms to known information about the component parameters. It serves
to bias the posterior distribution towards a priori information when the data is incon-
clusive. A well known prior is the entropy prior, which is pixel-based and gives the
probability of a model image IM based on a measure of distance between IM and an
a-priori image IP . Another kind of prior suitable for a parameterized flux component
based image representation involves separate probability distributions for each type
of parameter. For instance, position parameters of the flux components could have a
uniform distribution within the region of interest, and scale parameters could have a
non-uniform distribution reflecting the actual observed distribution of scale in a typical
image.

The most probable image can be obtained by maximizing the posterior distribution
function. This is equivalent to a constrained minimization of χ2 in a search space
whose dimensionality is given by the total number of component parameters being
fitted.

1.2 Maximum Entropy Formulation

The classical Maximum Entropy deconvolution algorithm is based on the Bayesian
interpretation of image restoration, where a priori information is used to constrain the
reconstruction of an image from observed data. Maximum Entropy methods aim to
obtain the most probable non-negative image consistent with the data, based on the
number of ways in which such an image could have arisen (Narayan & Nityananda
1986; Cornwell & Evans 1985; Skilling & Bryan 1984).

P (IM |M) is the probability density function corresponding to a priori information.
Given a total flux, the joint probability of all possible ways this flux could be distributed
over the image in the form of ’flux quanta’ leads to the following form of ’relative
entropy’. Maximizing entropy corresponds to finding the image instance that could
have arisen in the most number of ways, given the model bias.

H = −
∑

i

IM
i ln

(

IM
i

Mi

)

+
∑

i

(IM
i − Mi) (6)

The first term is derived from a combinatorial argument of the number of ways the
total flux is distributed (as integral multiples of a flux quantum) across bins (pixels).
Stirling’s approximation applied to the natural logarithm of the probability of a par-
ticular configuration, results in the above form of entropy. The logarithm ensures that
the reconstructed image IM has the same sign as the model image M . Choosing M
to be positive, therefore ensures positivity in the reconstruction. The second term is a
total flux constraint.
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The probability of a particular configuration (an image IM) given the model M is
therefore

P (IM |M) = e
H

α (7)

where α is a scaling constant that represents the magnitude of a flux quantum.

Combining the model and data terms as in Eqn 1,

P (IM |D,M) = e−
1
2
χ2

e
H

α (8)

In a numerical maximization, the data term is the goodness-of-fit criterion and the
model based entropy and total flux terms are regularizers.

MEM (purely entropy based) is a zero-scale deconvolution algorithm where each pixel
in the image is treated as an independent degree of freedom. Pixel based correlations
enter the system only via the transfer function of the instrument (smoothing by the
psf), in the computation of χ2 for the data distribution. In the case of a zero scale point
spread function, the joint N2-dimensional probability density function over all pixels
in the image is the product of N2 one-dimensional pdfs corresponding to individual
pixels. Figure 1 is a plot of the probability density functions corresponding to the model
(entropy prior), the data (χ2) and the posterior distribution, for a zero-dimensional
image (a single pixel). The plots in Fig 1 and Fig 2 are for M = 30, D = 70 with
σnoise = 2.0, 5.0, 12.0, 20.0 and have been normalized to unit area.
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Figure 1: Prior and posterior density functions : σnoise = 2.0, 5.0

P (IM |M) = eH/α is centred at the value of the model image M . P (D|I,M) = e−
1
1
χ2

is a gaussian centred at D. The posterior distribution P (IM |D,M) is the product of
these distributions and its mode will be biased according to the relative heights,widths
and locations of the two contributing distributions.

These plots show that when the data is reliable (low noise), the posterior distribution
closely follows the data. With higher noise the probability density functions are wider,
and the bias towards the model is greater. This demonstrates the regularizing effect
of the prior pdf, which biases the posterior pdf when the data is noisy and possibly
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Figure 2: Prior and posterior density functions : σnoise = 12.0, 20.0

unreliable. This allows the reconstructed image I to deviate from the model M only
if evidence for this deviation is present in the actual measured data D. A flat default
image (IM) (corresponding to the most probable image with the entropy model) will
therefore have the effect of smoothing high frequency ripples in the reconstruction I.

Fig 3 shows similar plots with the noise level fixed at σnoise = 20, but with different
magnitudes of D and M corresponding to changing signal to noise ratio.
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Figure 3: Prior and posterior density functions at different SNR : σnoise = 20.0

The first two plots show that the position of the peaks of the pdfs change as a function
of signal to noise ratio (based on absolute magnitude of D and M) but their widths
and heights remain the same. This indicates that the error in the reconstruction (width
of posterior distribution) depends on the absolute noise in the system and not on the
signal to noise ratio when D−M is fixed. The third plot shows that this width increases
with increasing distance between the data D and the model M , with the noise at the
same level of σnoise = 20.

Observing these psfs with various combinations of σnoise as well as varying relative
strengths of D and M illustrate the shape of the posterior distribution in zero dimen-
sions. Its behaviour in higher dimensions will be similar, but will also depend on the
degree of correlation between pixels introduced by the point spread function.
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1.2.1 Maximum Entropy Solution

Finding the most probable image, given the model and observed data, corresponds to
maximizing the objective function J derived from Eqn 8.

