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ABSTRACT

Context. Photon orbital angular momentum (POAM) is normally invoked in a quantum mechanical context. It can, however, also be
adapted to the classical regime, which includes observational astronomy.
Aims. I explain why POAM quantities are excellent metrics for describing the end-to-end behavior of astronomical systems. To
demonstrate their utility, I calculate POAM probabilities and torques from holography measurements of EVLA antenna surfaces.
Methods.With previously defined concepts and calculi, I present generic expressions for POAM spectra, total POAM, torque spectra,
and total torque in the image plane. I extend these functional forms to describe the specific POAM behavior of both single telescopes
and interferometers.
Results. POAM probabilities of spatially uncorrelated astronomical sources are symmetric in quantum number. Such objects thus
have zero intrinsic total POAM on the celestial sphere, which means that the total POAM in the image plane is identical to the total
torque induced by aberrations within propagation media and instrumentation. The total torque can be divided into source- independent
and dependent components, and the latter can be written in terms of three illustrative forms. For interferometers, complications arise
from discrete sampling of synthesized apertures, but they can be overcome. POAM also manifests itself in the apodization of each
telescope in an array. Holography measurements of EVLA antennas observing a point source indicate that ∼ 10% of photons in the n
= 0 state are torqued to n ! 0 states.
Conclusions. POAM quantities represent excellent metrics for characterizing instruments because they are based on real physics and
are used to simultaneously describe amplitude and phase aberrations. In contrast, Zernike polynomials are just solutions of a differ-
ential equation that happen to ∼ correspond to specific types of aberrations (e.g., tip-tilt, focus, etc.) and are typically employed to fit
only phases. Possible future studies include forming POAM quantities with real interferometry visibility data, modeling instrumen-
tal aberrations and turbulence of the troposphere/ionosphere in terms of POAM, POAM-based imaging algorithms and constraints,
POAM-based super resolution imaging, and POAM observations of astrophysically important sources.

Key words. instrumentation: interferometers – methods: analytical – methods: data analysis – techniques: image processing —
techniques: interferometers — telescopes

1. Introduction
Elias (2008) developed extensive semi-classical formalisms to describe photon orbital angular momentum (POAM) in astronomy.
He assumed spatially incoherent sources, so these formalisms are significantly different from those used in laboratory situations. He
concentratedmore on instrumentation rather than astrophysics, and included first principles, concepts, definitions, calculi, examples,
and applications.

As a general rule, aberrations that damage wavefronts and POAM spectra should be minimized in both hardware and software:
Primum non torquere1. The amount of damage to wavefronts and POAM spectra should be estimated and removed by off-line
image processing algorithms whenever possible. I now extend previous POAM work toward imaging metrics for single telescopes
and interferometers, leading to a deeper understanding of how such instruments work.

2. Basic Concepts
The apertures of all real astronomical telescopes are finite in size, so they are only capable of producing diffraction-limited images
up to a resolution of ∼ D−1 (D is the aperture diameter expressed in wavelengths). Assuming that the aperture response is uniform
or at least azimuthally symmetric (radially apodized), this loss of information manifests itself as blurring. The only rigorous way to
reduce blurring is to increase the aperture size.

!! The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by
Associated Universities, Inc.
1 This Latin phrase – loosely translated as “Above all, apply no torque” – is a shameless adaptation of the most widely quoted words from the

Hippocratic Oath “Primum non nocere,” which means “Above all, do no harm.”
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Conversely, if the aperture response is azimuthally asymmetric (or, azimuthally apodized), the image is subject to non-uniform
distortion. These distortions may occur over all angular scales larger than ∼ D −1. The only rigorous way to reduce distortion is to
eliminate the asymmetry in the aperture response.

I distinguish between these two types of image degradation because it is much harder to build a very large telescope compared to
figuring a very smooth mirror of nominal size. There is yet another reason for making this distinction, namely that radial apodization
does notmodulate POAM spectra, while azimuthal apodization doesmodulate POAM spectra. In other words, aberrations modulate
each input POAM state into one or more output POAM states (Elias 2008) and introduce image distortion.

Interferometers measure visibilities at discrete points in the synthesized aperture. In turn, these measurements are transformed
into “dirty” images of astronomical sources. This process is mathematically equivalent to punching small pinholes into the opaque
aperture of a large single telescope and imaging the resulting interference optomechanically.

The act of aperture sampling is a form of azimuthal apodization that modifies POAM spectra. Other physical effects – including
instrumental imperfections, turbulence in the troposphere or ionosphere, etc. – manifest themselves as sample amplitude and phase
errors and also modify POAM quantities. Symmetrically reducing the weighting of long baselines, on the other hand, only blurs an
image and doesn’t modulate POAM quantities.

I can press the analogies even further. Image-processing algorithms, such as CLEAN and MEM, remove artifacts to yield a
model of the true source up to a certain resolution. These artifacts are produced by asymmetric apodization, which means that
image-processing algorithms actually estimate and eliminate changes in POAM spectra.

3. Definitions
According to Elias (2008), the total POAM of a wavefront arising from the celestial sphere, in units of !, is

lZ = LZ/! =
∞∑

m=−∞
m pm,m , (1a)

where

pm,m = Bm,m /B = Bm,m /
∞∑

m=−∞
Bm,m (1b)

is the probability that a single photon (or the fraction of many photons) is in POAM state m, B m,m is the (m,m)th POAM autocorre-
lation, and B is the total intensity. The ensemble of probabilities represents the intrinsic source POAM spectrum. The total intensity,
which is integrated over the celestial sphere, is identical to the sum over all POAM autocorrelations. The same formulae can be used
to describe the total POAM of a wavefront incident upon the image plane by replacing l Z → l̃Z , LZ → L̃Z , pm,m → p̃m,m, Bm,m →
B̃m,m, and B→ B̃.

I define the total torque as the difference of the total POAM between the image plane and celestial sphere, or

τ = l̃Z − lZ =
∞∑

m=−∞
m τm,m =

∞∑

m=−∞
m
(
p̃m,m − pm,m

)
, (2)

where the ensemble of τm,m comprise the torque spectrum. Torque is normally defined as change in angular momentum per unit
time. Since “per unit time” is ambiguous in this context I ignore it, so torque has the same units as POAM.

The electric fields of a “natural light” astronomical source projected onto the celestial sphere are spatially uncorrelated. I call
this scenario the “Standard Astronomical Assumption” (SAA), which led to the creation of the POAM calculi (Elias 2008; Tables
1-4). Because of SAA, B−m,−m = Bm,m and p−m,−m = pm,m for all m, implying that lZ = 0. I derive this result in Appendix A. Equation
2 then becomes

τ = l̃Z =
∞∑

m=−∞
m τm,m =

∞∑

m=−∞
m p̃m,m . (3)

Torque applied by propagation media and instrumentation modifies the source POAM spectral components as they travel to the
image plane, but the total POAM in the image plane does not depend on the total POAM from the celestial sphere because of the
symmetry in m. Although this equation is independent of l Z , the ± 1 transitional probabilities of the source do affect l̃Z (cf. Section
4) except for point sources at the center of the field of view (FOV).

Maser photons traveling through turbulent gas and photons scattering off Kerr black holes (Harwit 2003; Tamburini et al. 2011)
do not satisfy the SAA condition. Therefore, these sources exhibit l Z ! 0 and are beyond the scope of this paper.

