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The MODEX Series

Model-fitting Programs 

for Interferometer Observations

Introduction

The MODEX series comprises four programs — M0DEX1, 

M0DEX2, M0DEX3, and M0DEX4 — written in FORTRAN for the 

IBM 360 computer. The programs are used to recover the 

brightness distributions of celestial radio sources from 

interferometric observations, and they differ among them­

selves in the kind of observations upon which they operate 

as well as in the computational methods they employ.

M0DEX1 and M0DEX2 were the first of the programs to 

be written. Ordinarily they are not practical methods for 

dealing with an actual problem, and I have included them in 

this discussion solely for their didactic value — as exam­

ples of alternate ways in which the basic problem may be 

attacked. M0DEX3 and M0DEX4 are identical except in proce­

dural details; I shall usually refer to them together as 

MODEX3/4.

All the programs model the true brightness distribu­

tion of a source as a group of point sources distributed 

over the region occupied by the actual source at fixed points 

specified in advance by the programmer. M0DEX1 could be used
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when both the relative amplitude and the absolute phase 

of the source’s complex visibility function are known at 

each point of observation in the brightness transform plane 

(the u-v plane), M0DEX2 operates on amplitude information 

alone, by linearizing the equations in the unknown amplitudes 

of the point sources. M0DEX3/4 proceed in a similar but 

distinct manner, using the "method of steepest descent."

Using the Programs: An Operational Summary

Input Requirements:

The organization of the input data has been made as 

nearly identical for all the programs as possible. It con­

sists of the following parts:

1) A single card containing general information 

about the source and the model, along with cer­

tain parameters.

2) A set of data cards each containing a single 

observation point.

3) A set of cards assigning the positions of the 

model points.

4) Optionally, in M0DEX2-4, a set of cards speci­

fying initial values of the amplitudes of the 

model points.

Following is a detailed description of these input

cards:
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1a) The General Information Card (all programs):

The source name (columns 5-12) — any eight characters 

identifying the source.

The source declination (col. 15-28) — expressed in degrees, 

minutes, and seconds to the nearest tenth, with a single 

space separating each of the three subfields.

An identification number for the run (col. 29-33) — a five­

digit integer used to distinguish, for example, different 

sets of computations for the same source.

The number of observation points (col. 37-40) — an integer 

indicating the number of cards in the second part of the 

input data (which is the same as the number of observation 

points since, as we shall see, each card will contain one 

point). In M0DEX1/2 this number may be no larger than 500, 

but in MODEX3/4 the maximum value is 1100.

The number of model points (col. 45-47) — an integer speci­

fying the number of point sources in the proposed model, or, 

equivalently, the number of cards in the third part of the 

input (except in M0DEX4). In M0DEX1/2 this number may not 

exceed 140, but in M0DEX3/4 it may be as large as 700.

1b) The General Information Card (additional para­

meters required by M0DEX2-4 only)

Flux (col. 52-63) — six significant figures giving the to­

tal flux responsible for the measured visibility amplitudes 

(and expressed in the same units, of course). This datum
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is used only when the fourth part of the input is absent,

A  tolerance parameter (col. 64-6 9) — three significant 

figures. Since M0DEX2-4 are iterative procedures, there 

must be a criterion according to which the program may deter­

mine when to stop iterating. In M0DEX2, iteration stops 

whenever the fractional change in each of the model-point 

amplitudes is less than the tolerance parameter on a particu­

lar iteration. In M0DEX3/4 iteration halts when the fractional 

change in the mean square deviation of the observed visi­

bilities from those which would result from the current 

model becomes less than the tolerance parameter.

The maximum number of iterations (col. 70-72) — a three- 

digit integer declaring the maximum allowable number of 

iterations. After this number of iterations processing will 

stop even though the condition based on the tolerance para­

meter is not yet satisfied.

An option selector (col. 79-80) — an integer between 1 and 

8 , inclusive, specifying whether or not the program is to 

use each of the three following options:

1) The program may use both amplitude and phase 

information as input, or amplitudes only.

2) The program may or may not read in an initial 

set of model amplitudes.

3) If a model amplitude happens in the course of 

iteration to become negative, it may or may not 

be reset immediately to zero.
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The eight possibilities are listed in the following

table:

Parameter Amps, and Phases? Initial Model? Reset?

