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DESIGN CONSIDERATIONS FOR THE NRAO INTERFEROMETER

I. Abstract

The NRAO interferometer project is discussed and the reasons for choice of 
equipment and operating parameters (e.g. 9 bandwidth, central IF, LO frequency) are 
given. The double sideband interferometer system used at Cal. Tech. [1] will be em­

ployed, with parametric RF amplifiers preceding the crystal mixers. The LO frequency 
will be 2695 Me at the center of a 20 Me RF bandwidth. A block schematic diagram is 

shown in Figures 1(a) and 1(b).

II. The Interferometer Baseline

The choice of baseline was limited by geographical considerations once a high 
resolution interferometer was required. The baseline azimuth is 243° with respect to 
the present 85-foot dish, and the second 85-foot dish is to have sites along this baseline 
at 1200, 1500, 1800, 2100, 2400, and 2700 meters from the existing dish. Hence,
Fourier components will be obtained in the middle of those of Jodrell Bank at 158 Me 
(61,000 AD 32, 000 A, 9700 A, and 2200 A) [2] and above these of Cal. Tech. at 960 Me [1]
[3] and Meudon at 1420 Me [4] (baselines up to 1600 A and 7000 A, respectively). The 
baseline azimuth chosen at NRAO will produce the variation of fringe frequency with hour- 
angle shown in Figure II.

A baseline azimuth rotated from the E-W direction gives an increased variation 
of projected baseline rotation (on the celestial sphere); the projected baseline rotation 

for the NRAO interferometer is shown in Figure HI. According to Rowson [5], the in­
creased variation due to the skewed baseline gives more information on sources, although 
no quantitative assessment has been made. This would depend to a large extent on the 
source models assumed, since the same number of points on the u-v diagram are deter­
mined for any baseline azimuth.

III. The Receiver System

The schematic diagram is shown in Figure I. The basic system employed by 
Cal. Tech„ [1] is to be used for the NRAO interferometer, and, in addition, parametric 
amplifiers will be inserted in front of each mixer. These should reduce the system
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temperature from ^  900 °K to ^  150 °K [6]. Although parametric amplifiers without 
cooling may now have noise temperatures of around 80 °K [7], cable losses and the con­
tribution from the IF mixer will add as much as 70 °K.

Apart from the practical difficulties in correlating wide-band signals, parametric 
amplifiers have a maximum gain-bandwidth product of around 500 Me at present [7], so 

that a 20 Me bandwidth is a reasonable compromise: keeping the IF noise contribution 
down while giving a reasonable bandwidth. It may be seen (Figure IV) that excessive 
reduction of the bandwidth below 20 Me would accentuate the effect of the MgapMin the 
double sideband signal passed through a 2-10 Me IF amplifier. Reducing the bandwidth 
of either parametric amplifier or IF amplifier increases the fraction of pass-band wasted.

IV. Processing the IF Signals

(a) General.

After passing through IF amplifiers the two signals are multiplied and integrated.
If we assume a time lag t  between times of signal arrival we have an integrator output

/ “  x(t) x(t -  r)dt

for extremely long integrating times. This is the cross-correlation of the two signals [8].
According to the calculations of Read [1] the interferometer fringes are amplitude 

modulated by IF fringes, the number of RF fringes in one cosinusoidal ’ ’envelope” being 
fLO—----- . Furthermore, a finite gaussian bandpass gives a further gaussian modulation,

IF
the half-width of this modulation being inversely proportional to the square of the band-

sin Xwidth (see Figure V). This modulation is of the form — for a rectangular pass-band.
The position of the maximum of one of the cosinusoidal envelopes and the maximum of
the band-pass function may be moved simultaneously by adjusting the relative IF delay:
in the double-sideband interferometer the central RF fringe is defined only by the position

of this maximum. The number of RF fringes experiencing less than a p percent amplitude
reduction due to both envelope and bandpass functions is shown in Figure VI.

