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Introduction 
NRAO is planning to build a 100m diameter radio telescope to replace the 300 foot 

telescope that collapsed in 1988. They plan to make it an off axis design to improve the 
noise performance of the system. At present, the primary mirror design is that it be 
parabolic with a radius of curvature k = 120m and the parabola vertex will be close to one 
edge of the mirror. For purposes here, I will assume that the most extreme point on the 
mirror is 100m off axis. This is roughly true, and modest variations are not central to the 
points made in this note. 

The primary is expected to be made of a mosaic of surface panels, roughly 2m in 
characteristic diameter. Trapezoidal panels are traditional for radio telescopes, but are not 
required for any astronomical reasons. Panels are expected to be made by glueing 
aluminum sheets to a backup structure while pressed against a pre-machined master mold. 
Evidently a major consideration in the size and shape of the panels is the cost and 
complexity of making these master molds. The panel surface accuracy expected is about 
50|im rms, and the telescope is being designed to operate at wavelengths as short as 3mm. 
At this wavelength, panel errors would thus be roughly V30 rms wavefront. 

In this note I calculate the surface shape of the panels and assess how rapidly they 
vary as a function of off axis distance. I conclude that for a primary of this size and for 
these relatively small panels, they can be adequately described as quadratic surfaces, and 
that radial displacements of a panel (or the master mold) by distances well over one meter 
are negligible. Thus a given master mold can be used for making surface panels with 
appreciably different off axis distances. 

Surface Shape 
The equations for the surface shape of a panel are derived in Keck Observatory 

Report 91 (Nelson and Temple-Raston, 1982). We assume the primary is a conic specified 
by a radius of curvature k, and a conic constant K. It's surface height is given by 

Z(X,Y) = g-^y {k - [k2 - (K+DS2]^ } (1) 

S^X^Y2)1/2 

where X and Y are the global coordinates and the vertex of the mirror is at (X,Y,Z) = 
(0,0,0). For a parabola, K = -1. 

Assume a given panel has it's center at Xc, Yc, Zc. We can make a series 
expansion of the above expression in a local coordinate system (x,y,z) centered on a given 
panel with an off axis distance R = [Xc

2 + Yc
2] ^ and arranged so the local coordinate 



system xy plane is tangent to the panel surface. In general this expansion can be written in 
cylindrical coordinates as 

z(p,e) = 2 amnpmcos n8 + pmnPmsin nG    m > n > 0, m-n even. (2) 

where p = [x2 + y2]1/2^ and 9 are polar coordinates in the xy plane. 9 is measured 
counterclockwise from the x axis. We have for convenience normalized the radial 
coordinate by the radius a of the panel. By orienting the x y coordinate system so x is 
radially outward, we can set pmn = 0. For simplicity we assume the panels are circular 
with a radius a. With these conventions, expressions for amn are derived in KOR 91 and 
reproduced below. In these equations, e = R/k. 
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These expansion coefficients are exact, and for the surfaces of interest in this problem, 
higher order terms in the series expansion (2) are negligible. Note that all tire coefficients 
go to zero as £ becomes large. Thus, as one expects, extremely far off a^us panels become 
flat. 

In Figure 1 we show a plot of a20 as a function of off axis distance R assuming a = 
1m and k = 120m. It is typically about 3mm and decreases with off axis distance. This 
term is axisymmetric and often called power or focus. 

In Figure 2 we see a plot of a22 as a function of off axis distance. Its typical value 
is about 400pin, modest compared to the shortest wavelength, but not negligible. Thus 
one cannot describe the individual panels as simple spheres (as one could adequately do if 
only a20 were significantly non zero). This quadratic term is often called astigmatism. 
Since its rms size is under 250nm, to this tolerance, one can approximate the panels as 
spheres. 

In Figure 3 we see a plot of 0031 the next leading term, called coma. The typical 
amplitude is about 5}i.m, and is negligible for the surface tolerances desired for this 
telescope. 

Figures 4 through 7 show ass (tricomer), 040 (spherical aberration), 042, and 
OC44. All these terms are negligible for this telescope, being below lp.m in amplitude. 

From examining these expansion coefficients, we see that even for moderate 
changes in the telescope panel parameters (k, a, R) a panel surface can be adequately 
characterized by the two quadratic terms a20 and a22 (power and astigmatism). Thus the 
panel shapes are rather simple and can be expressed to within about Ijim rms as 

z(p,9) = a20P2 + a22p2cos 29. (5) 

Surface Shape Variation With Off Axis Distance 
Since the mirrors are to made against master molds it is of interest to determine how 

many molds will be neeced, in particular whether one needs a different mold for each 
distinct panel. With traditional trapezoidal panels arranged in rings with a fixed off axis 
distance, one might expect to build a mold for each ring of panels, and thus require roughly 
50 molds for 2m panels in this off axis configuration. With hexagonal panels, there may 
be roughly 1200 distinct off axis distances for the panels and in principle one needs a mold 
for each panel type. In practice if two panels differ from each other in surface shape by a 
sufficiently small amount, then they can be made from the same mold. 