1 No No No

2 No No Yes

3 No Yes No

4 No Yes Yes

5 Yes No No

6 Yes No Yes

7 Yes Yes No

8 Yes Yes Yes

2 ) The Set of Observation Cards

In M0DEX1 each "observation point" is the amplitude 

and phase of the complex visibility function (not necessar­

ily normalized), at a given hour angle of the source, on a 

particular baseline. In M0DEX2 the amplitude alone is used, 

and in M0DEX3/4 either amplitudes only or amplitudes and 

phases together may be used. Each card is organized as fol­

lows:

The baseline parameter (col. 11-12) — an integer from 1 to 

1 0, inclusive, designating the baseline on which the obser­

vation was made. At present the baseline parameters 1,2 , . . . , 6  

refer to the baselines named the same way (alternately called 

baseline 12,15,18,21,24, and 27, respectively). The four



6

other possible parameters are not now being used.

The hour angle of the source (col. 18-31) — expressed in 

hours, minutes, and seconds to the nearest tenth. A single 

blank space must separate each of the three subfields.

The relative amplitude of the complex visibility (col. 38-47) — 

five significant figures, in any convenient units.

The corresponding phase of the complex visibility 

(col. 48-59) — four significant figures, expressed in degrees. 

This datum is necessary only in M0DEX1 and is optional in 

M0DEX3/4. The phases must be absolute.

3a ) The Model Specification Cards (except for M0DEX2C 

and M0DEX4)

These cards give the coordinates -of" tho points' of the 

points at which sources are to be located. In M0DEX1 the 

origin of coordinates should be put as near to the supposed 

centroid of the source as possible, but in the other programs 

the location of the origin is not so important. Each card 

specifies one model point, consisting of two coordinates:

The x-coordinate (col. 11-20) — three significant figures 

giving the distance east of the origin in seconds of arc.

The y-coordinate (col. 21-30) — three significant figures 

giving the distance north of the origin in seconds of arc.

3"b) The Model Specification Cards (for M0DEX2C and

M0DEX4)

In these two programs the model points are specified
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not individually but in rectangular blocks consisting of 

points on a square grid. A block is determined by its center 

point, its half-widths along the x- and y-coordinate axes, 

and its grid spacing. As many as ten blocks may be declared, 

one to a card, as follows:

The x-coordinate of the center of the block (col. 1-10) — 

three significant figures giving the distance east of the 

origin, in seconds of arc.

The y-coordinate of the center of the block (col. 11-20) — 

three significant figures giving the distance north of the 

origin, in seconds of arc.

The half-width of the block in the x-direction (col. 21-30) — 

three significant figures; seconds of arc.

The half-width of the block in the y-direction (col. 31-40) — 

three significant figures; seconds of arc.

The grid spacing of the block (col. 41-50) — three signi­

ficant figures; seconds of arc. (Notice that the grids of 

different blocks may be of different sizes. Model points 

will be placed at all lattice points of the grid within or 

on the boundary of the region determined by the two half­

widths.

4) The Initial Model (M0DEX2-4 only)

If it is desired to specify an initial source model, 

from which iteration is to begin, the set of data cards con­

taining the model amplitudes must be placed at the end of the 

input data deck. Each card (except, perhaps, for the last)
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will contain six amplitudes, each of five significant figures, 

in columns 5-16, 17-28, 29-40, 41-52, 53-64, and 65-76. If 

the source model is specified point by point, then each 

amplitude in the initial model will be associated with its 

ordinal counterpart among t h e  source points. When the source 

model is specified in blocks, all the points in the first 

block come first, starting with the most northwesterly point 

and proceeding east along the northernmost row to the end, 

then taking the next row south in the same way, and so on, 

to the southernmost row and finally the most southeasterly 

point. Then comes the next block, arranged in the same order, 

and so on.

Output:

The output of each of the programs is largely self- 

explanatory. Here is a summary of what each program will 

produce:

M0DEX1

1. The first line identifies the source and the 

run number.

2. There follows a list of the model points. For 

each point there will be given an identification 

number, its x- and y-coordinates, and its cal­

culated amplitude.

3. There will then be a numbered list of the obser­

vation points, giving for each point the observed
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4.

MODEX2

1 . 

2 .

3.

4.