Since = 50 m, it would appear — from the effect of bandpass function on 
o

RF fringe amplitude (Figure VII) — that the exponential passband would reduce RF fringe 
amplitudes in the envelope adjacent to the zero-delay envelope by 5 percent, while the
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rectangular passband reduces interferometer fringe amplitudes by about half that amount.
Thus, only the central IF envelope would be used. (It should be remembered that a
gaussian passband gives an unreal situation for —► 1, since much of the bandpass
occurs in the negative frequency region.)

One interesting point that arises from Figures VI and VII is the negligible effect
of a bandpass of the same order as f__ on the interferometer fringes in the central

IFo
envelope.

A more general method of obtaining the fringe modulation is to consider the two 
?Iwhite” noise voltages passing immediately through rectangular IF passbands, being 
multiplied together and the result being integrated. This is justified for a (virtually) mono­

chromatic LO signal, as is shown by Burns [9] and Wagner [10], and considered in Appendix I,

(b) Multiplication and Integration Considerations.

We have assumed ideal integration of the multiplied signals, i. e , , no charge lead- 
age from the capacitor of the RC integrator. Such an integration is in fact obtained using 

a voltage-to-frequency converter, where the voltage is integrated and "dumped” over each 
sampling interval. It may be shown [11] that cross-correlating (sampling) a periodic 
signal embedded in noise with pulses of the same period gives a signal-to-noise ratio 
gain of V  number of samples. This assumes integration prior to sampling, so that this is 
not a true sampling technique. The method is considered in Appendix II.

Since-the above method would require a large number of samples per fringe-cycle 
for an integral number of samples to give a reasonably small error, and since the cycle 
period is not constant, a method of greater flexibility and accuracy is described in Appen­
dix IV. The computer processing of the data is also outlined.

(c) A Direct Correlation System.

A method of correlating the signals entirely by digital methods would be to hetero­
dyne the IF signal from each antenna down to video frequencies, and to pass the video 
signals through a (sharp cut-off) low-pass filter prior to clipping. This procedure is 
similar to that of Weinreb [12]. The two filtered and clipped signals are now sampled at 
a rate 2B, and corresponding points on each sample multiplied together. The products are
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then added over a discrete fraction of a fringe period (for a given number of sample 
products, n). This gives a point on the digital fringe pattern. The process is repeated 
for the next n sample products, and so on. Thus, the fringe pattern will be digitally re­
constituted if the sample products are added over times small compared to the fringe 
period but large compared to the sampling interval. Since we are now considering digital 
signals, the problems of amplification and transmission are a standard communications 
technique. There only remains the problem of synchronizing the two "records”. The 
delay in receiving the digital record from the ’’distant” antenna presents no problem if there 
are facilities for storing the digital record from the "home” antenna until the ’’distant" 
pulses arrive. Since phase information is now at video frequencies, fluctuations in the 
sampling period may be permitted, provided they are small compared with the highest 
video period. The problem of LO phase stability still remains, however.

One of the difficulties in the use of clipped noise appears to be the retention of 
absolute fringe amplitude information. The practical realization of a cross-correlator 
will anyhow be considered at a later date.

(d) The Multiplier.

The multiplication of RF signals presents considerable technical problems, so
multiplication of IF signals is used. Even here the signal bandwidth presents problems.

AfIt is proposed to use the Cal. Tech. multiplier, modified for the higher------ at NRAO.
IFnExperiments on the multiplier are now in progress. °

(e) The Integrator and Recorder.

Interferometer fringes will be complied digitally, although an RC and recorder 
give an analog record as an instrumental check. The output of the multiplier will be 
passed to a voltage-to-frequency converter, and an integrated record obtained over the 
(constant) integrating interval. In choosing the integrating interval, the accuracy with 
which the fastest fringe may be computed must be considered in terms of the minimum 
number of points required. The method of obtaining a sine wave from a constant observa­
tion rate on a sine wave of varying frequency is considered in Appendix IV. The deter­
mination (and accuracy) of the phase and amplitude of this sine wave is considered in
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Appendix V. We consider the number of digits required for a reasonably accurate record 
of the smallest fringe amplitude in Appendix VI.