J =
H

α
−

1

2
χ2 (9)

The solution image I that maximizes J is numerically evaluated via a quasi Newton
Raphson algorithm.

Differentiating Eqn 9 with respect to Ii gives the gradient ∇J and Hessian ∇2J as
follows

∇J =
δJ

δIM
i

=
1

α
ln

(

IM
i

Mi

)

−
∑

k

P k
i

[

(P ◦ IM)i − Di

]

(10)

∇2J =
δ2J

δIM
i δIM

j

= −

[

1

αIM
i

δij +
∑

k

P k
iP

k
j

]

(11)

where P k
i is the PSF centred at point k and evaluated at i (or vice-versa for a symmetric

psf). The diagonal of the Hessian will therefore have values equal to the square of the
area under the point spread function. Let q be an estimate of the area under the psf.

A diagonal approximation to the Hessian is used to calculate (∇2J)−1. Maximizing J
corresponds to minimizing −J and the minimization step that results is given by

∆IM
i = (−∇2J)−1 ×∇J =

αIM
i

1 + αq2IM
i

×∇J (12)

This diagonal approximation to the Hessian results in an inaccuracy that must be
corrected. A linear interpolation is performed along the ∇J direction to calculate the
length of a correcting step along ∇J . Iterations continue until chi-square converges.
This adaptation of the quasi Newton Raphson non linear least squares technique is
described in detail in Cornwell and Evans (1983).
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2 Monte Carlo Methods

Direct maximization techniques gives a single solution , the image IMAP that has the
highest probability P (IM |D,M). This corresponds to the mode of the posterior distri-
bution. It gives no information about any other statistics of the posterior distribution.

Analytical and numerical integration methods to calculate these statistics, are often
infeasible, especially when the number of parameters being estimated (dimension) is
high. Monte Carlo methods are therefore used to sample the posterior distributions
and to compute posterior quantities of interest like posterior means,modes, standard
deviations,etc. Markov Chain Monte Carlo methods are used to favourably constrain
the sampling process.

A Markov Chain is a stochastic process in which the ith state depends only on the
(i − 1)th state. A Markov Chain is stationary if the transition probabilities between
two states stays constant in time. The matrix of these transition probabilities is called
the Markov Matrix, and will be symmetric if the probability of moving either way
between two states is the same. Such a transition matrix can be proved to have a
unique limiting distribution.

Given a target distribution, there are several algorithms that can be used to construct
Markov Chains with limiting distributions equal to the target distribution. This means
that moving from state to state in this chain creates an ensemble that converges to the
target distribution. One such algorithm is the Metropolis Hastings Sampler, described
below1. Another frequently used algorithm is the Gibbs sampler (Skilling 1998) (not
discussed here).

2.1 Metropolis Hastings Sampling Algorithm

This algorithm uses a trial distribution to generate steps. The form of this trial distri-
bution must be chosen such that obtaining random samples from it is straightforward.
An immediate choice for a trial distribution for each parameter would be a gaussian
distribution with standard deviation proportional to the uncertainty in the estimation
of that parameter.

1. Choose an initial position in the multi-dimensional space of images as the current
image Ic.

2. Using samples from a symmetric trial distribution, generate a trial image I t, as
a step from Ic.

3. In order that this step be part of a Markov chain, the following procedure is used
to either accept or reject this trial image I t.

1See http://public.lanl.gov/kmh/talks/maxent00b.pdf
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4. The acceptance probability is calculated as follows

a(Ic, I t) = min

[

1,
P (I t|D)/P (Ic|I t)

P (Ic|D)/P (I t|Ic)

]

(13)

For symmetric of the Markov matrix, this reduces to

a(Ic, I t) = min

[

1,
P (I t|D)

P (Ic|D)

]

(14)

A random number p is then chosen from U [0, 1] and if p < a, the trial solution is
accepted, otherwise it is rejected.

5. If the trial is accepted, this becomes the new current image Ic and the loop
repeats from (2).

After a large number of such steps, the ensemble of images can be used to evaluate
moments of the posterior distribution.

Intuitively, in zero dimensions (1-D pdf), this algorithm corresponds to starting at a
certain point Ic, centering the trial distribution on this current point, taking a random
sample from this trial distribution and using it to calculate a trial position I t. If I t is in
a more probable region of the target distribution (P (I t|D) > P (Ic|D)), it is accepted,
and made the current position Ic. If I t is in a less probable region, that trial is accepted

with a probability equal to the ratio of P (It|D)
P (Ic|D)

.

A zero-dimensional simulation of the Metropolis Hasting’s algorithm gave the sample
distribution a histogram of which is shown in Fig 4. 8000/10000 trial samples were
accepted.
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Figure 4: Histogram of the ensemble of samples obtained for a single pixel using the
Metropolis-Hastings algorithm
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2.1.1 Convergence

When a Markov Chain has generated a sequence of images, the ensemble of which
satisfies the target distribution, it is said to have converged. The rate of convergence
is a measure of the frequency of obtaining statistically independent samples from this
sequence.

