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I. INTRODUCTION 

Currently it is envisioned that the information needed for active surface control 
and pointing of the Green Bank Telescope will be derived from distance measure¬ 
ments obtained by laser ranging. Laser rangefinders attached to solid ground would 
monitor the positions of other rangefinders attached to the feed support structure, 
and these, in turn, would monitor the deformation and relative motion of the pri¬ 
mary reflector and the position and orientation of the subreflector. This concept is 
described in a recent memo by John Payne, Pointing and Surface Control of GBT 
(GBT Memo No. 36), and in an earlier memo by John W. Findlay, Notes on Mea¬ 
suring Distances (GBT Memo No. 24), where alternative possibilities are considered 
as well. 

Findlay comments in his memo that "The tasks of deciding the layout of a 
ranging system and the computing needed to derive the information of the surface 
and sub-reflector locations can be attacked by computation." Here I want to take a 
first step in that direction, by considering the dependence of the potential accuracy 
of the determination of the location of a point upon the geometry of the rangefinding 
setup. 

II. METHOD OF ANALYSIS 

Suppose that we have some number n of rangefinders, located at different, 
known, positions {Pi = (a:j,yj,2t-) \i = l,...,n} and that we wish to determine 
the position (xyy,z) of a point P, based on n measured distances, rfj,.. .,dn (one 
per rangefinder), each of r.m.s. accuracy a. The actual distances are given by 
£?,-(#, y,z) = \Pi — P\ = y/(xi — x)2 + (yi — y)2 + (zi — z)2. In order to design com¬ 
petently a surface metrology scheme, it would be helpful to know the accuracy to 
which the coordinates of a point P are determinable, for every P near the nominal 
design paraboloid, as a 'function' (so to speak) of the geometrical arrangement of 

2 
the rangefinders. [The nominal design paraboloid is given by z(x,y) = f(r) = J^, 

where c (= 60 meters) is the focal length and r = y/x2 + y2.] 

Payne proposes that three rangefinders be used to locate positions on the pri¬ 
mary reflector. Clearly, at least three are required (in the absence of any prior 
information—e.g., that lateral displacements of points on the surface are negligi¬ 
ble). But my analysis is formulated for the case of arbitrarily many rangefinders, 
just in case that a number greater than three is settled upon. 

Given the n measurements dj, and assuming normally distributed errors, a 
maximum-likelihood estimate of the coordinates of P is obtained by solving for 



those coordinates (x, y, z) which minimize the expression 

1     n 2 
S(x,y,z)= - Y^(di(x,y,z)-dij   . (1) 

2 i-i 

This solution can be obtained by solving for a zero of the gradient, V^, of S: 

V5=jf). (2) 

For present purposes (i.e., until the telescope is built), the method of solving for 
this zero is unimportant, since all we are interested in now is a statistical analysis of 
the error that is incurred, assuming that the zero has been located by some means 
or other. The gradient of the gradient of S (the so-called Hessian matrix of S) is 
given by 

H = 

/ dQs d2s d7s \ 
I     dx2 dxdy dxdz   \ 

d2s d7s d2s 
dx dy dy2 dy dz 

\   d2s a25 d2s  J 
\ dx dz dv dz dz2   / 

(3) 

dx dz       dy dz        dz* 

Estimates of the variances and covariances of the solution (x,y, z) can be obtained 
by evaluating H somewhere in the neighborhood of the solution, inverting, and 
scaling by o-2; i.e., the variance-covariance matrix, to good approximation, is given 
by 

V * a2H-1. (4) 

The standard errors of the estimate of (#,3/, z) are <JX = \/Vn, <7y = -v/V^T, and 
0z = "N/^33' Off-diagonal elements of V represent the covariances of the estimated 
parameters, and correlation coefficients can be obtained by dividing each element 
Vij of V by the product of the ith and jth standard errors. 

Solving for distance from paraboloid, rather than for Cartesian coordinates. 
Instead of wanting to know the Cartesian coordinates of i3, we might be primarily 
interested in knowing the distance 6 between P and the nominal design paraboloid. 
The surface normal N(a:, y) equals "T^' jV ■> and so the Cartesian coordinates of a 
point a distance 8 away from the nominal design surface are given by 

r2 

P(<5, XQ, yo) = (XQ, 2/0, j-) + £N(a;o, 2fo) 

/„    fl    
ro>> ,  ,(-so,-!/o>2c) () 

= (^0,2/o, 7-) + * / 9      A 0     , 4c y/rl + 4c2 

with 6 measured along the surface normal intersecting the surface at (^Oj^/^o))- 
In this case, the distance to the ith rangefinder is 

di{8, xo, yo) = |P($, a:o, yo) - (z;, y,-, Zi)\, (6) 



where |v| = y^v -v. Having redefined the functional dependence of the d,-, we can 
rewrite Equation 1 as 

1     n 9 

S(6y xo, yo) = - ^2 {di^ Xo' 2/°) ~ ^V (7) 

and now proceed as before, but with different solution parameters. 