V. The Phase-Lock Loop

The relative phase of the LO signals arriving at the mixers at each antenna must 
be constant. Thus, a phase locking system is required, such as the system used by Cal. 
Tech. [1]„ It is hoped that the Cal. Tech. system will prove adequate for the NRAO inter­
ferometer, although field tests will have to be performed in view of the longer baseline 
and the higher LO frequency. The block schematic is shown in Figure 1(b). A possible 
disadvantage of this system is the variation of electrical path from the HF reference to 
one antenna only. An alternative system is shown in Figure 1(c).

VI. The Problem of Absolute Phase

The accurate location of sources requires the location of the central fringe for 
every observation. This has been achieved [1] by using calibration sources in the region 
of the observed source, although the much higher fringe frequencies to be employed at 
NRAO require correspondingly greater accuracy in delay calibrations. The problem of 
the phase stability of the fringes is under consideration at the moment.

VII. Observations and Data Reduction

(a) The Data.

The output of the interferometer will be a series of digital readings on tape, taken 
at fixed intervals (in sidereal time). Each scan will commence with date, sidereal time, 
a program number, declination and right ascension of individual antennas, and relevant de­
lay settings. The sampling rate is determined by calculating the minimum number of 
samples per cycle of a "noisy55 sine wave to give rms amplitude and phase errors of less 
than p percent. The maximum fringe frequency is 1. 5 cycles per second (see Appendix V).

Neglecting the change in fringe frequency with time, a one-minute interferometer 
scan gives a maximum least-squares error of 8 percent between -5 HA and +3 HA for 
6 = 0° (see Appendix El). In fact, the assumption of constant frequency fringes will usually
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give considerably smaller errors. If this frequency-shifting is not tolerable, a scheme 
such as that outlined in Appendix IV may be used. This scheme is more flexible than the 
assumption of fixed frequency, and the length of the interferometer scan here is limited 
only by the nsmearing” of the observation point on the u-v plane. The method of least- 
squares fit is used to determine the phase and amplitude of the sine wave. The method 
is shown in Appendix V.

For a bandwidth of 8 Me, and a scan time of 50 seconds (assumed to be the inte­

gration time), a crystal mixer gives an rms noise temperature of 0.05 K. Hence, 
according to the criterion of von Hoerner [13] the smallest measurable flux density using 
the crystal mixer alone is

2kT q_
S = -  min 2 A / Bt

=* 0.6 flux units

for a two antenna interferometer. The system noise temperature (Tg) is taken as
1000 K (the parametric amplifier gives S . “  0. 08 flux units). Also, the number of
observable sources per steradian should be^v 250. For a fifty percent sky coverage
this gives ^  1500 observable sources, which includes at least nine point sources [14]
(unresolved at 32,000 A [2]). The method of von Hoerner should be used with caution,
however, when considering the interferometer. In fact, integration is only over parts
of the fringe cycle, so S . is increased by /n ,  where n is the number of points takenmin
per cycle (see Appendix V). This still leaves Us nine point sources for n = 10, with 
~  100 sources per steradian (see Appendix VH).

Since the path through the atmosphere is longer at low elevations, the phase 
fluctuations may increase considerably. Let r be the length through the atmosphere,
and let Ar be the differential path for the two beams. Assuming Ar ~  r a , where

h oi0 < a < 1 , then Ar cos 0
where h = height of atmosphere (assumed constant) 

and 0 = angle to the zenith.
Also x = D sin 0

where D = geographical baseline, 
and x = path difference.
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Hence Ax = D cos 0 A 9, and since Ax rs  Ar

A Q / i / ---------------~ ----------

D(cos ©)

Since large values of 0 give closer beams, the uncorrelated path fluctuations 
may decrease to some extent. Anyhow, the abpve hypothesis will have to be tested 
experim entally.