5*

6.

visibility amplitude, the amplitude due to the 

model distribution, the observed phase of the 

visibility, and the phase derived from the model. 

Finally the machine will print the rms deviations 

of the model phases and amplitudes from the ob­

served values.

The first line identifies the source and the 

run number.

For each iteration, the iteration number is 

printed, followed by a list of the model points 

giving the coordinates of each along with its 

amplitude at the end of that iteration.

After the last iteration a message is printed 

explaining why iteration was halted.

Then there comes a numbered list of the observa­

tion points, giving the observed visibility 

amplitude of each along with the amplitude and 

phase calculated for that point from the model.

The last line of printed output gives the rms 

deviation of the model amplitudes from the observed 

amplitudes.

After all the printed output has been produced, 

the machine punches on cards the final source 

model. This model is in the same format as the
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input model (part 4 of the input), so that the 

deck may he used on a subsequent run to continue 

iteration from the same point.

M0DEX3/4

The output from M0DEX3/4 is practically identical to 

that of M0DEX2, except for point 5. In both M0DEX3 and 

M0DEX4 the rms deviation of the model is printed after 

each iteration except the last. In M0DEX3 the deviation 

printed is the deviation of the model amplitudes; but in 

M0DEX4 the number given is the rms value of the distance 

in the complex visibility plane between the observed visi­

bilities and the model visibilities.



Detailed Description of the Computational Methods

M0DEX1 Mathematical Background

The true brightness distribution and the complex visi­

bility function comprise a Fourier transform pair:

Since V  is not completely known, it is impossible to restore 

the brightness exactly — that is, to calculate T(x,y) un­

equivocally. But by assuming that the brightness distribu­

tion can be modeled as an array of point sources disposed 

at pre-assigned points in the x-y plane, one can lift part 

of the "degeneracy" in the brightness and at the same time 

simplify the mathematics to a manageable level.

Now, in M0DEX1, V and cr are both known at every point

(1 )

(2 )

Suppose, then, that

(3)

so that, (4)

( U.(j V*y) in the transform plane at which an observation has
+■ V*

been made. Let the phase of the k term in (eq.(4)) at

point "q" be called Then, if ^  is the
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observed phase of the visibility at the same point'* "q", the 

observed visibility amplitude at that point is just the sum 

of the projections of its component vectors, namely

e '2?r̂ f * on the line in the u-v

plane. That is,

f
where the total number of observation points has been called Q.

These equations are linear in the lr^ , and in order 

to establish a solution we must have Q£ K.

Now, imposing the least-squares condition on eq.(5),

^  [  i f  Urf (O j ~ $k< j) ~ V,] 5= 'w 'xti im u "M  (6 )

3̂  f { [ f  * O; (7)

(S)K

or, rearranging,

ST j-k £  Ct4 (° f -0 /f )c o i ( t}f - 0 i !f )=  Vj cod(°j-£>iq') ; ^ (9) ^

If Q£  K, one can hope to have an independent set of equations 

and to solve for the b's.



M0DEX1 Program Summary

ISN

5-9

1 0- 1 5  

16-24

25-27

28-32

33-42

43-53

Read in input, convert phases from degrees to radians.

Compute (u,v) for each observation point; an extra factor 3.041674 is 

inserted so that when u and v are multiplied by x and y, expressed in 

seconds of arc, the result will be converted to radians x ZX 

Clear each element in the upper-right half of the matrix of coeffi­

cients of the b*s; form ^  and |i cc6 ( af~  

of eq.(9 ) in situ in the appropriate matrix elements.

Fill in the lower-left half of the matrix by symmetry.

Solve the equations (9) for the amplitudes of the point sources; write 

out the source name and run number; if the equations are inconsistent, 

redundant, or poorly conditioned, stop.

Compute amplitude and phase according to the model at each observation 

point; convert phases from radians to degrees.