4. Single Telescopes
I derive POAM quantities for single telescopes first because it is relatively simple to do and the results can be extended to other
types of instruments (e.g., interferometers; cf. Section 5). Elias (2008) created generic calculi that can describe the POAM response
of any instrument, so I will use them here.
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4.1. Initial Mathmematics
Consider Figure 1, the schematic diagram of a single telescope looking at an object on the celestial sphere. The intensity response,
in system form, for an SAA source is given by

B̃(
→
Ω
′
) =
〈
1
2

∣∣∣∣∣Ẽ(
→
Ω
′
; t)
∣∣∣∣∣
2〉
=

〈
1
2

∣∣∣∣∣

∫
d2ΩD(

→
Ω
′
,
→
Ω) E(

→
Ω; t)
∣∣∣∣∣
2〉

=

∫
d2Ω
∣∣∣∣∣D(
→
Ω
′
,
→
Ω)
∣∣∣∣∣
2 〈1
2

∣∣∣∣∣E(
→
Ω; t)
∣∣∣∣∣
2〉
=

∫
d2Ω P(

→
Ω
′
,
→
Ω) B(

→
Ω) , (4a)

where
→
Ω = (ρ cosφ, ρ sinφ) is the coordinate on the celestial sphere,

→
Ω
′
= (ρ′ cosφ′, ρ′ sin φ′) is the coordinate in the image plane,

B̃(
→
Ω
′
) and B(

→
Ω) are the intensity distributions (Ẽ(

→
Ω
′
; t) and E(

→
Ω; t) are the corresponding electric fields), P(

→
Ω
′
,
→
Ω) = P(

→
Ω
′
−
→
Ω) is

the point-spread function (PSF),

D(
→
Ω
′
,
→
Ω) = D(

→
Ω
′
−
→
Ω) =

∫
d2R e− j2π

→
R·(
→
Ω
′
−
→
Ω) s(

→
R) (4b)

is the diffraction functon (DF),
→
R = (R cosψ,R sinψ) is the coordinate in the aperture (in units of wavelength), and s(

→
R) is the func-

tional description of the aperture apodization (cf. Section 2). Any optical system, including propagation media and instrumentation,
that can be expressed in this mathematical form can be expanded into any of the POAM calculi.

From Elias (2008; Row 3 of Table 3), the (m,m) th single-telescope SAA POAM autocorrelation density is

B̃m,m(ρ′) =
〈
1
2
∣∣∣Ẽm(ρ′; t)

∣∣∣2
〉
=

∫
d2Ω Pm,m(ρ′,

→
Ω) B(

→
Ω) , (5a)

where

Ẽm(ρ′; t) =
1
2π

∫ 2π

0
dφ′ e− jmφ

′
Ẽ(
→
Ω
′
; t) =

∫
d2ΩDm(ρ′,

→
Ω) E(

→
Ω; t)

F⇔ Ẽ(
→
Ω
′
; t) =

∞∑

m=−∞
Ẽm(ρ′; t) e jmφ

′
(5b)

is the mth image-plane POAM state,

Pm,m(ρ′,
→
Ω) =

∣∣∣∣∣Dm(ρ′,
→
Ω)
∣∣∣∣∣
2
=

∣∣∣∣∣∣∣

∞∑

k=−∞
jkJm,k(ρ′, ρ) e− jkφ

∣∣∣∣∣∣∣

2

(5c)

is the (m,m)th PSF sensitivity,

Dm(ρ′,
→
Ω) =

1
2π

∫ 2π

0
dφ′ e− jmφ

′
D(
→
Ω
′
,
→
Ω)

F⇔ D(
→
Ω
′
,
→
Ω) =

∞∑

m=−∞
Dm(ρ′,

→
Ω) e jmφ

′
(5d)

is the mth DF sensitivity,

Jp,q(ρ′, ρ) = 2π
∫ Rtel

0
dRR Jp(2πRρ′) sp−q(R) Jq(2πRρ) (5e)

is the (p, q)th integral function, Rtel is the telescope radius, Jg(x) is the gth order Bessel function of the first kind, and

sg(R) =
1
2π

∫ 2π

0
dψ e− jgψ s(

→
R)

F⇔ s(
→
R) =

∞∑

g=−∞
sg(R) e jgψ (5f)

is the gth azimuthal Fourier component of the aperture function s(
→
R). Integrating Equation 5a over radius in the image plane leads

to the (m,m)th POAM autocorrelation

B̃m,m = lim
ρFOV→∞

2π
∫ ρFOV

0
dρ′ ρ′ B̃m,m(ρ′) =

∫
d2Ω Pm,m(

→
Ω) B(

→
Ω) , (6a)

where ρFOV is the FOV of the image plane, and

Pm,m(
→
Ω) = lim

ρFOV→∞
2π
∫ ρFOV

0
dρ′ ρ′ Pm,m(ρ′,

→
Ω) =

∞∑

k=−∞

∞∑

l=−∞
jk−l 2π

∫ Rtel

0
dRR sm−k(R)s∗m−l(R)Jk(2πRρ)Jl(2πRρ)e

− j(k−l)φ (6b)

is the (m,m)th PSF sensitivity kernel. I assume that ρFOV is large enough to capture most of the radiation scattered through the
telescope aperture into the image plane. The complete derivation of Equations 5-6 may be found in Appendix B.
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All POAM quantities defined in Section 3 can be formed from Equations 6a-b. For example, the total POAM in the image plane
is

l̃Z =
1
B̃

∞∑

m=−∞
m B̃m,m =

1
B̃

∫
d2Ω



∞∑

m=−∞
mPm,m(

→
Ω)

 B(

→
Ω) =

1
B̃

∫
d2Ω L̃z(

→
Ω) B(

→
Ω) , (7)

where L̃Z(
→
Ω) is the total POAM kernel. Total POAM on the celestial sphere for all SAA sources is identically zero, or l Z = 0 (cf.

Appendix A). This statement means that the total POAM measured in the image plane is identical to total torque applied to the
wavefronts. Therefore, I interchangably employ the quantities l̃Z ↔ τ and L̃Z(

→
Ω)↔ T (

→
Ω), where T (

→
Ω) is the total torque kernel.

For a more physical understanding of Equation 7, Equations 6a-b are combined with various mathematical identities to create three
“illustrative forms” of l̃Z which emphasize different aspects of POAM for single telescopes (cf. Section 4.2).

4.2. Illustrative Forms of l̃Z
The first illustrative form of l̃Z is

l̃Z =
∞∑

m=−∞
mpam,m ± Im2π

∫ ∞

0
dρ ρ 2π

∫ Rtel

0
dRR (2πRρ)



∞∑

n=−∞
pn,n±1(ρ)






∞∑

m=−∞
pam,m∓1(R)


 , (8)

where pam,m is the mth POAM state probability in the aperture, pn,n±1(ρ) is the transitional probability density between POAM states
n and n ± 1 on the celestial sphere, and pam,m∓1(R) is the transitional probability density between POAM states m and m ∓ 1 in the
aperture. The transitional probabilities correspond to ±1 selection rules. I derive these equations and the variables contained therein
in Appendix C.

The second illustrative form of l̃Z is

l̃Z =
∞∑

m=−∞
m pam,m ± Im2π

∫ ∞

0
dρ ρ 2π

∫ Rtel

0
dRR (2πRρ)

[B∓1(ρ)
B

] [S±1(R)
S

]
, (9)

where the B∓1(ρ) are the first order rancors of the source, the S±1(R) are the first order rancor sensitivities, and S is the integrated
squared magnitude of the aperture function. This expression proves that rancors (Elias 2008), calculated directly from intensities
(instead of electric fields) and related to the transitional probabilities of Equation 8, are relevant for POAM analysis. I derive these
equations and the variables contained therein in Appendix C.