1. One diagnostic of the optimality of this sampling is the autocorrelation function
(ACF) of the sequence of samples generated. A measure of efficiency computed
from the ACF as η = (1 + area under the ACF )−1 can indicate the rate of
convergence of the sampling. For example, if the efficiency is 1%, 10000 samples
would be the equivalent of 100 statistically independent samples.(Hanson, MCMC
Tutorial)

For a fixed number of parameters to be estimated, the sampling efficiency is a
function of the widths of the trial distribution. The following are plots of the
trials I t as a function of time. Fig 5 is optimal, and uses an appropriate trial
distribution width. Fig 6 corresponds to a trial distribution that is too narrow.
It restricts the samples from moving far enough to randomly sample the target
distribution and induces correlations in successive samples. It will therefore take
many more samples to generate a statistically independent sample. In this case,
all trial samples may get accepted and this may be deceptive. Fig 7 shows the
trials when the width of the trial distribution was too large. The steps were too
large most of the time and hence rejected. Successive rejections make parts of
this trace flat.
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Figure 5: MCMC sequence of trials with optimal trial distribution width

2. One choice for the widths of the trial distributions per parameter (pixel) would
be to estimate it by analysing the one-dimensional pdfs obtained for a single
pixel. This however may not be accurate when the parameters are correlated. A
more practical choice for the widths of the trial distribution for each parameter
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Figure 6: MCMC sequence of trials with trial distribution width reduced by a factor
of 10

 60

 70

 80

 90

 100

 110

 120

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

Figure 7: MCMC sequence of trials with trial distribution width increased by a factor
of 10

is an estimate of the level of uncertainty expected for that parameter obtained
from the covariance matrix of the objective function J calculated with respect
to the mode (IMAP ) of the posterior distribution. Trial steps can be generated
by multiplying a noise vector (gaussian random normal N(0,1)) by the Cholesky
decomposition of the covariance matrix. This results in a noise vector with the
same variance and correlation structure as in IMAP , and this can be used as a
trial step.

3. Another scheme to control the trial steps is to restrict the length of the step to
be unity. This corresponds to normalizing a calculated step by the total number
of parameters. This decreases the step length along individual directions, and
thus attempts to guard against stepping too far in any one dimension.
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4. The efficiency drops reciprocally with the number of dimensions (parameters).
In high dimensions (N > 100) the theoretical optimal efficiency with fixed
univariate gaussian trial distribution widths is very low (η ∝ 0.3/N) (Han-
son,MCMC tutorial) . An acceleration technique that alters these widths during
the sampling process can increase this efficiency.

The ratio of the number of samples accepted to the total number of trial samples,
is defined as the acceptance ratio. This can be used as a metric to control
the widths of the trial distribution. Small steps result in an increased rate of
acceptance and large steps tend to be rejected more often. Therefore, increasing
the width, when the acceptance ratio gets too high and decreasing it when the
acceptance ratio is too low can keep the acceptance ratio approximately constant.
It has been empirically found that for N ≤ few hundred , optimal convergence
can be achieved by controlling the acceptance ratio to be approximately 0.23.

5. If the initial image is far from the mode of the distribution, a large number of
initial MCMC steps will be required to move the current image into a region
around the peak of the distribution. Once it has reached this region of higher
probability, the sampling becomes more random, and the rate of convergence
increases. Discarding the first few 40% of the samples is called burn − in and
is advisable, when the initial image is not guaranteed to be favourably located
with respect to the probability distribution. In addition, to reduce the level of
correlation between successive MCMC samples, a thinning procedure of retaining
only every k samples (where k is some measure of correlation length) is used.
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3 Monte Carlo techniques with the Maximum En-

tropy Formulation

The approach discussed here uses a Markov Chain Monte Carlo algorithm to sample
the maximum entropy posterior distribution and obtain estimates of its moments. The
Metropolis-Hastings sampling algorithm is used in which a Markov Chain is followed to
generate a sequence of images, the ensemble of which satisfies the posterior distribution.
Various statistical quantities are then estimated from this ensemble of images.

Currently this algorithm has been implemented for deconvolution purely in the image
domain (psf corresponding to a filled aperture). This can be extended to practical
deconvolution for radio interferometry, as well as to more complex formulations that
could include uv sampling and calibration as separate probability density functions.
This problem can then become infeasible to solve via standard maximization methods
and will require MAP analysis on the combined probability density functions.

We have implemented two related Monte Carlo techniques to generate image instances.

1. Sampling in the data space corresponds to obtaining statistics about how the
peak of the posterior distribution varies with different realizations of the data D.
This was done with multiple measurements of the data, which differ from each
other only by noise.

2. Sampling in the image space corresponds to sampling the posterior distribution
given by Eqn 8. We do this via a Markov Chain Monte Carlo simulation - a
random walk around in the target distribution which ’correctly’ samples it.

3.1 Data Realizations

3.1.1 Algorithm

Different data realizations are obtained by adding different realizations of random noise
to the true image convolved with the psf.