Compute rms deviations of model amplitudes and phases, and finish 

writing the output.
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M0DBX2 Mathematical Background

In M0DEX2 only the amplitude of the complex visibility 

is known, not the phase. Suppose that we have an approxi­

mate solution for the b^; call it i i® 1,2,...,K. Then 

at each observation point, "q," one can compute

c t , k  / / f 0 0 )

d j is obviously the "error" in the visibility ampli­

tude computed from the model at point q. Let us try to find 

some incremental changes, Aj , that can be made in the to 

make the errors smaller. If the equations were linear in 

the jSs * and the number of parameters, K, to be varied were 

exactly equal to the number of indepent errors, Q, to be 

removed, then we could simply write the equations

k-i d fa  ~ * I s
Then, k n o w i n g a n d  01̂  for all k and q, we could solve 

for the A|< . In that case the change in Q l due to the change

in fa  is 1-4 , and since the sum of all the changes 

is - ol<j , the application of all the increments makes all 

the Ot(j « 0. In other words, the model reproduces the observed 

visibility amplitudes exactly.

But actually the equations (10) are not linear in 

the 0 lS . Still, if the initial model is a fair approxi­

mation to the true solution values, the equations may be 

so nearly linear in the neighborhood of the model and the 

solution that the correct values of the @ S will be approached
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after a few iterations of the same procedure. This method 

is simply a generalization of Newton*s Method to a function 

of several variables.

Now suppose that in addition there are random errors 

in the V and that there are more data points than amplitudes 

to be determined.— that is, Q > K .  It is possible to incor­

porate these features into the previous scheme by solving 

the set of Q linearized equations for values of the A  {< 

satisfying the least-squares criterion.

(Intuitively, the justification for this procedure 

is not at all clear: inasmuch as it is impossible to find 

such that all 0i\ = 0 (The equations are over-constrained.), 

it is not at all apparent that the least-squares values of A {  

determined on succeeding iterations will converge to zero 

or even become less than a fixed absolute value. For example, 

one might reasonably imagine that after a few iterations 

the A; would begin to oscillate at a more or less constant 

amplitude, negative increments following positive ones, and 

vice versa, indefinitely, with the values of the being 

neither much improved nor much degraded in the process.

The trials which have been made with this particular 

problem show, however, that the procedure does work, even 

when the initial model is not a very good one.)

Let us develop the equations. Thinking again of the 

visibility vector in the complex plane as being the sum of 

vectors due to eaoh of the point brightness sources, you
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can easily see that *
0 /  *  \s f k~ a* (Oj - (12)

and applying the least-squares condition along with eq. (1 2 )

to eqs. (1 1 ) gives us K equations in the b,:

K <r~ A
% \ f l ,  -  CM - f y f ) =  (13)

$ - I K
Having solved for the , we simply increment the 

accordingly, recompute the Ci's from the (hopefully improved)

, and continue in the same pattern until the agreement 

between the computed and observed visibilities is sufficiently 

good.

There are three versions of M0DEX2. All of them 

use the algorithm outlined here and produce the same results, 

but they differ in the following respects: In M0DEX2A cer­

tain coefficients involving trigonometric functions which 

are used on every iteration are stored in scratch areas on 

the disks, whereas in M0DEX2B/C these coefficients are re­

computed at every iteration, M0DEX2C differs from M0DEX2B 

in that the source model is read in in blocks rather than 

as separate points in M0DEX2C. This method of organizing 

the data later permits, a great saving of time in the com­

putation of trigonometric functions, as will be seen in the 

following analysis of all three programs.



M0PEX2A/B/C

ISN
M0DEX2A M0DEX2B M0PEX2C 

—*5-6

7-9 5-7 6-7

--- -- .12 8-26

10-14 8 - 1 2 27-31

15-20 1 3 - 1 8 32-37

21-27

28-32 19-23 38-42

Program Summary

Rewind the "scratch tapes".

Read in the first part of the input data.

Read in the blocks of model points and compute coor­

dinates for all the points.

Set the value of a constant to be used later; preset 

the model points to a uniform value, then read in 

the initial model if one is given.

Compute (u,v) for each observation point; an extra 

factor of 3.046174x10“̂ is inserted so that when u 

and v are multiplied by x and y, in seconds of arc, 

the seconds will be converted to radians x B T  .

Using u and v, compute the phase associated with 

each model point for each observation point; store 

the phases, their sines and cosines.

Write out the source name and run number, set the 

iteration number to zero; increment it; if the max­

imum allowable number of iterations has been made, stop.



33-34

35-38

39-58

59-62

63-76

— — Rewind the tapes.

24-27 43-46 Clear the augmented matrix of coefficients of the .