The third illustrative form of l̃Z is

l̃Z =
∞∑

m=−∞
m pam,m + 2π

∫
d2Ω
∫

d2R
[→
Ω ×

→
R
]
p(
→
Ω) pa(

→
R) =

∞∑

m=−∞
m pam,m + 2π

[∫
d2Ω

→
Ω p(

→
Ω)
]
×
[∫

d2R
→
R pa(

→
R)
]
, (10)

where pa(
→
R) is the probability that a photon can pass through the aperture within d 2R of

→
R, and p(

→
Ω) is the probability that a photon

arose from the celestial sphere within d2Ω of
→
Ω. The source-dependent term is expressed as

→
Ω ×

→
R operating on the probabilities or

the cross product of the dipole moments of the probabilities. I derive these equations and the variables contained therein in Appendix
C.

For an on-axis point source (ρ = 0), the POAM and torque spectra in the image plane are identical to the source-independent
POAM spectra within the aperture, or p̃m,m = τm,m = pam,m. Even if the object under observation is not an on-axis point source, the
ensemble of pam,m and the POAM quantities formed from them represent reasonable source-independent metrics.

The source-dependent terms, on the other hand, are dipole moments with ± 1 selection rules, which means that they are iden-
tically zero on-axis and their effects are relatively small off axis. Elias (2008) called these terms “pointing” POAM or “structure”
POAM. The source structure cannot be disentangled from the effects of propagation media and instrumentation. They are also zero
when there is only a single non-zero sk(R).

5. Interferometers
Elias (2008) derived POAM correlations and rancors for a single-baseline optical interferometer. They depend on baseline length,
delay, telescope aberrations, etc. Since he was considering only a single observation with a single pair of telescopes and integrating
over the image plane, employing the baseline vector instead of the two telescope vectors is acceptable. For this simple situation, the
total POAM and torque can be set to zero because the synthetic aperture origin can be always placed along the line containing the
single correlation measurement of two telescopes.

In this section, I derive image-plane POAM quantities for an interferometer. There are slight differences between radio and op-
tical interferometry. In the radio case, the electric fields between pairs of telescopes are multiplied and averaged. In the optical case,
electric fields are summed, squared, and averaged. Mathematically, the same zero-spacing fluxes and visibilities can be obtained in
both the radio and optical. I assume that the fringes are tracked well enough to avoid any delay dependence.

Consider a single telescope behind an opaque aperture that contains a finite number of imperfect pinholes with amplitude and
phase errors. The resulting “dirty” image is the convolution of the perfect diffraction-limited image and the Fourier transform of the
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imperfect pinhole pattern, which is equivalent to the “optomechanical” Fourier transform of the unnormalized visibilities from all
pinhole pairs. An interferometer works in a similar manner. Multiple observations with an array of small telescopes, representing
the imperfect pinholes, form the “synthesized” aperture of a single large telescope (cf. Figure 2). Unnormalized visibilities of all
telescope pairs are then mathematically Fourier transformed to create the dirty image. The sky-dependent response of the individual
telescopes defines the image FOV and their imperfections also affect the images (cf. Sections 5.2 and 6).

5.1. Initial Mathematics
The single-telescope POAM mathematics of Section 4.1 can be used directly with interferometers, taking into account the discrete
sampling of the aperture. For the sake of illustration, however, I rewrite them in terms of sampled unnormalized visibilities, which
are the standard interferometer observables. The interferometer intensity response is

B̃(
→
Ω
′
) =
〈
1
2

∣∣∣∣∣Ẽ(
→
Ω
′
; t)
∣∣∣∣∣
2〉
=

〈
1
2

∣∣∣∣∣

∫
d2R′ e− j2π

→
R
′
·
→
Ω
′

s(
→
R
′
)E(

→
R
′
; t)
∣∣∣∣∣
2〉

=

∫
d2R′

∫
d2R e− j2π(

→
R
′
−
→
R)·
→
Ω
′ [
s(
→
R
′
) s∗(

→
R)F (

→
R
′
,
→
R)
]
=

∫
d2R′

∫
d2R e− j2π(

→
R
′
−
→
R)·
→
Ω
′

F̃ (
→
R
′
,
→
R) , (11a)

where E(
→
R
′
; t) is the electric field in the synthesized aperture, s(

→
R
′
) is the telescope-based gain function of the synthesized aperture

(analogous to the aperture function of a single telescope, cf. Section 4), F̃ (
→
R
′
,
→
R) is the uncalibrated unnormalized visibility, and

F (
→
R
′
,
→
R) = F (

→
R
′
−
→
R) =

〈
1
2
E(
→
R
′
; t)E∗(

→
R; t)
〉
=

〈
1
2

∫
d2Ω′′ e j2π

→
R
′
·
→
Ω
′′

E(
→
Ω
′′
; t)
∫

d2Ω e− j2π
→
R·
→
Ω E∗(

→
Ω; t)
〉

=

∫
d2Ω e j2π(

→
R
′
−
→
R)·
→
Ω

〈
1
2

∣∣∣∣∣E(
→
Ω; t)
∣∣∣∣∣
2〉
=

∫
d2Ω e j2π(

→
R
′
−
→
R)·
→
Ω B(

→
Ω) (11b)

is the true unnormalized visibility under SAA. Note that the image-plane intensity of Equation 11a is expressed in terms of two
aperture-plane integrals, as opposed to the standard single integral over baseline

→
b =

→
R
′
−
→
R (the separation of two telescopes),

because POAM quantities depend on telescope position vectors not baseline vectors. In Appendix D, I prove that this equation
can be converted to the baseline form used for non-POAM analysis. I assume that a single moving baseline produces all of the
unnormalized visibilities. All formulae, however, can easily be generalized to multiple moving baselines.

Expanding the exponential functions in Equation 11a in terms of Bessel functions, the (m,m) th POAM autocorrelation density
becomes

B̃m,m(ρ′) =
∫

d2R′
∫

d2R Jm(2πR′ρ′) Jm(2πRρ′) e− jm(ψ
′−ψ) F̃ (

→
R
′
,
→
R) . (12a)

Integrating over the image plane, I obtain the (m,m) th POAM autocorrelation

B̃m,m = lim
ρFOV→∞

2π
∫ ρFOV

0
dρ′ ρ′ B̃m,m(ρ′) = 2π

∫ Rint

0
dRR

1
2π

∫ 2π

0
dψ′

1
2π

∫ 2π

0
dψ e− jm(ψ

′−ψ) F̃ (→r ,
→
R) , (12b)

where
→r = (R cosψ′,R sinψ′) and Rint is the radius of the synthesized aperture, both in units of wavelength. These equations are de-

rived in Appendix D. As in the single-telescope case (cf. Section 4.1), Equation 12b can be used to create all of the POAM quantities
defined in Section 3 as well as the illustrative forms of Section 4.2 (cf. Appendix D). There are, however, two complications.

The only uncalibrated unnormalized visibilities that contribute to the m th POAM state autocorrelations are those which come
from pairs of telescopes in the same aperture ring R. This result is not surprising given that POAM quantities are defined in rings.
As a matter of fact, it is possible to rewrite Equation 12b as azimuthal Fourier series components of the azimuthal convolution of
uncalibrated aperture electric fields integrated over radius. Unfortunately, real interferometers do not have telescopes arranged in
this manner, which means that the true unnormalized visibilities and telescope-based gains must somehow be interpolated onto a
polar grid.

Single telescopes obtain data using an entire aperture. Source-independent POAM quantities calculated from an on-axis point
source calibrator observation can be used to judge the quality of separate science target observations if the atmospheric statistics are
≈ consistent and the source structure does not extend too far from the FOV center. This strategy does not work for interferometers.
They obtain data through a sampled synthetic aperture. The sample coverage for an on-axis point source calibrator and a science
target will likely be significantly different.