Calculation of the Hessian matrix. Denoting by p and q any two (not necessar¬ 
ily distinct) elements of the set of possible solution parameters (either {x,y, z} or 
{6, XQ, yo}> depending on whether Eq. 1 or Eq. 7 is selected), we see, from Equation 3, 
that H is composed of elements of the form 

d2S      ^{,1      i^2di      dd 
dpdq 

If the r.m.s. error a of the rangefinding measurements is sufficiently small, then an 
adequate approximation to H is obtained by ignoring the second-order derivatives. 
(With a = 50 /mi we are, I believe, well within this regime; 50 /im is the r.m.s. 
rangefinding accuracy that is realistically achievable, according to Payne.) When 
simulating the measurement scheme we may evaluate the needed partial derivatives 
at the exact solution of the estimation problem, since the exact solution is known. In 
practice, of course, we would evaluate the Hessian, and its inverse, at the calculated 
solution, since in that case the true answer would be unknown. 

For the minimization problem defined by Equation 1, with di defined as in 
the first paragraph of this section, the required partial derivatives are ^ = (x — 
xi)/dii tjrj- = (y — yi)/di, and ^ = (z — 2t)/d,-. Analytic expressions for the 

derivatives ^jj-, ^-, and Jr^- required for the problem defined by Equations 6 and 7 
are straightforward, but tedious, to calculate (I used the algebraic manipulation 
program MACSYMA on my Sun workstation). Since they are quite messy, I do 
not include them here (they can be ferreted out of the program listing given in the 
Appendix). 

All the foregoing analysis is standard fare in nonlinear parameter estimation. 
Textbook treatments of nonlinear least-squares methods, for example, follow a par¬ 
allel development. 

III. RESULTS 

In this section I present the results of an analysis of three possible configurations 
of those rangefinders whose task would be to survey the primary reflector. These 
configurations are illustrated in Figure 1. I assume the r.m.s. accuracy cr of each 
rangefinding measurement to be 50 ^m, as in Payne's and Findlay's memoranda. 
All results of this section are based on calculations performed by a simple Fortran 
program whose listing is given in the Appendix. 



In practice, the positions of the rangefinders would not be known to exact pre¬ 
cision. Approximate positions would be established by measurements obtained by 
other, ground-based rangefinders anchored to solid foundations. In this prelimi¬ 
nary analysis I have not taken into account the uncertainties in the positions of the 
rangefinders, but my method of analysis could be extended to do so. 

Figures 2 and 3 show contour plots of the estimated errors for the configuration 
(AJBJB') proposed in Payne's memorandum.1 There are obvious problems (i.e., 
singularities, except in determining the y-coordinates) along the line of intersection 
of the paraboloid with the plane in which the three rangefinders lie. Over a region of 
perhaps two-thirds the area of the primary reflector, <7$, the error in determining the 
distance of a point from the paraboloid, would be less than approximately 100 //m— 
something close to our goal. However, the errors along the line of singularity, and 
possibly those toward the far edge of the dish, would be excessive. 

Figures 4 and 5 illustrate the improvement that would be achieved by adding 
a fourth rangefinder at an intermediate position (labeled D in Fig. 1) on the main 
feed arm. The improvement is dramatic in the areas adjacent to the previous lines 
of singularity; elsewhere the improvement is minor, but not insignificant. 

Figures 6 and 7 show the effect of moving the rangefinders that would be located 
on the feed arm support legs (at B and B') to lower positions (C and C") on those 
legs. The result, I believe, would represent a net improvement. The plots of as and 
(7Z show significant improvement near the far edge of the dish, where it was most 
needed. Errors in the determination of S and z are, however, slightly increased near 
the vertex of the paraboloid. Figure 8 is an enlarged plot of as for this configuration 
(A, C, £',£). 

IV. CONCLUSIONS 

If the rangefinders for surface metrology are to be located on the main feed 
arm and on the feed arm support legs, then there evidently would be a distinct 
advantage in using more than three rangefinders, so that they would not all have 
to lie within a plane that cuts the reflector. The performance of a 4-rangefinder 
system looks much superior to that of a 3-rangefinder system. The 4-rangefinder 
configuration (A,CyC',D) would apparently achieve our goal of 100 //m accuracy 
for surface setting, given range measurements good to 50 ^m. 

1 Greg Morris provided the coordinates of the rangefinder locations shown in Figure 3 of Payne's 
memorandum. It might be useful for others to be aware that the structural engineering group, in 
their computer-aided design (CAD) work for the GBT, measure distances in inches, in a rectangular 
(z',y',z')-cooidmdite system whose origin is near the middle of the backup structure. The (x'.z')- 
plane faces the backup structure, and the y'-axis is directed skyward. Coordinate calculations 
provided by the CAD programs can be converted to the vertex-centered coordinate system of my 
memorandum via: 

= 0.0254 

(meters) 

cos0    0    -sin0\   fx'\ (2278.5315 
1 0       \[  z'\ + 0 
0      cos0   /   \y' J .,    .       \ 549.4567 ' (inches) \ 

where 0 = arctan(9/20). 