The scales of Figures II and VIII are the same, so we see that the NRAO inter­
ferometer could not be very useful for studying Cygnus A with existing system noise 

temperatures 1000 °K). A standard computer program now exists at NRAO to give 
phase and amplitude contours of any double gaussian source, provided the following in­
formation is given:

i. Position angle,

ii. Gaussian half-widths (assumed equal),
iii. Component separation,
iv. Ratio of component intensities,
V. Extent and intervals of u-v plane, and
vi. Contour intervals.

VIII. Conclusions

The system described for the NRAO interferometer is essentially similar to 
that of Cal. Tech., although more rigorous stability specifications are required due 
to the higher operating frequency and the longer baselines.

Some modifications will be incorporated at a later date, since the interferom­
eter is to be both an observing instrument and a test bench. It is probable that phase 
and delay stabilities will present problems in the early stages of operation. Thus, we 
intend to avoid the use of the parametric amplifiers and digital read-out until the sta­
bility of the actual interferometer system has been checked.



APPENDIX I

THE CORRELATION OF TWO RANDOM GAUSSIAN SIGNALS

Consider the multiplication of two white stationary noise voltages after each has

passed through a rectangular IF passband. The noise voltages will have the characterise
sin o)jt

t i c ------—  form. The correlation of the two signals gives the function (unintegrable inOJ
1

closed form)

,00 sin u t sin w (t -  t)f / v = ---------- . --------------- - dt
v ; -00 u t w (t - T)

This will give the fringe modulation envelope pattern if the limits of integration 

are times large compared with t . The term describing the actual RF fringes has been 
neglected here.

We see that f(r) is the convolution

f(T) = q(t)#q(t - t) 

where the Fourier transformation is given by

F(u>) = [G(w)]2

= constant where < u < 00 2, and zero 
outside

Let the constant be unity, i. e . ,
w2f(T) = J COS COT, dw (1)

= ^ [sin co2t - sin co^r]

2 .= -  smT
W2 " Wi\---- ----- 1 t COS

. Brsin —
= B -----~  * cos co t (2)

BZ

This is the amplitude modulation of the RF fringes, i. e . , the fringe envelope.
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For a gaussian passband centered at equation (1) becomes
IFo

f(T> = i

Cl) -  COIF

2d2 * cos CUTdtO

From which it may be shown that

<J2 T2

f(T ) = V'TTH cos -t  • e IFo

B2t2
_ / tT 8BVn cos t  • e 2 IF0 (3)

where we define B -  2a ^ gaussian half-power bandwidth.
From either (2) or (3), B —^  0 gives the Cal. Tech. result [1].



APPENDIX II

PERIODIC SAMPLING OF A WAVE OF KNOWN FREQUENCY

If n is the sampling rate and N is the number of samples per cycle (the period 
being obtained from a table or computer program), samples 1, N + 1, 2N + 1,
3N + 1 . . .  are added together to give the first point on the fringe pattern. The process 
is repeated, starting with the second sample, and adding samples N + 2, 2N + 2,
3N + 2 . . .  This gives the second point. The process is repeated until all samples 
have been used once. A ten-second interferometer record sampled every second 
has a signal-to-noise gain of VlOOO over a single sample. By contrast, cross-correla­
tion between the signal embedded in noise and the actual periodic signal (as opposed to 

samples) gives a signal-to-noise ratio gain of V 500 from the same number of observa­
tions. The determination of n is considered in Appendix V, with special reference to 
fringe phase and amplitude errors.