Determining the optimum strategy to overcome these complications requires a significant amount of effort. Such work is beyond
the scope of this paper, but here I present two possible candidates that act as starting points for future research.

When the ungridded DFT of science target uncalibrated unnormalized visibilities is calculated (no additional processing; e.g.,
CLEAN), the resulting image is corrupted by incomplete sampling of the synthetic aperture and gain errors. If the inverse DFT
(IDFT) of the corrupted image is calculated on a polar grid, it effectively interpolates the uncalibrated unnormalized visibilities so
that they can be used directly in Equation 12a to form the POAM quantities of Sections 3 and 4.

Many interferometry imaging-processing techniques iteratively solve for sampled true unnormalized visibilities and telescope-
based gains while improving the image model (Rau et al. 2009; Rau 2010). If the synthetic aperture is sampled densely enough,
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the true unnormalized visibilities and telescope-based gains can be interpolated onto a uniform polar grid so that the desired POAM
quantities of Sections 3 and 4 can be determined. In Appendix E, I show that the interpolation kernel must be azimuthally symmetric,
or K(

∣∣∣∣∣
→
R −

→
R
∣∣∣∣∣), in order not to further modulate the POAM spectrum.

These two strategies yield different results. The DFT/IDFT interpolationmethod includes the effects of both incomplete sampling
and gain errors. The azimuthally symmetric interpolation kernel method, on the other hand, includes only the effects of gain errors if
the processing successfully removes artifacts due to imperfect synthesized aperture sampling. The DFT/IDFT interpolation method
includes pointing/structure POAM which cannot be disentangled from source-independent terms (if the object under observation is
an on-axis point source, there is no pointing/structure POAM). Conversely, the azimuthally symmetric interpolation kernel method
estimates the aperture functions, which means that pointing/structure POAM can be disentangled from source-independent terms.

5.2. Telescope Apodization
The true unnormalized visibility (Equation 11b) for a single baseline, modified by the apodization of the individual telescopes, is

F (
→
R
′
,
→
R) =

∫
d2Ω e− j2π(

→
R
′
−
→
R)·
→
Ω
[
A′(

→
Ω)A∗(

→
Ω)
]
B(
→
Ω) =

∫
d2Ω e− j2π(

→
R
′
−
→
R)·
→
ΩP(

→
Ω) B(

→
Ω) , (13)

whereA′(
→
Ω) andA(

→
Ω) are the electric-field patterns (sky-dependent gains) of the telescopes at points

→
R
′
and

→
R in the observation

plane, and P(
→
Ω) is the power pattern of the pair of telescopes. In general, each telescope will have a different electric-field pattern,

which means that each baseline will have a different power pattern. This equation can easily be generalized for multiple moving
baselines.

Substituting Equation 13 into Equations 11a-b, I obtain a modified version of Equation 4a

B̃(
→
Ω
′
) =
∫

d2Ω P(
→
Ω
′
,
→
Ω)P(

→
Ω) B(

→
Ω) . (14)

When expanded into POAM components, this equation becomes

B̃(
→
Ω
′
) =

∞∑

p=−∞

∞∑

q=−∞
B̃p,q(ρ′) e j(p−q)φ

′
, (15a)

where the POAM correlations

B̃p,q(ρ′) =
∞∑

m=−∞

∞∑

n=−∞
2π
∫ ∞

0
dρ ρ


∞∑

k=−∞

∞∑

l=−∞
P−k,−lp,q (ρ′, ρ)Pk−l−m+n(ρ)


 Bm,n(ρ) (15b)

have an extra function

Pk−l−m+n(ρ) =
1
2π

∫ 2π

0
dφ e− j(k−l−m+n)φP(

→
Ω) . (15c)

The interferometric PSF input/output (separate) gain is

P−k,−lp,q (ρ′, ρ) = D−kp (ρ′, ρ)D−l∗q (ρ′, ρ) , (16a)

where

D−nm (ρ′, ρ) =
1
2π

∫ 2π

0
dφ e jnφ Dm(ρ′,

→
Ω) (16b)

is the interferometric DF input/output gain. These gains are defined in Tables 2 and 4 of Elias (2008). I derive Equations 15b-c in
Appendix F.

From Equation 15b, I see that sky-dependent gains do indeed modulate POAM. To understand these effects more clearly, I
choose a simple case where the interferometric synthetic aperture is fully sampled with no amplitude or phase errors, which means
that

P−k,−lp,q (ρ′, ρ) → P−p,−qp,q (ρ′, ρ) δk,p δl,q (17a)

(Elias 2008). Equation 15b then becomes

B̃p,q(ρ′) =
∞∑

m=−∞

∞∑

n=−∞
2π
∫ ∞

0
dρ ρ
[
P−p,−qp,q (ρ′, ρ)Pp−q−m+n(ρ)

]
Bm,n(ρ) . (17b)

Now only the sky-dependent gains distribute the input POAM correlation densities to multiple output POAM correlation densities.
The index of the extra function consists of the difference of image plane and celestial sphere index differences. To further verify
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that these mathematics are correct, I let the sky-dependent gain exhibit only radial apodization, or P(
→
Ω) → P(ρ). The new extra

function

Pp−q−m+n(ρ) → P0(ρ) δq,p−m+n (18a)

produces a one-to-one correspondence between input and output POAM correlation densities

B̃m,n(ρ′) = 2π
∫ ∞

0
dρ ρ



∞∑

p=−∞
P−p,−p+m−np,p−m+n (ρ′, ρ)


 P0(ρ) Bm,n(ρ) , (18b)

as expected.
The sky-dependent gain for each antenna can be determined via holography, i.e., raster scans around a bright point source

normalized (amplitude and phase) to a reference antenna (cf. Section 6). The Fourier transforms of the sky-dependent gains and
their inverses are

a′(
→r
′
) =
∫

d2Ω e− j2π
→r
′
·
→
ΩA′(

→
Ω)

F⇔ A′(
→
Ω) =

∫
d2r′ e j2π

→r
′
·
→
Ω a′(

→r
′
)

a(
→r ) =

∫
d2Ω e− j2π

→r ·
→
ΩA(

→
Ω)

F⇔ A(
→
Ω) =

∫
d2r e j2π

→r ·
→
Ω a(

→r) , (19)

where a′(
→r
′
) and a(

→r) are the complex holography functions representing aperture imperfections projected back to planes in front
of the telescopes. The aperture coordinates are

→r
′
= (r′ cosχ′, r′ sinχ′) and

→r = (r cosχ, r sinχ). These functions are conceptually
identical to the single-telescope aperture function (cf. Section 4.1) and interferometer synthesized aperture function (cf. Section
5.1). The POAM components of the inverse transforms are

A′k(ρ) = jk 2π
∫ Rtel

0
dr′ r′ Jk(2πr′ρ) a′k(r

′) and Ak(ρ) = jk 2π
∫ Rtel

0
dr r Jk(2πrρ) ak(r) , (20a)

where

A′k(ρ) =
1
2π

∫ 2π

0
dφ e− jkφA′(

→
Ω)

F⇔ A′(
→
Ω) =

∞∑

k=−∞
A′k(ρ) e jkφ

Ak(ρ) =
1
2π

∫ 2π

0
dφ e− jkφA(

→
Ω)

F⇔ A(
→
Ω) =

∞∑

k=−∞
Ak(ρ) e jkφ (20b)

and

a′k(r
′) =

1
2π

∫ 2π

0
dχ′ e− jkχ

′
a′(
→r
′
)

F⇔ a′(
→r
′
) =

∞∑

k=−∞
a′k(r

′) e jkχ′

ak(r) =
1
2π

∫ 2π

0
dχ e− jkχ a(

→r)
F⇔ a(

→r) =
∞∑

k=−∞
ak(r) e jkχ . (20c)

Note that when the apertures are azimuthally symmetric, or a ′(
→r
′
) = a′(r′) = a′0(r

′) and a(
→r) = a(r) = a0(r), only the A′0(ρ) and

A0(ρ) terms are non-zero. Further, if both antennas of a baseline are azimuthally symmetric, it follows that their power pattern is
also azimuthally symmetric P(

→
Ω)→ P(ρ) =A′0(ρ)A∗0(ρ) and does not redistribute POAM states.