For our panels, differences that are small compared to 50jim are negligible since 
that is the panel fabrication tolerance. As an example we will consider the range of off axis 
distances for which the surface of a panel changes by no more than lOpim rms. 

If we assume for simplicity that the surface panels are circular, it is straightforward 
to calculate the rms surface a difference from a flat. This is given by 

ra202    a222    <X312 m ,,. 



where we assume only the first three terms in the expansion are important. In the 
preceding section we showed that in fact, only the first two terms are likely to be of 
interest 

Figure 8 shows the rms surface difference between two pancK whose off axis 
distances differ by one meter. From this one can see that for the entire mrror, shifts of one 
meter cause changes of at most 7\im rms. Thus a mold can be used for panels within at 
least a range of ±lm. For panels close to the optical axis, a single mold can be used for a 
range in off axis distance from 0 to 14m with a surface error of under lOjim. The details of 
how few molds one needs depends on the exact size and shape of the panels ( I assumed 
2m diameter circular panels here) and on the tolerance one requires (I assumed lOjim rms), 
but it is clear that for reasonable size panels of any shape, one needs substantially less than 
50 molds. 

Conclusions 
We have shown that for the modest sized panels planned for the GBT, their 

surfaces can be adequately represented as a locally quadratic surface. Although they are not 
all identical, panels with different off axis distances differ only slightly from each other in 
their surface shape. For the GBT, panels differing in off axis distance by 1m differ from 
each other by under lOjim rms. As a result of this, it may be practical to make hexagonal 
or other shaped panels with the same modest number of molds as one would need with 
trapezoidal panels. 
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Figure 2. a22 vs off axis distance R for the GBT 
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Figure 5. 040 vs off axis distance R for the GBT 
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Figure 6. 042 vs off axis distance R for the GBT 
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plotted as a function of off axis distance. 
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ABSTRACT 

We derive a Taylor Series expansion for a general axisymmetric conic sur¬ 
face about an arbitrary point on the surface. The series is explicitly evaluated 
through 4th order. Such expansions are useful in evaluating the optical proper¬ 
ties of segment surfaces used in the construction of segmented mirror tele¬ 
scopes. We show that the 4th order expansion is an adequate approximation 
for an extremely wide range of segment types. 
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1. Introduction 

In order to evaluate or fabricate an optical surface, it is first necessary to define 
mathematically the shape of that surface. For the case of axisymmetric conies, the formulas are 
well known, but when one wishes to describe such a surface in a coordinate system not aligned 
with the axis of symmetry, analytic expressions are much more complex, and not readily avail¬ 
able. In addition, when one wishes to assemble an axisymmetric optical surface from segments, 
it is desirable to have convenient expressions for the segment surface in a coordinate system 
that is centered on the segment rather than centered on the optical axis. In this report we will 
determine the coefficients of a Taylor series expansion representing a general conic in such a 
coordinate system. 

2. Axisymmetric Conies 
A general expression for a conic surface of revolution is given by 

ZU, Y) =      1 

K + 1 
k- [k2- (K + l)S2} 1/2 (1) 

c2 c4 c6 c r8 

2k 8A:3 16/c5       128 k1 

K = conic constant(= —e2, e — eccentricity) 

k — radius of curvature 

The geometry is indicated in Figure 1.   For various values of AT, this reduces to well known 
expressions 

K < — 1 Hyperboloid of revolution 

K - -1 Paraboloid 

-1 < K < 0 Prolate ellipsoid 

K - 0 Sphere 

K > 0 Oblate ellipsoid 

The paraboloid expression can be found by taking the limit of equation (1) as K —■ — 1, to 
obtain 

S2 
7 = —— Ol 
**paraboloid -s , y*-' 

For a sphere, equation (1) reduces to 
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3. Transformation to Off-axis Coordinates 
We now consider the description of the conic as viewed from a coordinate system that is 

tangent to the surface at a general point away from the axis of symmetry. Figure 1 shows the 
geometry. We define R as the distance from the rotation axis to the new coordinate center; 
thus R — (Xfi + YQ)

1/2
. Without loss of generality we choose the new coordinate center on 

the Y axis. 

We are interested in describing the surface of a segment of radius a in terms of the local 
coordinates x^y. We use the dimensionless polar variables p = (x2 + y2)l/2/a , 
9 = Xan~l{y/x).  A convenient general form for the description of the surface is 

Hp,0) - £ am„pm cosnO + /3m/, p'" sin n0 m ^ n ^ 0, m — n even. (4) 

By suitable selection of the coordinates, we can set /3„w — 0. Thus our objective is to derive 
expressions for the a„,„. The global coordinates (A\ Y) are related to the local coordinates 
Or jO by a rotation <£o and a translation Zo- 

R 

X-R [k2 -{K + \)R2) 211/2 

Zn= Z(Ar=/?,r=0) - -rr-rik - [k2-(K+\)R2]l/2) 
J\ T1 

(5) 