An integrator with short a time constant (compared with the sampling interval) 

gives extremely inaccurate integration and does not smooth out the higher frequency 
fluctuations effectively. A long time constant attenuates and disperses the signal, i. e . , 

shifts phase of the fringes according to fringe frequency. Vinokur [16] has calculated 
that only a 2 percent loss of information occurs at each sampled point if the time con­
stant, T , is twice the sampling period, ©. This is effectively a reduction in signal-to- 
noise ratio of 2 percent. For T = O the error at each point is 8 percent. The sum of 
samples added together is the number of fringes in one scan of the source, and we see 
(Fig. Ill) that a one-minute scan time introduces a maximum fringe fluctuation of one 

percent between -5 H. A. and +3 H. A. This gives a maximum error of 3 percent in 
assuming constant frequency (see Appendix III). In the region of the instrumental 
meridian the fringe frequency is virtually constant, and a larger number of fringes per 
scan may be taken.



APPENDIX III

TO CALCULATE THE LEAST SQUARES ERROR IN FITTING A SINE WAVE OF 
________CONSTANT FREQUENCY TO ONE OF VARIABLE FREQUENCY

J0T[cos 27rft -  cos 27rft]2dt
€(r) = -------------- ---------------------------------

/0 cos2 2?rftdt

However, f = f(t) and this complicates calculations considerably. A good approxi­
mation is the method used below.

Each sine wave is experiencing a time shift and a frequency shift, relative to the 
reference (in this case, center) cycle. Let us consider the two shifts separately.

Considering the time shift, let us assume two sine waves of equal frequency (see 
Figure IX), every cycle of the second sine wave being displaced from the corresponding 
cycle of the first (reference) sine wave by an increasing time lag. Let T be this time lag. 
We consider the least squares fit for one cycle, the n**3an square error being

2 _ _
/  [cos cot -  cos co(t + T)]2dt

/Q27r cos2 cotdt 

/Q27r [4 sin2 ( t + p w  sin2 “ w]dt
7T

* 0 T -  
c = 4 sin2 ~  co £d

This gives us the mean square error for two sine waves of equal frequency, offset by T.
Consider now the change in frequency (see Figure X). The lengths of individual 

cycles in Figure IX(b) are altered in order to give a continuous wave. The mean square 
error in this process is, for the smallest variations, one-half of that due to the time 
shifts, and decreases the total error. Thus, the mean square error due to both frequency 
and time shift ^ 0. 5 € per cycle.

We calculate the change in frequency per cycle, and the reference frequency from 
which this change occurs. From the graph of fringe frequency against time (Figure II),



dfthe maximum gradient between - 5 HA and +3 HA is at 6 = 0° where f = 0.34 and -jj =
—54. 5 x 10 . We are, of course, calculating the change of cycle period only to calculate 

time shifts.
The delay contribution of the nth cycle

_ 1
ln
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T = t„ + t + . . .  + t n l 2 n

1 1 ,  I n

T

fi f2 f„  f

f _ 7 n d f
n f dt “  *

n
‘ 1 _ n

n )  | n d f  f
, f dt m = 1

n
I  [i + .£_ _ a 
f \ ( f ) dt J f

m  =  l

n df . .since -=-o TT «  1. For a one minute scan we have two identical half-minute scans, since( i ) at
the reference cycle is at the scant center. Hence, n = 30x 0.34 =* 10. Hence

10

T = - 4 -  • £  V  10 <f)2 dt m 
m = l

= 3 .9 x 1 0 - 4

10

I
m = l

m

Now T —€ = 4  sin2 ~ Ci)
Li



and 10

Y .\ot=  2 ^ e 
m = 1

for time shifts alone.

And considering both time and frequency shifts

10

- I
e ^ ; e
tot

m = l

T -
10

„ V '  • 2 A4 \ sinz — w 
m = l

where T »  3 . 9 x  10“4 )
Z _

- 3€ , , 5. 5 X 10

n

m 
m = l

tot

rms error =* /e tot 

«  0.08
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Hence, the minimum error (in the worse case between -5 HA and +3 HA), using 
the assumption of constant frequency, is approximately 8 percent. Although this is above 
the error for which the approximations are reasonable, the order of magnitude of the error 
is obtained. This indicates that, in the worse case, we should not assume constant fre­
quency fringes, but should proceed as in Appendix IV.