6. EVLA Holography and POAM
Recent K-band (≈ 24 GHz) holography observations of EVLA antennas were processed during commissioning 2 (Brentjens 2011).
The target is a bright point source. Three of the antennas tracked the target and were used as amplitude and phase references. The
rest of the antennas – i.e., those under test – executed raster scans. The resulting data were flagged, calibrated, and averaged before
calculating the Fourier transforms on Cartesian and polar output coordinates.

The amplitude and phase responses (Cartesian coordinates) are shown in Figures 3 and 4. When calculating the Fourier trans-
forms, I oversampled the output by a factor of six for smoother interpolation. The circular shape of the dishes is clearly visible.
The amplitude responses exhibit an opaque region near the center and four orthogonal “spokes” produced by the subreflector and
its supports. There are also clear indications of both large and small spatial scale reflectivity features. The phase responses show
random phases in the opaque regions, as expected. The locations of the small scale phase features (mottled patterns) are consistent
with individual misaligned panels on the reflector surface. They tend to appear in groups.

In Figure 5, I display the sky-independent image-plane POAM probability spectra (corresponding to the aperture POAM proba-
bility spectra in Equations 8, 9, and 10) as well as the total torques. There are no sky-dependent quantities (i.e., no pointing/structure
2 Observing program THOL0001, source 3C273, 2011 October 14.
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POAM) because the object under observation is an on-axis point source. To determine the sky-independent image-plane probabil-
ities for each telescope, I calculate the azimuthal Fourier series components of its aperture function versus radius a k(

→r ), form the
squared magnitude of each Fourier component versus radius |a k(

→r )|2, sum each squared magnitude over radius to obtain |a k|2, and
normalize the |ak|2 to the sum of the |ak|2 over k. The range of POAM components is limited to ± 15, which is ≈ the Nyquist limit
at the largest radius (I do not calculate higher POAM components even though they are available because of oversampling).

When a perfect telescope observes an on-axis point source only the n = 0 component of the image-plane POAM spectrum is
non-zero. Conversely, when an imperfect telescope observes an on-axis point source the n = 0 component is reduced and the other
components become non-zero. Most of the n ! 0 probabilities are 1% or less. A few of the n = ±1 probabilities are almost an
order of magnitude larger, which could be caused by feed position errors or uncalibrated pointing errors. Summing over the n ! 0
probabilities, we find that ∼ 10% of all photons are “torqued” away from the n = 0 state. Also, note that most telescopes exhibit a
non-zero total torque but some (e.g., telescopes 24 and 28) exhibit ≈ zero total torque (i.e., ≈ symmetric POAM spectra).

7. Conclusion
With previously defined concepts and calculi (Elias 2008), I presented generic expressions for POAM spectra, total POAM, torque
spectra, and total torque in the image plane. I extended these functional forms to describe the specific POAM behavior of both
single telescopes and interferometers. These POAM quantities make excellent metrics, complimenting Zernike polynomials, for
describing the response of astronomical instruments. Real holography measurements of EVLA antennas demonstrated their utility.

Now that POAM metrics have been derived, it is incumbent on the author to make them available to the astronomical commu-
nity in an imaging package. In the future, I plan to extend them to handle spin-polarized and non-flat spectrum sources. Possible
future studies include forming POAM quantities using real interferometry visibility data, modeling instrumental aberrations and
turbulence of the troposphere/ionosphere in terms of POAM, POAM-based imaging algorithms and constraints, POAM-based su-
per resolution imaging (Tamburini et al. 2006) without interpolation or extrapolation, and POAM observations of astrophysically
important sources such as masers and black holes (Harwit 2003; Tamburini et al. 2011).

Acknowledgements. NME2 would like to thank Dr. Sanjay Bhatnagar for fruitful discussions and advice, and Drs. Michiel Brentjens, Richard A. Perley, and Bryan
J. Butler for providing calibrated EVLA holography data.
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Fig. 1. Schematic diagram of a single telescope looking at a source on the celestial sphere. The coordinates are indicated.
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Fig. 2. Schematic diagram of an interferometer looking at a source on the celestial sphere. The coordinates are indicated.
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Fig. 3. Holographic amplitude measurements of the EVLA antennas. The blue and red colors represent the low and high reflectivity regions. The
coordinate units are wavelengths.
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Fig. 4. Holographic phase measurements of the EVLA antennas. The yellow colors represent raised regions with respect to the fiducial dish
surfaces. The RMS panel deviations are ≈ 200 µm. The coordinate units are wavelengths.
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Fig. 5.Holographic probability spectra of the EVLA antennas. The ordinates are log (base 10) probability/100% and the abscissa are POAM states.
The total torque is written on each subplot.
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Appendix A: POAM from the Celestial Sphere
Elias (2008) tacitly assumed that the total POAM on the celestial sphere was zero for SAA sources and non-zero for non-SAA
sources. In this appendix, I formally prove those statements for a single telescope, but the derivations apply to all optical systems,
including interferometers.

I consider the SAA case first. If the instrument does not modulate the POAM spectrum, the aperture function in Equation 5f
becomes s(

→
R) = s0(R). The integral function in Equation 5e then simplifies toJ p,q(ρ′, ρ) =Jp,p(ρ′, ρ) δq,p. When this result is substi-

tuted into Equation 5c, the (m,m) th POAM sensitivity is no longer a function of φ, or Pm,m(ρ′,
→
Ω)→ Pm,m(ρ′, ρ) =

∣∣∣Jm,m(ρ′, ρ)
∣∣∣2. Upon

inspection of Equation 5e, I find that J−m,−m(ρ′, ρ) = Jm,m(ρ′, ρ), which means that P−m,−m(ρ′, ρ) = Pm,m(ρ′, ρ). Since Pm,m(ρ′, ρ)
is even in m, the total image-plane POAM of Equation 7 is identically zero. Because I initially assumed that the instrument does
not modulate POAM, it follows that the total POAM on the celestial sphere must be zero as well. Further, the total POAM on the
celestial sphere for SAA sources must always be zero because the behavior of the source must be completely independent of the
behavior of the instrument.Q.E.D.

I now consider the non-SAA case using a completely spatially correlation source. The spatial and temporal parts of the electric
field on the celestial sphere factor into separate functions, E(

→
Ω; t) = E(

→
Ω) f (t), where f (t) is a random complex function. The

electric field in the image plane (Equation 4a) becomes

Ẽ(
→
Ω
′
; t) =

∫
d2ΩD(

→
Ω
′
,
→
Ω) E(

→
Ω; t) =

[∫
d2ΩD(

→
Ω
′
,
→
Ω) E(

→
Ω)
]
f (t) = Ẽ(

→
Ω
′
) f (t) . (A.1a)

Expanding the DF into sensitivities (Equation 5d) yields

Ẽ(
→
Ω
′
; t) =

∞∑

m=−∞
Ẽm(ρ′; t) e jmφ

′
=

∞∑

m=−∞

[
Ẽm(ρ′) f (t)

]
e jmφ

′
=

∞∑

m=−∞

[∫
d2ΩDm(ρ′,

→
Ω) E(

→
Ω) f (t)

]
e jmφ

′
. (A.1b)

Apart from the separation of the spatial and temporal components of the electric field and the POAM states, these functional forms
are identical to the SAA ones.