MEM solutions are then found for each of the realizations and their resulting solutions
(modes of the posterior distributions) are averaged to calculate < IMEM >.

3.1.2 Simulation Results and Interpretation

Simulations were performed on 128x128 images where the data was created by adding
gaussian noise at various levels to the trueimage convolved with the PSF(gaussian of
half width = 5 pixels).

The simulations were run with 1000 realizations (samples) and with noise levels σnoise =
30, 10, 1, 0.1. The images obtained are listed in Appendix A.
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The mean image < IMEM > is smoother than any single MEM solution showing that
the mean of this distribution is a good estimator of the true solution. This is most
apparant with higher noise levels, and just demonstrates the effect of obtaining a higher
signal to noise ratio by averaging over multiple measurements.

There is no systematic bias between the mean image and any single instance. Differ-
ences between instances are correlated across scales which depend on the noise in the
system. At high noise levels, the bias towards smoothness (and hence apparant correla-
tion between pixels in the reconstructed image) increases. As a function of decreasing
noise levels in the data, the individual MEM solutions get closer to the true data, the
bias between the mean image and any single MEM image is correlated across smaller
scales. The variance image becomes flatter (possibly less correlated with the actual
noise in the system and more due to the dependence of the width of the posterior
density function on the distance of the data from the flat model). The effect of ringing
around the reconstruction of a point source on a bright background is also emphasized.

3.2 Image Realizations - Markov Chain Monte Carlo

The MEM solution IMEM is the peak (mode) of the posterior distribution, and is used
as the initial (current) position for a random walk in the multidimensional parameter
space. Trial solutions are obtained from the current solution using a step calculated
via a trial distribution. An check is done to either accept or reject this step. Every
accepted step results in a Monte Carlo sample.

3.2.1 Implementation of the Metropolis-Hastings sampler with MEM

In our Markov Chain simulation, the initial image is IMEM (the mode of the poste-
rior distribution). At every stage, P (I t|Ic) = P (Ic|I t) and this results in a symmetric
transition matrix.
In this implementation, the trial distribution is a multi-dimensional gaussian distri-
bution, with the standard deviation for each degree of freedom, calculated from the
inverse of the Hessian. This was initially done by evaluating the complete Hessian from
the known IMEM solution, inverting it to form the covariance matrix, computing its
Cholesky decomposition, and filtering an N(0, 1) noise vector through it. For large
images, the Hessian calculation and inversion became impractical, and approximations
to the inverse Hessian diagonal were made. A diagonal approximation to the Hessian
diagonal was directly inverted, and then scaled by an approximation to the combined
effect of the diagonal and the first off diagonal of the Cholesky decomposition. This
scaling resulted in a noise vector of absolute amplitude corresponding to the result
from the complete Cholesky decomposition, but had no correlation structure in it.
Tests on small images (16x16) showed that this approximation produced results com-
parable to those produced by the complete Hessian calculation, its inversion, and the
Cholesky decomposition. The total length of the steps was normalized by dividing it
by the number of pixels in the image.

14



Burn-in of 40% was used and the widths of the trial distributions were collectively
scaled to keep the acceptance ratio between 0.15 and 0.25.

3.2.2 Simulation Results and Interpretation

Data was simulated by smoothing a 256x256 M31 image with a gaussian PSF and noise
was added at a peak signal to noise ratio of 50.

The true image and the data are shown in Fig 8

Figure 8: The true M31 image and the data obtained by convolving the true image
with a 3 pixel wide point spread function and σ = 0.005 noise added.

The MEM solution obtained was Fig 9

Figure 9: MEM solution : Mode of the posterior distribution

This algorithm was run on this data, using the diagonal approximation to the Hessian
and approximate scaling, for 200000 realizations.
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1. To test whether the Metropolis Hastings sampling algorithm did indeed produce
an ensemble of images satisfying the correct target distribution for this problem,
a MCMC sequence was initialized with a flat image. This ensured that the se-
quence would begin far from the area of interest, and would test the process of
convergence to a more probable region. On small images this was immediately
apparant, and discarding the first 20% of the samples resulted in a suitable en-
semble of images. For the M31 image, the first 40% of the samples were discarded
and the mean of the resulting ensemble was computed to form the image in Fig
10 (left)

This shows that the sequence had not yet converged but that is would eventually
converge to the correct distribution.

Figure 10: Mean image obtained after 100000 MCMC iterations , (left) starting from
a flat image and (right) starting from the MEM image

The default image used here was a flat image. A MCMC sequence generated
using a smoothed version of the true image as the default image, gave much
quicker convergence.

Having seen that this algorithm did produce the correct ensemble at convergence,
an MCMC sequence was generated using the MEM image as the initial image.
This ensured that the sequence began in a region of high probability, and should
converge quickly. The following statistics were obtained from the resulting en-
semble of images.