APPENDIX IV

TO OBTAIN THE FRINGE PATTERN WHEN THE FRINGE 
_________ FREQUENCY VARIES APPRECIABLY_________

(a) General

Let the computer calculate the period of each fringe and the sidereal time at the 
beginning (or center) of each fringe cycle in terms of the sidereal time at the beginning 
of the whole interferometer scan (which is uecorded on tape). If ten samples* per second 
are taken, and the first cycle period is very slightly less than one second, then there is a 
phase difference between the first point in the first cycle and the first point in the second: 
similarly, with other "corresponding"points in the first two cycles, and in all cycles. 
Hence, all points in a cycle may be given their correct phase (relative to the start of the 

first cycle). All points are grouped in equal phase intervals over the cycle, and the aver­
age of each group taken. Thus, we have one cycle of fringe sine wave which contains all 
observations, where the commencement of the one cycle corresponds to many sidereal 

times.
Two important advantages emerge from this treatment:

i. Provided the computer program gives the period of each 
fringe, and the phase of each point in its own cycle, then 
a single cycle of the fringe pattern is produced; each point 
on the sine wave now has a smaller standard deviation, 

ii. Longer scan times may be used, giving an effective in­
crease in integration time.

The computation required for this method is only a little more complex than that 
required for the fixed frequency case in Appendix II, and the solution for 0 and A (in 

Appendix V) is the same. In fact, since longer scans are possible the increased inte­
gration time may be long enough to permit the amplitude and phase of all but smallest 
fringes to be determined by simple interpolation methods. The chief limitation to the 
extension of integration time is the "smearing" of the observation point of the Fourier 
transform diagram (u-v diagram).

* This is not strictly sampling, although the term is useful. The "sampling"rate is 
determined by the minimum number of samples permissible in the fastest fringe period 
(see Appendix V).



Appendix IV
Page 2

(b) Program Outline — To Obtain a Sine Wave Where Fringe Frequency Varies

Consider interferometer fringes of varying frequency, the period of each indi­
vidual cycle being computed (which may be done using the sidereal time of the cycle 

commencement —  or its approximate mid-point, as is preferred). Assuming a con­
stant rate of sampling, during which period pre-integration occurs, we may use the 
following digital computer program outline to obtain the single fringe cycle described 
in the previous section of this Appendix. We assume ten points are required to plot the 
sine wave, i. e „ , we have ten (equal) phase-intervals.

Referring to Figure XI, we define the following terms i
t = sampling interval and pre-integration time (a constant)

T„ = period of ith fringe

~  = portion of cycle per sample
i

m = an integer
9  -  ^remnant” time 

1

S = sidereal time at beginning of scan (first sample)
a -  number of equal intervals into which one cycle is 

split (here a = 10)
X^ = sum of all Rs s in k̂ h interval
Z. = number of R 5 s in k^1 interval k

Program Outline

Store S
Store t

Clear storage for X , X,,. „ .X  and registers for Z , z „ . . .  ZJl Cs 11/ X £t xv
i = 0

s.1 -  s
e = -t
e = H
i = i + 1



Compute T (program already exists)

P T. 1

R = t - 0

(2) W = tape sample 

Move on tape to next sample 
R = R + P

To (3)

To (3)

—

(3)

T oliF

To (2) ^  ——

If R 5 0.1 (R f  0) 
If R > 0. 1

X. = X + w1 1
-  Z1 = V 1

If R < 0. 2

— If R > 0.2
Xg = Xg + w

Z 2 =  Z 2 +  1

-to* If R 5 0.3

If R < 0.9

If R  > 0.9

= X 9 + W

Z9
= V 1

X 10 = X 10+ W

Z 10 = Z io + 1
Look for ”end of scan” marker

—  If affirmative
If negative, continue 
Q = 1 -  R 
M = Q - P

-  If M - 1

Appendix IV
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If M < 1, continue
H = Q