With these POAM states, I form the image-plane POAM autocorrelation densities (Equation 5a) and express the PSF sensitivities
in terms of the integral functions (Equation 5c)

B̃m,m(ρ′) =
〈
1
2
∣∣∣Ẽm(ρ′; t)

∣∣∣2
〉
=

∣∣∣∣∣

∫
d2ΩDm(ρ′,

→
Ω) E(

→
Ω)
∣∣∣∣∣
2
F =

∣∣∣∣∣∣∣

∞∑

k=−∞
jk
∫

d2ΩJm,k(ρ′, ρ) e− jkφ E(
→
Ω)

∣∣∣∣∣∣∣

2

F , (A.2a)

where F = < 1
2 | f (t)|2 > is the RMS of the random complex function. Again I assume that the instrument does not modulate POAM,

thereby collapsing the sum in this equation. Combining this fact with integration over radius ρ ′ in the image plane, I obtain the total
(m,m)th POAM autocorrelation in the image plane

B̃m,m = lim
ρFOV→∞

2π
∫ ρFOV

0
dρ′ ρ′B̃m,m(ρ′)

= lim
ρFOV→∞

2π
∫ ρFOV

0
dρ′ ρ′

∣∣∣∣∣

∫
d2ΩJm,m(ρ′, ρ)e− jmφ E(

→
Ω)
∣∣∣∣∣
2
F = lim

ρFOV→∞
2π
∫ ρFOV

0
dρ′ ρ′

∣∣∣∣∣2π
∫ ∞

0
dρ ρJm,m(ρ′, ρ)Em(ρ)

∣∣∣∣∣
2
F . (A.2b)

This equation shows that B̃−m,−m ! B̃m,m because E−m(ρ) ! Em(ρ) in general, which means that the total image-plane POAM can
be non-zero (Equation 3). The total image-plane POAM is the same as the total source POAM because the instrument does not
modulate POAM, so if the former is non-zero the latter must be non-zero as well. Q.E.D.

In the previous two proofs, I solved for the POAM autocorrelations in the image plane and inferred the form for the POAM
autocorrelations on the celestial sphere. Here I provide a bonus proof employing some mathematics that are not found elsewhere in
this paper. I only use the POAM autocorrelations on the celestial sphere and I express them in terms of azimuthal correlations of
electric fields. This proof can be used to see the behavior of SAA and non-SAA sources.

The (m,m)th POAM autocorrelation on the celestial sphere is

Bm,m = 2π
∫ ∞

0
dρ ρ Bm,m(ρ) = 2π

∫ ∞

0
dρ ρ

〈
1
2
|Em(ρ; t)|2

〉
=

1
2π

∫ 2π

0
dφ′ e− jmφ

′ 1
2π

∫ 2π

0
dφ e jmφ B(φ′, φ) , (A.3a)

where

B(φ′, φ) = 2π
∫ ∞

0
dρ ρ B(ρ, φ′, φ) (A.3b)

is the temporal correlation of the electric fields on the celestial sphere between azimuths φ ′ and φ integrated over radius ρ, and

B(ρ, φ′, φ) =
〈
1
2
E(ρ, φ′; t) E∗(ρ, φ; t)

〉
=

〈
1
2
[
Er(ρ, φ′; t) + jEi(ρ, φ′; t)

] [
Er(ρ, φ; t) − jEi(ρ, φ; t)

]
〉

=

[〈
1
2
Er(ρ, φ′; t) Er(ρ, φ; t)

〉
+

〈
1
2
Ei(ρ, φ′; t) Ei(ρ, φ; t)

〉]
+ j
[
−
〈
1
2
Er(ρ, φ′; t) Ei(ρ, φ; t)

〉
+

〈
1
2
Ei(ρ, φ′; t) Er(ρ, φ; t)

〉]

=
[
Brr(ρ, φ′, φ) + Bii(ρ, φ′, φ)

]
+ j
[−Bri(ρ, φ′, φ) + Bir(ρ, φ′, φ)

]
= Br(ρ, φ′, φ) + jBi(ρ, φ′, φ) (A.3c)
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is the temporal correlation of the electric fields on the celestial sphere between azimuths φ ′ and φ at radius ρ. In general, B(φ ′, φ)
and B(ρ, φ′, φ) are complex numbers written in terms of complex electric fields. Similarly, the (−m,−m) th POAM autocorrelation on
the celestial sphere is

B−m,−m = 2π
∫ ∞

0
dρ ρ B−m,−m(ρ) = 2π

∫ ∞

0
dρ ρ

〈
1
2
|E−m(ρ; t)|2

〉
=

1
2π

∫ 2π

0
dφ′ e− jmφ

′ 1
2π

∫ 2π

0
dφ e jmφ B∗(φ′, φ) , (A.3d)

It is obtained by replacing m→ −m and exchanging φ ′ ↔ φ in Equation A.3a.
As stated elsewhere, lZ = 0 when B−m,−m = Bm,m for all m. I define the quantity

∆Bm = Bm,m − B−m,−m = j2
1
2π

∫ 2π

0
dφ′ e− jmφ

′ 1
2π

∫ 2π

0
dφ e jmφ Bi(φ′, φ) , (A.4a)

where

Bi(φ′, φ) = 2π
∫ ∞

0
dρ ρ Bi(ρ, φ′, φ) = −2π

∫ ∞

0
dρ ρ Bri(ρ, φ′, φ) + 2π

∫ ∞

0
dρ ρ Bir(ρ, φ′, φ) = −Bri(φ′, φ) + Bir(φ′, φ) . (A.4b)

For an SAA source Equations A.3c and A.4b lead to Bri(φ′, φ) = Bir(φ′, φ), Bi(φ′, φ) = 0, ∆Bm = 0 for all m, and lZ = 0. If the
complex electric fields are spatially uncorrelated, their real and imaginary parts are spatially uncorrelated as well. Conversely, for a
non-SAA source I find that Bri(φ′, φ) ! Bir(φ′, φ), Bi(φ′, φ) ! 0, ∆Bm ! 0 for all m, and lZ ! 0. Q.E.D.

Appendix B: Telescope POAM Autocorrelations
The (m,m)th single-telescope PSF sensitivity (Equation 5c) is the squared magnitude of the m th single-telescope DF sensitivity, or

Pm,m(ρ′,
→
Ω) =

∣∣∣∣∣Dm(ρ′,
→
Ω)
∣∣∣∣∣
2
. The mth single-telescope DF sensitivity is simply the azimuthal Fourier component in the image plane

of the DF, or

Dm(ρ′,
→
Ω) =

1
2π

∫ 2π

0
dφ′ e− jmφ

′
D(
→
Ω
′
,
→
Ω) =

∫
d2R
[
1
2π

∫ 2π

0
dφ′ e− jmφ

′
e− j2π

→
R·
→
Ω
′ ]
e j2π

→
R·
→
Ω s(

→
R). (B.1)

The quantity in square brackets is j−m Jm(2πRρ′) e− jmψ. When the aperture function is expanded into azimuthal Fourier components,
I obtain

Dm(ρ′,
→
Ω) = j−m

∞∑

p=−∞
2π
∫ Rtel

0
dRR Jm(2πRρ′)

[
1
2π

∫ 2π

0
dψ e j(p−m)ψe j2π

→
R·
→
Ω

]
sp(R) . (B.2)

The quantity in square brackets is j p−m Jp−m(2πRρ) e j(p−m)φ. After replacing p with m − k and rearranging, the result is

Dm(ρ′,
→
Ω) = j−m

∞∑

k=−∞
jk
[
2π
∫ Rtel

0
dRR Jm(2πRρ′) sm−k(R) Jk(2πRρ)

]
e− jkφ = j−m

∞∑

k=−∞
jkJm,k(ρ′, ρ) e− jkφ . (B.3)

The squared magnitude of this equation is identical to Equation 6b, which when substituted into Equation 5a gives the (m,m) th
single-telescope POAM autocorrelation densities. Q.E.D.