— 47-72 At each observation point compute the sine and co­

sine of the phase angle of the contribution to the 

visibility from each of the point sources.

28-45 73-87 For each observation point compute and Oj ;

compute the factors in eq.(13) and form cot cg4 ~
& f  A \ ^

and ~ My 'CPd -P icy) in situ in the appropriate 

matrix elements, using the symmetry of the matrix 

to fill in the elements below the principal diagonal. 

46-49 88-91 Solve the equations for the A *S ; if no solution is

possible, stop.

50-63 92-105 Increment the f t 's  according to the values of the A's .

Under ordinary circumstances the increment will be 

equal to the corresponding A  . But during the first 

few iterations one may expect erratic behavior, so 

in this program the first three iterations are given 

special attention. During these iterations a value

CD



of f t is not permitted to decrease below zero or to 

increase by an amount larger than twice its present 

value or half the average flux of a point source, 

whichever is larger.

Write the results of the iteration just completed; 

if the changes in the source model have been consider­

able, begin another iteration; otherwise proceed to 

the last part of the program.

Compute the visibility amplitude and phase at each 

observation point according to the final model; 

compute the rms deviations of the model amplitudes 

from the observed amplitudes; write out these data, 

along with the final model.



20

M0DEX3/4 Mathematical Background

M0DEX3/4 applies the method of steepest descent to 

the restoration. This technique is similar in conception 

to Newton’s Method (in that it involves a linearization of 

the equations to be solved), but it is rather different in 

execution.

Define a function W as follows:

W (J>  ^  ^v?Y l)-\/?] 2 <1*>
where J =  [  ]r , , A *  & veotor whose compo­

nents are the amplitudes of the point sources in the source 

model, arranged in some arbitrary fixed order; V is as
SL

usual the observed visibility amplitude at point q in the u-v 

plane, and is the amplitude calculated at the same point 

q from the source model i r  . Our objective is to minimize 

W; that is, we want to find an argument, ) r , of W such that 

the root mean square deviation of the model amplitudes from 

the observed amplitudes is a minimum.

In principle the approach is easy. At an initial 

point jrx in b-space, W increases most rapidly along the vector 

decrease W then, we should set out in the direc­

tion -7^\f\](|). Of course, since W is not a linear function of 

the b*s, its value will not continue indefinitely to decrease 

as we move in the chosen direction. Nor is it likely that a 

local minimum of the function will occur on the line. But 

what we can do is to move along the line until we find the 

point on the line at which the function reaches its minimum
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value. Calling this point I I . , we can then move from ]rx
—a*

as origin along the line -v W(i^) in the same fashion to a 

point , and so on, until we approach an actual local 

minimum of the function W f i ) .

In practice it may be difficult to compute the exact 

gradient, or to find the precise point along the line at 

which the function being examined is a minimum. Ordinarily, 

though, a first approximation is good enough in both cases.

In M0DEX3/4 the gradient is computed exactly, and the minimum 

point is approximated. Let me be specific:

Prom eq. (14),

v M l )  - 1  t t t  ]  l , 5 >

We know that ^  * 80

K
(16)\ \ "xy ; u *  ^

Now we need to find the positive constant, o, such 

that w ( 4 - c v iw(’4)) is a minimum. To do this we choose . 

two trial values for c in the way discussed in the succeed­

ing paragraphs. Call them c-j and c2 * Then we compute the 

function W ( 4 ‘c ^ W f 4 ) )  for °1 and ° 2 ' Considering W as a 

function of c, we can now use the three known values of ¥ — 

namely ¥(0), W(c-j), and ¥(c2 ) — to find a quadratic function, 

¥' (c ), such that ¥ f(0) * ¥(0), ¥'(0.,) - ¥(0^ ,  and ¥*(c2 ) * 

¥(c2 )* Prom the function ¥* we can easily find the argument 

cq such that W'(Cq) is a minimum. (Look at Figure 1.)

If we assume that ¥*(c) is nearly equal to ¥(c) over the
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Figure 1

Using ¥(0), W(c1), and W(o2) to find Cq

Figure 2 

Computing
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entire range of arguments under consideration, then W ( c q ) 

will he nearly the minimum value of the function along the 

gradient line. Therefore we should use

as the next source model and treat it in the same way as J-x 

to obtain an even better model, , etc.