Print S. with corresponding
S. = S. + T. l l i

x i
Yi = F Print

z i

X2
Y2 = Z" Print

2

10

Y io = T  PrInt
10

End of Program



APPENDIX V

THE NUMBER OF POINTS TO DEFINE AMPLITUDE AND PHASE OF A SINE WAVE

(a.) Minimum Number of Integrations Per Cycle

Consider the maximum error in#integrating a portion of a sine wave. This will 
occur at the peak of the sine wave. Let the integrating time be 2h. Thus, the error in 
integrating the shaded portion (Figure XII) is

X th
'  = i : / v °  u cosXlJX —  c o s x  2h X -h oo

sin hHence e = —:----- - 1 cos X —  (1)h o

And when Xq = n7r (maximum error)
, h3 h5

" 6 + 120 ‘  ’ ’ *€ = --------- ----------------- -  i

~  for small h b

For 10 points per cycle h = 18° «  0.3 radians
€ = -1. 5 percent

Apart from the fact that this is the maximum error, and only occurs for the highest 
fringe frequency (assuming constant sampling rate), the correction to each point on the 

sine wave may be calculated from (1).

(b) To Determine The Amplitude and Phase of One Cycle of Sine Wave, Using the Method 
of Least Squares Fit.

The cycle period is known, and is split into an equal number of intervals (see 
Figure XIII). The observed points have the form
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where e. is a normally distributed error, representing the noise-to-signal ratio

A = amplitude 
© = phase

For S = minimum, we get (after some reductions):
A [U cos2 © - 2V cos © sin © + W sin2 ©] = X cos © -  Y sin ©

A [V cos2 © + (U - W) cos © sin © - V sin2 ©] = Y cos © + X sin ©

V + (U -  W) tan © -  V tan2 © Y + X tan ©

A computer program has been devised for solving this cubic, and proceeds as 

follows:
Let the cubic be F (tan ©) = 0
Compute S(©) for 0°, 60°, 120°, 180°, 240°, 300°
Choose the value of © giving the smallest value of S. This is our "first guess” 

in the solution of the cubic.

where n

i = 1 i

i i

i

Thus we have the third-order equation in tan ©:

U - 2V taft © + W tan2 © X -  Y tan ©



Take a value of © about 10° above the first guess (call this point "second value1} 
and determine where the chord through these two points crosses the line F(tan ©) = 0 
(see Figure XIV). Let this value of tan © be the ” third value”, and let it replace ”first 
guess” in determining where the chord through ” second value” and ”third value” crosses 

the line F(tan ©) = ©. Thus, we get ’ ’fourth value” (which replaces "second value” ), etc. 
This method converges very rapidly to the required solution, so only a few iterations are 
required. The other solutions to the cubic may now be obtained by substituting the first 
solution and solving the quadratic. These two solutions for tan © should be less signifi­
cant than the first, since they should be imaginary or complex. (Trials on the computer 
have to date produced the significant solution first in all cases.)

Since the significant solution is for tan ©, and since 0 lies between 0 and 27r, 
identical solutions for tan 0 occur for 0 and 0 + ir. Thus, we must obtain S(0) and 
S(0 + 7r) and take the smallest. This gives the value of © that is substituted back in order 
to obtain A.
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(c) To Determine the Accuracy of Q and A.