Appendix C: Illustrative Forms
To derive the first illustrative form, I change the indices k→ m − p and l→ m − q of Equations 6b and 7. The resulting total POAM
kernel becomes

L̃Z(
→
Ω) =

∞∑

p=−∞

∞∑

q=−∞
j−(p−q) 2π

∫ Rtel

0
dRR sp(R) s∗q(R)Mp,q(2πRρ) e j(p−q)φ , (C.1a)

where

Mp,q(2πRρ) =
∞∑

m=−∞
m Jm−p(2πRρ) Jm−q(2πRρ) = p δq,p +

1
2
[
2πRρ

]
δq,p+1 +

1
2
[
2πRρ

]
δq,p−1 . (C.1b)

When Equations C.1a-b are substituted back into Equation 7, I obtain

l̃Z =
∞∑

m=−∞
m
Sm,m B
B̃
+ j
1
2
2π
∫ ∞

0
dρ ρD+(ρ)B+1(ρ)/B̃ − j

1
2
2π
∫ ∞

0
dρ ρD−(ρ)B−1(ρ)/B̃ , (C.2a)

15



N.M. Elias II: Photon orbital angular momentum and torque metrics for single telescopes and interferometers

where

Sm,m = 2π
∫ Rtel

0
dRR S m,m(R) = 2π

∫ Rtel

0
dRR |sm(R)|2 (C.2b)

is the integrated and squared (m,m) th component of the aperture function, the

D∓(ρ) = 2π
∫ Rtel

0
dRR (2πRρ)



∞∑

m=−∞
sm(R) s∗m∓1(R)


 (C.2c)

are the aperture dipole-moment functions, and the

B∓1(ρ) =
1
2π

∫ 2π

0
dφ e± jφ B(

→
Ω) =

1
2π

∫ 2π

0
dφ e± jφ



∞∑

n=−∞

∞∑

m=−∞
Bn,m(ρ) e j(n−m)φ


 =

∞∑

n=−∞
Bn,n±1(ρ) (C.2d)

are the first-order source rancors (Elias 2008; Equations 12a-b). Note that p was replaced with m so that Equations C.2a-c are
consistent with the equations in Section 4.2. The total intensity in the image plane can be rewritten as

B̃ = lim
ρFOV→∞

∫

ρFOV

d2Ω′B̃(
→
Ω
′
) =
∫

d2Ω
∫

d2R
∫

d2R′
[
lim
ρFOV→∞

∫

ρFOV

d2Ω′e− j2π(
→
R−
→
R
′
)·
→
Ω
′]
e j2π(

→
R−
→
R
′
)·
→
Ωs(

→
R)s∗(

→
R
′
)B(
→
Ω) . (C.3a)

The quantity in the square brackets approaches δ(
→
R −

→
R
′
), which means that

B̃ ≈
[∫

d2R S (
→
R)
] [∫

d2Ω B(
→
Ω)
]
= S B , (C.3b)

where S (
→
R) = |s(

→
R)|2. When this equation is substituted into Equation C.2a, I can define the aperture probabilities p am,m = Sm,m /

S , the aperture transitional probability densities pam,m∓1(R) = sm(R) s
∗
m,m∓1(R) / S , and the celestial sphere transitional probability

densities pn,n±1(ρ) = Bn,n±1(ρ) / B. Keeping in mind that B−1(ρ) = B∗+1(ρ) and D−1(ρ) = D∗+1(ρ), the result can be rearranged to
obtain Equation 8. Q.E.D.

To derive the second illustrative form, I rewrite the sum over transitional probabilities in the aperture in Equation 8 as

∞∑

m=−∞

sm(R) s∗m∓1(R)
S

=
1
2π

∫ 2π

0
dψ

1
2π

∫ 2π

0
dψ′ e∓ jψ

′


∞∑

m=−∞
e− jm(ψ−ψ

′)


s(
→
R) s∗(

→r)
S

, (C.4a)

where
→
R = (R cosψ,R sinψ) and

→r = (R cosψ′,R sinψ′). The quantity in parentheses is 2π δ(ψ′ − ψ), so

∞∑

m=−∞

sm(R) s∗m∓1(R)
S

=
1
2π

∫ 2π

0
dψ e∓ jψ

∣∣∣∣∣s(
→
R)
∣∣∣∣∣
2

S
=

1
2π

∫ 2π

0
dψ e∓ jψ

S (
→
R)
S
=
S±1(R)
S

, (C.4b)

which are the normalized first-order aperture rancor gains. Substituting Equation C.4b into Equation C.2c, Equation C.2a can be
rearranged to form Equation 9. Q.E.D.

To derive the third illustrative form, the imaginary part of the integrand of Equation 9 can be simplified to

Im (2πRρ)
[B∓1(ρ)

B

] [S±1(R)
S

]
= ± 1

2π

∫ 2π

0
dφ

1
2π

∫ 2π

0
dψ 2π

[
Rρ sin (φ − ψ)] B(

→
Ω)
B

S (
→
R)
S

= ± 1
2π

∫ 2π

0
dφ

1
2π

∫ 2π

0
dψ 2π

[→
Ω ×

→
R
] B(

→
Ω)
B

S (
→
R)
S
. (C.5)

When this expression is substituted back into Equation 9, Equation 10 is obtained.Q.E.D.

Appendix D: Interferometer POAM Autocorrelations
To prove that Equation 11a can be expressed in terms of a single integral over baseline for standard non-POAM interferometry
analysis, I substitute

→
b =

→
R
′
−
→
R to obtain

B̃(
→
Ω
′
) =
∫

d2R
∫

+
→
R
d2be− j2π

→
b·
→
Ω
′

s(
→
R+
→
b)s∗(

→
R)F (

→
b) =

∫
d2b e− j2π

→
b·
→
Ω
′ [∫

d2R s(
→
R +

→
b)s∗(

→
R)
]
F (
→
b) =

∫
d2b e− j2π

→
b·
→
Ω
′

S (
→
b)F (

→
b), (D.1)

where S (
→
b) is the baseline-based gain function. The +

→
R shift in the

→
b integral can be ignored. The integral inside the square brackets

must be the baseline-based gain function. Each point in the aperture function s(
→
R) corresponds to the position of a telescope. The

16



N.M. Elias II: Photon orbital angular momentum and torque metrics for single telescopes and interferometers

aperture function appears twice in the integral because there are two telescopes in a baseline. The two telescopes are separated by
the baseline. Q.E.D.