The problem of choosing c1 and c2 remains to be dealt 

with. Suppose that c^< c2 . Then it seems intuitively that 

the arguments 0, c-j, and c2 should be approximately equally 

spaced, and that C q  should be not much larger (and preferably 

smaller) than c2 , as in Figure 1. Now suppose that W(c) 

is a quadratic function having the minimum value W(cq) =» 0, 

as in Figure 2. We are at c ® 0, and we know W(c = 0) and 

^W(c *■ 0). How can we choose c-j so that W(c^) — 0 (that is, 

so that the minimum point is exactly in the center of the 

interval (0, c2 )?

We know from elementary vector calculus that (in gen- 

eral!), = J s
ds ds * (17)

A  ^  A ^  A I “t

where J.s = i, JJ>, *  + "' + w k  = ,and (18a)

fis= H J.$ I f  = ( M t + c/ 4  +■• ■+■ _} (18b)

We have decided that d lr~  - J . c 7 ^ V j ( i )  > or

c/s = c/c//vW// (19)
Substituting for d s and d s  in eq.(17) gives,
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Knowing W(o)# (~ fcJ ana yy^sy-i/ iorior the parabola in Pig-

(20)

ure 2, we can now get c1• The algebra is simple, and it 

turns out that

A considerable amount of practice with this method 

of calculating c^ has shown that the procedure is a good 

one, despite the fact that W(c) is not even approximately 

quadratic over any wide range of c, and that W(c q ) usually 

turns out to be at least half as big as W(0).

Once W(c1) has been computed, c2 can be chosen. 

Sometimes, when ¥(0 2) is calculated a peculiarity in the 

dependence of W on c becomes apparent which makes it neces­

sary to discard either c-j or c2 and substitute another value 

in order to approximate Cq accurately. The decision struc­

ture of this series of alternatives is block-diagrammed in 

Figure 3 .

Notice that at every step the argument values are such 

that either c1 - 2c2 or c2 * 2c^. Having selected appro­

priate values of c-j and c2 , and assuming that c-j is the 

smaller, we can finally compute Cq from the formula,

C ~ C + £ Wfo) -  W fe )] £/ _ 3  Y/(q)~ 4 Vt(ct')+ Wfe)(22) 
' V/(Ct)-2 Yl(c,)j < z[vi(o)+ v/Cc^-ZVJCc,)]

C,
(21)



Procedure for Finding c^, Cgj and Cq

Figure 3
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The method described in the foregoing paragraphs is 

designed to handle the problem of matching amplitude obser­

vations; however, a slight modification enables the same 

procedure to cope with amplitude-phase observations. In 

this case we simply consider the real and imaginary parts 

of the observed visibility as "amplitudes" to be matched 

separately. We do this by trying to minimize, instead of W, 

the function

u(V ’ |  { ( U v $ *■ (U [iijW]- } (23)
The gradient of U is easily calculated, since

The rest of the program is unchanged.

The only difference between M0DEX3 and M0DEX4 is that 

in M0DEX3 the model points are read in individually, whereas 

in M0DEX4 they are read in in rectangular blocks. (For more 

information see the section on input requirements.) The 

following summary outlines both programs.



MODEX3/4 Program Summary

ISN
MODEX3 M0DEX4

8

20-24

25-30

31-37

38-41

8

9-19 9-18

19-37

38-42

43-48

49-55

56-59

Define the function used to estimate the position of the 

minimum of U or W along the gradient line.

Read in the first part of the input according to the speci­

fied format; convert degrees to radians; compute the real 

and imaginary parts of the amplitudes if necessary.

Read in the blocks of model points, assigning coordinates 

to each point.

Set the model points to a uniform initial value, then read 

in the initial model if there is one.

Find u and v for each observation point.

Write the source name and run number, set the iteration 

number to zero, and set negative amplitudes to zero if required. 

Write the results of the previous iteration; increment the 

iteration number, and stop if the maximum allowable number 

of iterations has been made.

ro
-̂3



42-50 60-68 Call the subroutine; compute the rms deviation of the visi­

bilities computed from the model and print it; if the speci­

fied tolerance has been achieved, stop.

51-89 69-107 Follow the procedure diagrammed in Figure 3 for finding

the position of the minimum of W or U along the gradient line.