2. The Mean image obtained from the ensemble generated with the MEM solution
as the initial image is shown in Fig 10(right)

3. The difference between the Mean and the Mode(MEM) : Fig 11(left)
This image showed no systematic bias between the mean and the mode. This
is plausible, since the one-dimensional pdfs show that the posterior distribution
deviates very slightly from a gaussian.
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Figure 11: (left) Difference image : Mode - Mean , (right) Variance image obtained
from the ensemble

4. The Variance image : Fig 11 (right)
This has values of the order of the actual noise, in regions of high flux, and lower
values elsewhere. This demonstrates a feature of the MEM where the intrinsic
noise is retained in regions of high flux, while it is suppressed in other areas.

5. The Skewness image : Fig 12(left)
Lack of any prominent structure in this image shows that the probability dis-
tributions are not far from being gaussian. (This structure may also be due to
incomplete convergence)

Figure 12: (left) Skewness Image and (right) Kurtosis image obtained from the ensem-
ble
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6. The Kurtosis image : Fig 12(right)
This image with higher values in regions of high flux shows that these high flux
regions have higher signal to noise ratios and are probably better constrained
than pixels with lower flux. Also since these high flux pixels are further away
from from the flat default image, their corresponding pdfs are likely to be more
asymmetric than those of low flux pixels.

These results show that the MCMC method when applied to image reconstruction in
this form, gives realistic statistics consistent with the parameters in the simulation. In
more complex formulations where a direct solution to obtain the mode of the distribu-
tion is not feasible, this method can be used to generate a suitable ensemble of images.
This MCMC sampling is however extremely inefficient and the above simulation ran
for several hours before convergence.

Some areas of further investigation can now be identified as follows. Points 1,2 and 3
are addressed in section 4.

1. Combinations of Priors
Treating image pixels as individual parameters results in too many dimensions for
MCMC algorithms to be efficient. The dimensionality of the posterior distribu-
tion can be reduced by decomposing an image into components. A combination
of a flat component, point source component, and a scale sensitive component,
will regularize the reconstruction to give emphasis to features at these different
scales, and can also reduce the total number of parameters to be estimated.

2. Efficient MCMC sampling
This has to be studied for higher dimensions, and hybrid algorithms should be
applied to accelerate convergence. Also suitable approximations to the Hessian
(band diagonal) and specialized matrix inversion algorithms must be used to
obtain better MCMC trial steps.

3. Extend to Interferometric Imaging
This algorithm must be implemented for the case of practical interferometric
imaging, where the PSF is derived from incomplete sampling in the visibility
domain, with noise added in the visibility domain.

4. UV Sampling, Calibration and Imaging as PDFs
Explore the feasibility of formulating the entire observation process of UV Sam-
pling, Calibration and Imaging as probability distributions, and doing a combined
maximum a-posteriori analysis on it. Direct maximization techniques may not
be feasible for a problem of this complexity, and Monte Carlo algorithms may be
only practical way to generate a solution.
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4 Bayesian formulations with different priors

This is a short study of the effect of different image models (M) on the process of
image restoration via the Bayesian formulation. The three different models examined
are those of entropy, positivity and emptiness.

4.1 Entropy, Positivity, Emptiness

1. Entropy = −IM ln(IM/M)
This is one form of entropy, derived from the combinatorial formulation of the
total number of ways flux can be distributed over pixel bins to form an image.
Given a positive default image, it enforces positivity and is a distance measure
between and image IM and the default image M .

2. Positivity = ln(IM)
This prior enforces the basic physical constraint of positivity on an image IM .

3. Emptiness = −ln[cosh((IM − M)/σ)]
This form of prior is derived from the assumption of a mostly empty sky. An
image can deviate from near zero, only if there is strong evidence present in the
data.
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Figure 13: Prior and posterior density functions for the entropy, emptiness and posi-
tivity prior models
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The probability density functions corresponding to these three priors for a single pixel
(1-D pdfs) are shown in Fig 13. These PDFs correspond to M = 30, D = 70, σnoise = 10
and have been normalized to unit area.

The emptiness prior density function has larger tails than that of the entropy prior.
Both these priors bias the posterior distribution, but in different ways. The entropy
prior allows the posterior distribution to deviate from a default flat image only if there is
evidence for it present in the data, and this ensures smoothness in the reconstruction.
Large scale structures are hence better reconstructed using this prior. The default
image for the emptiness prior is the zero image, and any deviation from this is possible
only with strong evidence from the data. This would lead to a sharper image and small
scale structure would be better reconstructed. This emptiness prior is considered as
the closest Bayesian representation of the CLEAN algorithm.

The positivity prior has no biasing effect on the posterior density function when the
data is well above zero. If the data or the default image has values near zero, and the
noise in the system allows these values to become negative, this prior will restrict the
posterior density function to be completely positive.