X = -v cos 0o — z sin <t>o + R 

r = y 
Z = x sin ^o + z cos <t>o + Zo 

x - (X - /?) cos^o + + (Z - Zo) sin0o 

z = -(X - R) sin0o + (Z - Zo) cos0o 

For compactness, we introduce the dimensionless variables 

W      A:   '   V      *   '   ^      A   '  €       * 

and the quantities 
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/? 
211/2 [k2-KR2)l/2       [1 -/^e2] 

A:2- (K + l)ig2ll'/2 _ \l- Le: 

k2 - KR2 1 - Ke2 

1/2 

w = z(j,r) 

(6a) 

(6b) 

(6c) 

(6d) 

(6c) 

(60 

(7a) 

(7b) 
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Now, using the variables in equation (7), we can rewrite equation (6c), evaluated at a 
point (A', Y) on the conic as 
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(1/L)(1 - [ \-L( {uc-ws+€l2+ v2)l,/2) - us+wc4- WQ (8) 

We  wish to solve this equation for H>(W, V).  First multiplying by L, subtracting 1, and squar¬ 
ing gives 

l-M [wc-»vs+e]2+ v2) = (1 - Llwc+us+Wj)2 

Multiplying out the terms and collecting the coefficients of w yields 

w2[Lc2 + s2] + 2w[ ciLWo-l) - se + (L-\)scu] (9) 

+ [ Us2+ rfu2* v2 + 2(s(LWG-l)+ce)u + (LWJ^Wo+e2) ) =0 

Using the definitions in Equation 7 one can show that each of the last two sums in parenthesis 
vanishes. To further simplify Equation 9 we define the following quantities 

f=(sh)2g 

S = -V(Ic2+52) (10) 

h= U/s)g 

j= -(L-\)scg 

Using these we can rewrite the equation for w 

w2 + 2w(h + ju) - (fu2 + gv2) =0 (11) 

The solution is 

w = -(h + ju) + l(h + ju)2 + fu2 + gv2]1'2 (12) 

4. Expansion 
We now expand Equation 12 in a Taylor series.  Since u and v are small, h is the largest 

term.  We obtain after some algebra and regrouping of terms. 
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Inserting these relations into Equation 13 and collecting the terms according to Equation 4 
yields 
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Now plugging in the definitions from equations (7b) and (10) yields the final expressions for 
the coefficients. 
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For a parabola, K = — 1, and equation (16) reduces to 
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5. Verification of the Expansion 

Because the algebraic derivation of the above expressions is rather involved, we felt that 
an independent check of equation (16) was desirable. This has been done numerically. The 
procedure is based on the ease of transforming a single point on the conic from one coordinate 
system to the other, using equation (6). For each of a variety of cases, a grid of points 
(approx. 700) on the given surface was generated in the parent coordinate system, and each 
point was transformed_tQ_the local coordinate system using equation (6). This set of data 
points was then fit in a least squares sense with Zernike polynomials. Twenty eight polynomials 
(through 6th order) were used, and the resulting coefficients were then used to calculate the 
coefficients defined in equation (4). Conic constants ranging from —2 to +1 were used, along 
with a variety of off-axis distances. In all cases, the numerical results agreed with equation (16) 
to the expected accuracy of the numerical computation. Numerical errors were roughly 10~12 of 
the basic surface amplitude. Even the smallest terms were checked to accuracies better than 
lO-4. Thus the correctness of the algebraic expressions has been confirmed numerically. 

6. Examples 

The hexagonal segments envisioned for the University of California Ten Meter Telescope 
have a segment radius a"0.9m. Thirty-six such segments make up the primary mirror. The 
f/1.75 primary has k —35m. Since the primary will be extremely close to a paraboloid, we will 
assume for this example that K——1. Using equation (18) we calculate the expansion 
coefficients as a function of the off-axis distance. The results are shown in figure 2. The marks 
along the abscissa indicate the actual off-axis distances of the segments. As is true for all but 
the most extreme telescope configurations, astigmatism (a22) is the dominant aberration, fol¬ 
lowed by coma (03]). We have also included on the plot the root mean square deviation of the 
surface from the best fitting sphere. The sensitivity of the coefficients to the conic constant is 
indicated in figure 3. Here we show the coefficients over a range of K from —2 to +2. Note 
that for all coefficients the variation is smooth. In particular, we note that hyperbolic surfaces 
with conic constants near -1 are quite similar to parabolas. 
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Fig. 1.  Diagram defining global (X,Y,Z) and local coordinates 
(x,y,z = r,9,z) of mirror segment on conic. 
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Fig. 2.  Expansion coefficients describing the surface of an off axis section 
of a conic as a function of off-axis distance are shown.  In this 
example the conic is a paraboloid, and a segment radius of a = 0.9m 
and a radius of curvature k = 35m are assumed.  The arrows along the 
abscissa indicate the off axis distances for the segments of the 
UC Ten Meter Telescope.  The focus term has been omitted.  The 
dashed line gives the root mean square difference between the conic 
and the best fitting sphere. 