To derive the (m,m)th interferometer POAM autocorrelation density, I substitute

e j2π
→
R·
→
Ω = e j2πRρ cos (ψ−φ) =

∞∑

k=−∞
jk Jk(2πRρ) e jk(ψ−φ) (D.2a)

into Equation 11a and find that

B̃(
→
Ω
′
) =
∫

d2R′
∫

d2R


∞∑

m=−∞
j−mJm(2πR′ρ′)e− jm(ψ

′−φ′)





∞∑

n=−∞
jnJn(2πRρ′)e jn(ψ−φ

′)

 F̃ (

→
R
′
,
→
R)

=

∞∑

m=−∞

∞∑

n=−∞

[
j−(m−n)

∫
d2R′
∫

d2RJm(2πR′ρ′)Jn(2πRρ′)e− jmψ
′
e jnψF̃ (

→
R
′
,
→
R)
]
e j(m−n)φ

′

=

∞∑

m=−∞

∞∑

n=−∞
B̃m,n(ρ′) e j(m−n)φ

′
. (D.2b)

Each m = n term is identical to Equation 12a. When Equation 12a is integrated over radius in the image plane, this integral

lim
ρFOV→∞

2π
∫ ρFOV

0
dρ′ ρ′ Jm(2πR′ρ′) Jm(2πRρ′) =

δ(R′ − R)
2πR′

(D.2c)

appears as one of the factors in the result. This Dirac delta function collapses the R ′ integral, leaving Equation 12b. Q.E.D.
To prove that the interferometer POAM autocorrelations of Equation 12b can be converted the single-telescope illustrative forms

(cf. Section 4.2), I form the total POAM in the image plane

l̃Z =
∞∑

m=−∞
m p̃m,m =

1
B̃

∞∑

m=−∞
m B̃m,m =

1
B̃
2π
∫ Rint

0
dRR

1
2π

∫ 2π

0
dψ′

1
2π

∫ 2π

0
dψ


∞∑

m=−∞
me− jm(ψ

′−ψ)

 F̃ (

→r ,
→
R) . (D.3a)

The quantity in the square brackets is
∞∑

m=−∞
me− jm(ψ

′−ψ) = j 2π δ′(ψ′ − ψ) , (D.3b)

which is proportional to the derivative of another delta function identity. Since
∫

dx g(x) δ′(x − x0) = −g′(x)
∣∣∣
x=x0
, (D.3c)

Equation D.3a then becomes

l̃Z = − j
∫

d2R
∂F̃ (→r ,

→
R)

∂ψ′

∣∣∣∣∣∣∣∣
ψ′=ψ

/B̃ = − j
∫

d2R
∂s(
→r )
∂ψ′

∣∣∣∣∣∣∣
ψ′=ψ

s∗(
→
R)/S +

∫
d2Ω
∫

d2R
[
2πRρ sin (φ − ψ)] B(

→
Ω) S (

→
R)/B̃

=

∞∑

m=−∞
m pam,m + 2π

∫
d2Ω
∫

d2R
[→
Ω ×

→
R
]
p(
→
Ω) pa(

→
R) , (D.3d)

where the required variables and functions are defined in Appendix C. This equation is identical to the third illustrative form. The
third illustrative form was derived from the other two in Appendix C, so there is no need to rederive them here.Q.E.D.

Appendix E: Interpolation with No POAM Modulation
In this appendix, I assume aperture function interpolation of the form

s(
→
R) → s̃(

→
R) =

∫
d2RK(

→
R,
→
R) s(

→
R) , (E.1)

where K(
→
R,
→
R) is the interpolation kernel,

→
R = (R cosψ,R sinψ) is the real aperture coordinate, and

→
R = (R cosΨ,R, sinΨ) is

the interpolated aperture coordinate. Both coordinates are in units of wavelength. This equation can be expanded into POAM
components

s̃(
→
R) =

∞∑

n=−∞
s̃n(R) e jnψ

F⇔ s̃n(R) =
1
2π

∫ 2π

0
dψ e− jnψ s̃(

→
R) =

∞∑

m=−∞
2π
∫ Rlimit

0
dRRK−mn (R,R) sm(R) , (E.2a)
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where Rlimit is the radial integration limit (Rtel for single telescopes or Rint for interferometers), and

K(
→
R,
→
R) =

∞∑

n=−∞

∞∑

m=−∞
K−mn (R,R) e− jmΨ e jnψ F⇔ K−mn (R,R) = 1

2π

∫ 2π

0
dψ e− jnψ

1
2π

∫ 2π

0
dΨ e jmΨK(

→
R,
→
R) (E.2b)

is the double Fourier series expansion of the interpolation kernel. All of these equations have been derived using POAM calculi
(Elias 2008).

By definition, a system that doesn’t modulate the POAM spectrum means that a single input POAM state gives rise only to the
same output POAM state (Elias 2008). The most general interpolation kernel POAM gain that satisfies this requirement isK −mn (R,R)
= Km(R,R) δn,m. The interpolation kernels that produce such POAM gains consist of the family of functions that exhibit circular
symmetry, or

K(
→
R,
→
R) = K(

∣∣∣∣∣
→
R −

→
R
∣∣∣∣∣) = K(

√
R2 + R2 − 2RR cos (ψ −Ψ)) . (E.3)

To prove this assertion, I substitute this kernel into Equation E.2b and obtain

K−mn (R,R) =
[
1
2π

∫ 2π

0
dχ e− jmχK(

√
R2 + R2 − 2RR cos (ψ −Ψ))

] [
1
2π

∫ 2π

0
dψ e− j(n−m)ψ

]
= Km(R,R) δn,m , (E.4a)

which means that

s̃n(R) = 2π
∫ Rinstr

0
dRRKn(R,R) sn(R) . (E.4b)

I employed a change of integration variable Ψ = ψ − χ and eliminated ψ from both χ integration limits. Q.E.D.
This type of circularly symmetric interpolation kernel is often used in interferometric imaging, which is indeed fortunate.

According to Equation E.4b, it appears that the sn(R) must be calculated in order to determine the s̃ n(R). This procedure is unnec-
essarily complicated. If one substitutes Equation E.2a into Equation E.4b, one finds that

s̃n(R) =
∫

d2R
[
Kn(R,R) e− jnΨ

]
s(
→
R) . (E.5)

In other words, the nth interpolated POAM gain can be calculated directly from the continuous or discrete aperture function and the
kernel contained in the square brackets.

Appendix F: Telescope Apodization in Interferometers
The interferometric PSF in Equation 14 can be expanded as a interferometric DF dual azimuthal Fourier series squared, or

P(
→
Ω
′
,
→
Ω) =

∣∣∣∣∣D(
→
Ω
′
,
→
Ω)
∣∣∣∣∣
2
=

∣∣∣∣∣∣∣

∞∑

p=−∞

∞∑

k=−∞
D−kp (ρ′, ρ) e− jkφ e jpφ

′

∣∣∣∣∣∣∣

2

=

∞∑

p=−∞

∞∑

q=−∞

∞∑

k=−∞

∞∑

l=−∞
D−kp (ρ′, ρ)D−l∗q (ρ′, ρ) e− j(k−l)φ e j(p−q)φ′ , (F.1)

where D−nm (ρ′, ρ) is defined in Equation 16b. Similarly, the source intensity can be expanded into its POAM correlation expansion

B(
→
Ω) =

∞∑

m=−∞

∞∑

n=−∞
Bm,n(ρ) e j(m−n)φ . (F.2)

When these equations are substituted into Equation 14, the indices rearranged, and the integral over φ performed, Equations 15b-c
result. Q.E.D.

References
Elias II, N.M. 2008, A&A, 492, 883.
Harwit, M. 2003, ApJ, 597, 1266.
Brentjens, M. 2011, Unpublished EVLA holography data.
Rau, U., Bhatnagar, S., Voronkov, M.A., Cornwell, T.J. 2009, IEEE, 97, 1472.
Rau, U. 2010, PhD Thesis, New Mexico Institute of Mining and Technology.
Tamburini, F., Anzolin, G., Umbriaco, G., Bianchini, A., and Barbieri, C. 2006, Phys.Rev.Lett., 97, 163903.
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