4.2 Maximum A-Posteriori solutions

The effect of these three priors on a reconstructed image was analysed by deconvolving
a 2D gaussian image, smoothed by a gaussian psf with noise added in the image domain.
Cuts through the 2D reconstructions using these three priors, at different noise levels
gave the following results. The posterior density functions are shown in Figs 14 and
the 1-D cuts through the 2D reconstructed images are shown in Fig 15

1. At a low noise level, all three posterior distributions are almost the same (Fig
14(top left), and so are the reconstructions.(Fig 15(top left))

2. At a higher noise level, the difference between the posterior distributions is ap-
parant(Fig 14(top right). In the reconstructions, the entropy and positivity prior
both resulted in smooth reconstructions whose peaks did not reach that of the
original true image. The emptiness prior however resulted in a much sharper
reconstruction, demonstrating that it deviated from zero only in the presence
of strong evidence in the data. The fact that this reconstruction did retrieve
the correct amplitude at the peak, shows that this prior can result in better
reconstruction of small scale features in the image.(Fig 15(top right))

3. At a much higher noise level, there is again little difference between the three
posterior distributions, and all of them are equally wide(Fig 14(bottom). As is
expected, none of the three solutions are good reconstructions. (Fig 15(bottom))
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Figure 14: Posterior density functions for the three priors at a (top left)low, (top
right)medium and (bottom)high noise level.

Figure 15: One dimensional cut through the 2D reconstruction using the three priors
(Entropy:red, Emptiness:blue, Positivity:green, True image:orange), at a low (top left)
medium (top right) and high (bottom) noise level.
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5 Bayesian analysis using parameterized flux com-

ponents

Image analysis in radio interferometry often involves component fitting applied to pre-
viously deconvolved images. Combinations of gaussian, disc or point source flux com-
ponent models are used to approximate the emission patterns seen in a deconvolved
image. There are two sources of uncertainty associated with this approach which tra-
ditional methods generally ignore.

1. Incomplete sampling of the spatial coherence function leads to an invisible dis-
tribution which makes deconvolution a non-linear inverse problem with no exact
solution. Algorithms that use different approximations can converge to slightly
different results2. Moreover, the only estimate of error due to deconvolution is
the residual image which holds no information about the possible existence of
multiple solutions with the same goodness-of-fit.

2. There is an uncertainty in the process of estimating the parameters of overlap-
ping flux components in extended emission. The objective function involved in
fitting a linear combination of elliptical gaussians is often multi-modal and any
likelihood technique (unconstrained and constrained minimization) is subject to
this uncertainty.

A Monte Carlo approach to this form of image analysis has the potential of providing
information about relative probabilities and uncertainties associated with the number of
flux components and their parameters by sampling the posterior distribution associated
with the Bayesian formulation of deconvolution.

Due to the uncertainty arising from the process of deconvolution, one would like to
estimate the properties of components representing the entire emission present in the
raw dirty image. In practice however, a pixel based Monte Carlo method is not feasible
given the large dimensionality of the parameter space. A scale sensitive representation
of an image as a collection of gaussian, disk or point source flux components IM = ΣiPi

can control this problem. An additional advantage of thus incorporating the flux
component model into the image representation is that the deconvolution and the
component fitting will then be treated together and the resulting uncertainty estimates
will reflect the entire process applied to the raw dirty image.

We present the MC-FIT algorithm, in which an image is represented as a collection
of elliptical gaussian flux components, and Monte Carlo sampling is performed on the
number of flux components and their parameters. A-priori information is provided in
the form of probability distribution functions for each type of parameter and the χ2

goodness of fit criterion is used as the likelihood function. We used BayeSys (Skilling
2004) as the Monte Carlo sampling engine. Tests on simulated synthesis data as well
as real data are presented.

2CLEAN,MEM,MS-CLEAN,ASP-CLEAN are each suited to different emission patterns.
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5.1 Monte Carlo Sampling of P (IM |D, M) : BayeSys

Various techniques exist for efficiently sampling a probability distribution in a multi-
dimensional parameter space. Markov Chain Monte Carlo techniques generate samples
by following a Markov Chain through the parameter space based on a transition matrix
whose limiting distribution is the target posterior distribution.

BayeSys (Skilling 2004) is an application that samples the posterior distribution as-
sociated with an object represented as a collection of atoms, an atomic prior, and a
suitable goodness of fit criterion. BayeSys implements an MCMC algorithm along with
selective annealing and has the following features.

1. A BayeSys object is a mixture model comprised of a collection of flux components
called Atoms, each represented by a set of parameters. Prior information can be
supplied in the form of distribution functions per parameter.

2. Multiple parallel sample streams, called ensembles are allowed to communicate
so that they can catalyse each other’s progress and guard against any sequence
being trapped in a local maxima.

3. There are several sampling engines used to create, destroy and move the atoms
around efficiently by varying their parameters. Generality of the sampling en-
gines is achieved by restricting the parameters to lie within a U[0,1] hypercube.
These samples are then transformed according to their individual prior proba-
bility distributions to obtain sets of parameters that can be used along with the
goodness of fit criterion to evaluate the posterior distribution.

4. Annealing is achieved by initializing the sequence to sample the prior distribution
and gradually increasing the influence of the likelihood function. Annealing is
usually stopped (and the sequence is said to have converged) when the likelihood
and prior are equally weighted and the posterior distribution is being sampled.
Further annealing will result in only the likelihood distribution being sampled.