90-102 108-120 Reconvert the phases to degrees and write out the rest of

the output.

Subroutine

The function of the subroutine in both programs is 

to compute the function W or U, depending on whether ampli­

tudes only or both amplitudes and phases are being fitted, 

and the appropriate gradient. In M0DEX4 the procedure is 

short-cutted by means of sum and difference formulas for 

the sines and cosines of all the phases.

ro
co
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Miscellaneous Comments and Advice

1. Choosing a good set of model points is ninety percent 

of the job, whichever program you use* If the points selected 

donft cover the actual source, or at least the strongest

part of it, the result can only be bad. M0DEX1 is practi­

cally useless for practical work, partly because the problem 

of choosing the model points is even more ticklish for it 

than for the other programs (and partly because the results 

are too sensitive to errors in the input data). Therefore 

it should be used only when you have a very good idea of 

where the source is and very good data.

2. M0DEX2 seems to be slightly more efficient than M0DEX3/4 

in the sense that fewer iterations are required in M0DEX2

than in MODEX3/4 to effect the same amount of improvement 

in the model. Unfortunately, though, M0DEX2 is quite in­

efficient in its use of time. In a problem using a hundred 

model points it takes about 23 minutes to solve the 100 

equations for the hundred increments in the amplitudes.

Using MODEX3/4 with phase information, on the other hand, 

the machine can complete a single iteration on a problem with 

550 model points and 650 observations points in something 

less than three minutes. Without phases the iteration takes 

a little longer, but even then M0DEX3/4 is vastly superior 

to M0DEX2.
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3. It is almost always desirable to use M0DEX4 (with 

model points read in in blocks) than M0DEX3, because this 

method of handling the model points makes possible a tremen­

dous saving of time in the computation of trigonometric 

functions. Even if many model points have to be added to 

fill out the blocks the change is worthwhile. The best 

configuration is a single large rectangle.

4. The number of model points is limited in M0DEX1/2 by 

the size of arrays that can be accommodated conveniently in 

core, but this problem does not arise in M0DEX3/4. If it 

should be necessary to use more than 1100 observation points 

or 700 model points in M0DEX3/4, you need only change the 

dimension and common statements at the beginning of the 

main program and the subroutine.

5* It is possible to run the program with fewer observa­

tion points than model points, but you had better not trust 

the results. I have had good luck using as few as 1 . 2 times 

as many observation points as model points, but I would re­

commend using twice as many.

6. I have observed that MODEX3/4 works a little too hard 

to match the phases, at the expense of the amplitudes, 

which no doubt are more reliable. The effect is particularly 

pronounced in regions where the amplitude is relatively large, 

as you can see with a little thought. If you have the same 

problem it might be worthwhile after the phases are satisfac­

tory to make a few iterations with amplitudes alone.
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7. If you run a source deck you can save a lot of time 

by directing the compiler to optimize the object program.



Program Listings



t O u l V A L F N C c  (1 aA S E ( 1 )  , A ( 1 )  ) , ( HA{ 1 )  , A ( 5 0 1 )  ) ,  ( A ( l O O l ) ,  V V ( 1 > ) ,
1 { A ( L 5 0 1 ) v P H ( 1) )

LATA 8 I ,  B o  3H / 4 0 6 7 . 6 7 ,  5 0 7 3 . ,  6 0 3 3 . 3 3 ,  7 1 0 4 . 2 5 ,  8 1 0 7 . 7 ,  9 1 1 7 . 7 ,  
l 4 * u . ,  9 ^ J ? . C 5 ,  1 2 4 9 3 . ? ,  1 4 9 9 3 . 6 ,  1 7 4 9 1 . C l ,  1 9 9 9 3 . ,  2 2 4 9 5 . 7 ,  4 * 0 . ,  
2 - 1 .  8 7 6 6 9 ,  - 1 .  8 7 7 6 3  , - l . i i 7 7 9 7  , - 1 . 8 7 7 5 7 ,  - 1  . 3 7 8 2 2 ,  - 1 . 8 7 8 5 7 ,  4 * 0 . /  
3 , 3  / 1 4 0 * 0 . / ,  RMSA, R.-1SP / 2 * 0 . /