After pre-integration, a second integration occurs when samples in a given
n-phase interval” (see Appendix IV) are averaged. Hence

TNoise s
cr = Signal 2T -y/BrmA

t

where n = number of samples per cycle, and t = cycle period. Thus

T
a = ------2T . A V Btm

Since the product t x m is constant for a given total integration time, fringe 
period variation does not affect cr. The minimum fringe period is 0.7 seconds, B = 8 Me, 
T = 1000 °K, and T = 1 °K (S ^ 0.6 flux units for two 85-foot dishes), and

S A



This is identical to T = 150 °K and T = 0.15 °K.s A
For von Hoerner* s criterion [13] to be rigorously fulfilled m £ n. A more 

useful form is
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<t ^ 0. 02 Vn

for a one minute scan. The value of a is determined, and given to a gaussian random 
number generator in order to simulate noise on sine waves of varying phase. A com­
puter program then determines the errors in 0  and A from many solutions of the cubic 
(discussed in the preceding section of this Appendix). This is repeated for many values
of n, so that a and a may be plotted against n. These results will be available shortly. a  y



APPENDIX VI 

THE USEFUL PRECISION OF THE DIGITAL RECORD

Let the number of contributions to each point on a single sine wave (Appendices IV 
and V) be fairly large (>20, say). Then according to Vinokur [17] the fractional rms 
noise increase (i. e . , fractional increase in standard deviation) is

A ct = 24a2

where a is the number of digits corresponding to a minimum temperature, T^ .^ . If the 
equivalent fringe amplitude temperature, T , is small compared with the system noise

A
temperature, T , then A a is effectively constant for all T . Hence, A ct and T ^  are 
determined, and a is obtained.

For crystal mixers

0.02 r <j -  ~ —  V n
t a

From von Hoerner’ s criterion, for n = 10

T = T .A min

= 0.3 °K

A one percent error in standard deviation gives

10.01 = 24a2

o i - 2  digits per T .mm

i. e . , T = 0.15 °K
T .mmwhere a = “ —-  

D

For parametric amplifiers, von Hoerner’ s criterion gives

T . = 0.05°K mm
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and a one percent error in cr requires

Td  = 0. 025 °K

An important point, when considering the number of digits required, is the dynamic 

range of the digital equipment. Figures in and VIII show that the maximum signal which 
will be received from Cygnus A on the NRAO inteferometer is below one hundredth of the 
maximum fringe amplitude. This situation appears to occur with most of the strong 
sources, since these are well resolved at the shortest NRAO baseline. Hence, most of the 

strongest sources will give maximum fringe amplitudes representing antenna temperatures 
< 10 °K. This gives a much smaller dynamic range than would at first appear, and three 
decimal digits (three lines on the tape) will give a range of -12. 5 °K to +12. 5 °K (since the 
correlation interferometer gives positive and negative output signals) in steps of 0.025 °K. 
Only two tape lines would be required in this case if binary code was used.



APPENDIX Vn

THE POINT SOURCES

From Conway, Kellerman and Long [14], the point sources with estimated flux 

> 0.6 flux units are listed below. For our purposes a point source is a source which 
was unresolved by Jodrell Bank at 32,000 X and 158 Me [2].

The sources 3C 49, 3C 85 and 3C 222 are not in the catalog of Conway, Keller­
man and Long, so a considerable extrapolation was required from the Jodrell Bank data, 
assuming a = 0.7. The sources 3C 119, 3C 299, and 3C 459 appear in Conway, 
Kellerman and Long and require considerably less extrapolation, while the remaining 

three source fluxes are given directly.

Source 6 S10 cm t a

3C 48 +33° 8.4 flux units 3.4 °K

3C 49 + 13° 1.2 flux units 0. 5°K

3C 85 + 17° 1.0 flux units 0.4 °K

3C 119 +41° 4. 5 flux units 1.8 °K

3C 147 +50° 11.4 flux units 4.6 °K

3C 222 +5° 1. 5 flux units 0.6 °K

3C 286 +31° 9. 5 flux units 3.8 °K

3C 299 +42° 1. 5 flux units 0.6 °K

3C 459

o+ 2. 5 flux units 1.0 °K
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