5.2 MC-FIT Algorithm

We present the MC-FIT algorithm, which combines the two stages of component based
image analysis (deconvolution and component fitting) and uses the Bayesian formula-
tion of deconvolution to obtain estimates (with associated uncertainties) for parameters
of extended flux components present in the dirty image. The main features of this al-
gorithm are as follows.

1. An image is represented as a sum of elliptical gaussian flux components, each
described by six parameters (two for position, two for scale, one for amplitude
and one for position angle). The practical advantage of such a representation
is three-fold. It allows for a scale sensitive representation of an image, is well
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suited to component fitting based image analysis, and conforms to the object
representation framework used by BayeSys.

2. The MC-FIT algorithm uses component based priors. The distribution functions
for the position parameters are chosen to be uniform between the bounds of the
image (or region of interest). The distribution functions for the scale parameters
are chosen to be non-uniform and of the form Ase−Bs where s represents the
scale. This approximates the distribution of scales observed in a typical image,
where the majority of features correspond to small scales and a comparatively
smaller number of large scale features exist. The distribution for the amplitude
is chosen to be uniform within a range, and the position angle (defined here as
the angle between the horizontal axis and the first specified axis of the ellipse) is
allowed to vary uniformly between 0 and 90 degrees.

3. Sampling on the number of components is achieved by defining a distribution for
the number of components (uniform or Poisson) within a specified range.

4. Image based priors based on entropy, emptiness (and positivity constraints), can
be applied by including them during the evaluation of the posterior distribution
function.

5. Component fitting can be restricted to certain regions in the image. Prior to the
fitting of emission inside a given region, the emission outside the region is removed
from influence by masking out and subtracting from the observed data, visibili-
ties corresponding to parts of a previously deconvolved image. This information
is then incorporated into the prior distributions of the position parameters by
restricting them to follow the mask.

6. The computation of χ2 in the evaluation of the likelihood distribution is computed
using Equations 4 and 5 for synthesis data involving a point spread function. For
fitting components directly to images obtained without the use of a point spread
function χ2 is computed as χ2 = ΣIR2

7. BayeSys provides the user with control points for the actual sampling algorithm
used. Choices about the sampling engine to be used, the number of parallel
ensembles to run, and the annealing speed, allow the user to tune the sampler to
obtain faster convergence and better sampling of the posterior distribution.

Following are the steps by which MCMC samples are generated and collected.

1. Define suitable priors for each of the parameters.

2. Generate a random sample set of parameters from the U[0,1] hypercube, using
one of several sampling engines, and based on the current state of the system.

3. Transform the U[0,1] numbers to physical parameters using transfer functions for
each of the parameter prior distributions.
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4. Compute a model image IM .

5. Compute the likelihood and an image based prior term (if present), to obtain the
corresponding value of the posterior distribution.

6. Update BayeSys annealing parameters based on the result of Step 5.

7. Repeat steps 2 through 6 until annealing is complete.

8. Fix the annealing parameter and collect a large number of samples to form the
desired ensemble reflecting the posterior distribution.

9. Analyse this ensemble to obtain (most probable) values for fitted parameters and
their associated uncertainties. For a more accurate best-fit, the most probable
parameter set can be used to initialize a regular likelihood maximization scheme
(MEM + ASP).

5.3 Tests on Simulated Synthesis Data

The MC-FIT algorithm was applied to a simulated synthesis data set corresponding to
a VLA C array observation of a source composed of four overlapping elliptical gaussian
features.

Figure 16: Tests on simulated synthesis data : [Left] original image (red), dirty image
(green) with signal to noise ratio = 100. [Right] Most probable model image with 3σ
contours for the corresponding set of gaussian components.

Component x0 y0 Amplitude σx σy Position Angle
1 5.0 4.5 80 1.0 0.5 20
2 4.0 5.0 100 0.3 0.5 60
3 5.0 6.0 80 0.5 0.3 45
4 5.0 5.0 100 0.5 0.5 45
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Figure 17: [Rows 1,2] Histograms of the obtained samples for each of the six pa-
rameters. [Row 3] (left) Scatter plot of the positions of the centres of the gaussian
components, (middle) evolution of the annealing parameter between 0(sampling the
prior) and 1(sampling the posterior), as a function of sample iteration number, and
(right) histogram of the number of components over all samples.

The true parameters of the elliptical gaussian components used to compute the sample
data are given in Table 5.3. Inspection of Figure 17 shows that all the histograms have
peaks at the correct locations.

The value of normalized χ2 computed using the most probable image obtained via
the MC-FIT algorithm, was compared to the values obtained using images from the
CLEAN and MEM algorithms, and with images formed from gaussian components
fitted to the deconvolved images.

Normalized χ2

1 Gaussian fits to CLEAN restored image 2.023
2 Gaussian fits to MEM restored image 1.996
3 MC-FIT mode image 1.122
4 CLEAN model image 1.113
5 MEM model image 1.114

Table 5.3 lists values of normalized χ2 for various model images. Rows 1 and 2 were
obtained via the traditional method of fitting gaussian components to deconvolved,
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restored images. Row 3 represents the corresponding value for the image formed from
the most probable set of component parameters produced by MC-FIT. Rows 4 and 5
were computed from the CLEAN and MEM unrestored model images and represent
the value of χ2 obtained as a result of the respective minimization algorithms. This
data shows that if an image can be decomposed into elliptical gaussian components,
the MC-FIT algorithm is capable of producing a component list that represents the
image almost as well as the minimum χ2 CLEAN and MEM model images.