P £ A D ( 5 , 9 J ) ( SRCiVvi { I ) , 1 = 1 , 2 ) ,  i)E C , IONG,  NOP, N HP 
DO 1 1 = 1 , iMLP
K F A , ) ( 5 , 9 1 )  I . t A S E ( I ) ,  H A { I } , A b\ P ( I ) , P H A S E ( I )

1 P H A ^ u (  I) = P m ASC ( 1 ) / 5 7 . / 1 9 5  78 
K Z:\f) i 5 , 92 ) < X ( I ) , Y ( I )  , 1 = 1 ,  .-MHP)
S i ^  = S I M D c C )
c n s . j  = l h s i d c CJ
DO 3 1 = 1 , OOP 
n  = I S A S E ( l )
0 ( 1 )  = 3 . O 'tf 1 7 4 E - 5 v 3 2  ( I 6) * S I N (  HA( I ) - B H (  I B )  )

3 V{ 1 ) = 3 .  0 4 6 1  7 4 E - 5 * <  31 ( I  B) *C0SD ~ B2 < I B) *S IN D *C 0S ( H A U ) - B H (  I B )  )>
Di l  o L = 1 , h.v=P 
DO 6 K=L,NMP 
A ( L , K ) = 0 .
DO 6 • f4 = l #NDP
A N G1 = PH A Sir. ( f i)  -  0 { v>) *  X ( L ) -  V ( M) *  Y ( L )
t : & z  -  PHAbc i:- ')  -  C( D * X ( « )  -  V U 4 ) * Y ( K )
M L , K )  = A U . , , \ )  + COS ( Ai\G 1 ) *C0S ( ANG2 )

6 i K K . C O . - r l ? )  3 ( L ) = 3 ( L )  + AMP ( K) ❖CCS ( ANG1)
i)0  5 L = 1 ,.\M P
DO 5 K = l , L

5 A { L , K ) = A ( K , L )
t  ' L L A K;; \ Y [  Z , M -  P,  V-'P , 1 4 0 , 1 4 0 ,  A,  A)
i ALL SI . '  M A , 3 , P , I nOPE )
SK 1 Tl ( 6 , 9 3 )  I i f C . V  ( I ) ,1 =1 , 2 )  , I 0 NO
I F  ( I r h>': . Ei. . 1 ) Gu FQ 7
i,;; 9 -*=1, :l p
VC = 0 .
VS = C.
I * J C ~ JL , ^  I i ■’

Q = U(.4)*X(K) ♦ V(M)*Y(K)
VC = VC ♦ 3 (.<) *CGS(  Q)
VS = VS *  J ( K.) *  S I M  Q)
V V( ;) = SOKT ( VC - V ^  f  V S * v S )
P HA Sr ( M ) = 5 7. 295  71 -'PHASE ( 4)
P H ( ’\ ) = 5 7 .  zr. 9 5 7 S £ A F A \I2 ( VS,  VC )
VRI Tb  ( 6 , 9 4 )  ( I , X ( I ) , Y( I )  , d( I ) , 1 = 1 , *HP)

R I T E ( 6 , 9  7)  ( I , A h P {  I ) , VV( I ) , PHASE ( I ) , PH(  I ) , 1 = 1 ,  WO P 1
DU 10 1 = 1,  <*'■ CP
K ”1S A = ?< H S A + ( A M P ( I ) -  V V ( I ) ) * * 2  
PMSPP = P H A S L ( I ) -  PH( I )
I F ( A 3 M s M S P P )  . GT .  3 .  1 4 1 5 9 3 )  RMSPP = 6 . 2 3 3 1 3 5  -  A 3 S { RHSPP)
R MSP = K M S P  + R^SPK*i*MSPP 
K-nSA = SQrxl ( r<«SA/NOP) 
f Mi>P = S D < T ( KMSP/NL'P)
V-KITE ( 6 , 9 5 )  RM.SA , R-1SP

GO TJ 11 
7 K I T E  (6,96) 

11 KETIR
90 F
91 i C

K I T E  (6,96)
E TIR N
0 K M a 1 ( 4X , 2/- 4 ,2 X , S 14 . ] ,1 5 ,4 X , I 3 » 4 X  , 13) 
UP -1A T ( 1 J X , I 2 > *5 X , R 14. 1 , 6 X , 3 1 0 . 5 , 0 1 2 . 4 )
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