The effect of the noise level and different priors on the shape of the posterior distribution
can be seen using histogram displays similar to Figure 17. Increased noise levels result
in a slower convergence via annealing and wider distributions. The use of different
priors affect the rate of convergence. In the absence of any significant flux components,
the parameter histograms reflect the shape of the prior distributions.

5.4 Tests on Real Data

5.4.1 MC-FIT with G192.16-3.84 non-synthesis data

Figure 18: G192.16-3.84 - dust continuum map. (Image credits:Ref (Shepherd 2004))

A test was performed on a dust continuum map of the Early B protostar G192.16-
3.84 shown in Figure 18. Evidence from NH3 data shows the existence of a low-mass
protostellar core southwest of the main protostar. The signal to noise ratios of the
main peak and the peak of the off-centre core, in the dust continuum map are 7 and
1.4 respectively, making it difficult for an accurate detection. The authors had to
model the main core and subtract it out to reveal with more clarity the position of the
off-centre core. To obtain error estimates on the location and shape of the off-centre
core, we ran the MC-FIT algorithm on the central 64x64 pixels of this image (Figure
19), and obtained the histograms shown in Figure 20.
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Figure 19: Central 64x64 pixels of the dust-continuum map

Figure 20: Sample histograms - G192.16-3.84 dust continuum detection of a low-mass
protostellar core Southwest of the main core. A normalized χ2 of 1.77 was obtained.
The histograms for the position parameters show relative probabilities and uncertain-
ties for the two peaks. The central core is slightly elongated and has been modeled
by two gaussian components whose total amplitude matches the value at the peak in
Figure 19. The scale histograms suggest that the off-centre core is relatively compact.
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The histograms and plots in Figure 20 confirm the existence of a peak at the location
of the low-mass protostellar core. A comparison of the heights and widths of the
histogram peaks for the position parameters shows respectively the relative uncertainty
in the existence of the peaks and a measure of the uncertainty in the actual position of
the peaks. An analysis of the scale parameter histograms shows that the off-centre core
is compact. The amplitude histogram peaks at values that correspond to the correct
peak amplitudes in the image (Figure 19).

5.4.2 MC-FIT with 3C273 synthesis data

A second test was performed on 3C273 synthesis data. Here χ2 was computed using
Equation 5. Figure 21 shows the dirty image, and the unrestored model image corre-
sponding to the parameter set whose probability was the maximum of all the samples.
The histograms in Figure 22 show that the algorithm has found the central core and the

Figure 21: 3C273 : (left) dirty image, (right) MC-FIT mode image

extended radio lobe. Again, relative heights and widths of the parameter histograms
give estimates of the uncertainty in the position, amplitude and shape of the gaussian
components. The scale histograms shows the existence of a fainter elongated compo-
nent. The amplitude histogram peaks at 30Jy which is the known peak flux for 3C273.
The algorithm was allowed to create samples of upto five components, and it found
that two components were sufficient to accurately describe the image.
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Figure 22: Sample histograms – 3C273. See Fig 17 for panel details and text for
discussion.

5.5 Discussion

A Bayesian approach to component fitting in the analysis of images formed from syn-
thesis and non synthesis data, can thus be used to obtain values of flux component
parameters along with the associated uncertainty estimates. The running time of this
algorithm is a directly proportional to the number of components being fitted (O(N)),
the number of ensembles (O(N)), and the image size (O(N2log2N) for an N × N im-
age). The number of iterations required to reach convergence depends on the type of
prior information provided to the algorithm, the signal to noise ratio of the data, the
area under the clean beam, and the complexity of the brightness distribution.

Further work would involve the implementation of the MC-FIT algorithm as a usable
tool in AIPS++, parallelizing the implementation, and providing additional ways of
analysing and interpreting the parameter ensembles.
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A Data Realizations

Figure 23: True image(left), data(middle) and MEM image(right) with σnoise = 30.0

Figure 24: Mean image(left), MEM residual image(middle) and Mean residual im-
age(right)

Figure 25: Difference image (MEM - Mean) and Variance image
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Figure 26: True image(left), data(middle) and MEM image(right) with σnoise = 10.0

Figure 27: Mean image(left), MEM residual image(middle) and Mean residual im-
age(right)

Figure 28: Difference image (MEM - Mean) and Variance image
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Figure 29: True image(left), data(middle) and MEM image(right) with σnoise = 1.0

Figure 30: Mean image(left), MEM residual image(middle) and Mean residual im-
age(right)

Figure 31: Difference image (MEM - Mean) and Variance image
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Figure 32: True image(left), data(middle) and MEM image(right) with σnoise = 0.1

Figure 33: Mean image(left), MEM residual image(middle) and Mean residual im-
age(right)

Figure 34: Difference image (MEM - Mean) and Variance image
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