In Section III of this memo I concentrated on the problem of surface metrology. 
However, the methodology for error analysis developed in Section II would apply 
also to our other major problem—pointing. 

I have outlined here two solution schemes.2 In considering the surface metrology 
problem, I believe that the error estimates as are of primary interest, because the 
surface actuators will act in directions approximately normal to the surface. For 
the pointing problem, the errors (^x^yj^z) in all the Cartesian components of the 
observed point P would be of interest. 

I have assumed that the r.m.s. accuracy a of the rangefinding measurements 
would be independent of distance; of course that will not be the case in practice. 
Combined with the systematic increase of as with radial distance r (see Fig. 8), this 
could be a source of difficulty. (And do we know the consequences of random surface 
errors whose r.m.s. levels have a systematically varying spatial dependence?) 

Besides providing the error estimates that were discussed above, the program 
given in the Appendix also provides estimates of the error of each parameter assum¬ 
ing prior knowledge of one or both of the other parameters. For example, it prints 
c75|(Xo>yo), the error in estimating 6 if XQ and yo are (precisely) known a priori. I 
may later work on the problem of estimating as for the case in which there is some 
approximate prior knowledge of XQ and yo. It might be that structural inhibitions 
of lateral motions of the surface would help us out, because they would translate 
into constraints on XQ and yo. (Because of this, the singularity problem evident in 
Figures 2 and 3, for the 3-rangefinder configuration, might, in reality, vanish.) 

2The errors in estimating 6, xo, and yo could have been obtained by first finding the covariance 
matrix of the estimates of the coordinates a:, y, and z of P, and then applying the usual formula 
for error propagation (Hald, Statistical Theory with Engineering Applications, p. 118): 

vm*. v,.)) *(%)' vu + (§*)2 v(,) + (%)2 vM 

+19/^V(., „ + 2dJ.£v(«,,) + 2aJ. a-Lv{y,,). 
ox dy ox oz dy dz 

I chose instead to re-parametrize, and solve directly for (6, XQ, yo) and for estimates of (<7$, <TXQ, (Ty0). 
The contour plots of oXo and <TyQ differ slightly from those of cx and Oy because of the slight 
difference in the definitions of the parameters (xo,yo) and (x,y). Supposing that one is interested 
only in the single parameter 6, one might ask why it is necessary to estimate two additional 
parameters. The answer is that it is not possible to measure the distance of a point from the 
paraboloid without also knowing, at least implicitly, along which surface normal that distance 
should be measured; this implies a knowledge of all our parameters: XQ, VQ, X, y, and z, in addition 
to 6. 



Figure 1. Possible locations for the rangefinders that would be used to survey the primary 
reflector. Points A and D are on the main feed arm, B and C are on the nearer feed arm support 
leg, and B' and C are on the opposite leg. Payne's memo proposed locating rangefinders at A, 
B, and B'. In this memo, I consider three cases: (1) Payne's arrangement (A, B, B'); (2) the same 
arrangement, augmented by one additional rangefinder, — (A, B, B', D); and (3) the configuration 
(A,C,C',I>). 
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Figure 2. Contour plots of the standard errors ax, ffy, and <TZ) as functions of (x,y), for the 
configuration (A, JB, B') of three rangefinders. The circles represent the (x, y)-projection of the rim 
of the reflector. The contour interval is 5 ^m. 
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Figure 3.   Contour plots of the standard errors <T$, aXQ, and <Ty0, as functions of (x,y), for the 
configuration (A, B, B') of three rangefinders. The contour interval is 5 /im. 
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Figure 4. Contour plots of the standard errors <rx, <ry, and <Tz, as functions of (x,y), for the 
configuration (A, B, B', D). This configuration is like that of Figures 2 and 3, but augmented by 
one additional rangefinder on the main feed arm. The contour interval is, again, 5 #m. 
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Figure 5.   Contour plots of the standard errors as, axo, and <Ty0, as functions of (x,y), for the 
configuration (A^^^D). The contour interval is 5 /xm. 
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Figure 6. Contour plots of the standard errors Ox, <xy, and <TZ, as functions of (x,y), for the 
configuration (A, C, C', JD). This configuration is like that of Figures 4 and 5, but with lower 
positions of the rangefinders on the feed arm support legs. The contour interval is 5 /zm. 
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Figure 7.   Contour plots of the standard errors as, axo, and <TyQ, as functions of (x,y), for the 
configuration {A, C, C, D). The contour interval is 5 /im. 
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Figure 8.   An enlarged contour plot of the standard error a$, as a. function of (x,y), for the 
configuration (A, C, C',D). 
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program ranger 

c Program to estimate the errors in laser ranging metrology 
c of the GBT surface, based on the geometry of the rangefinders, 

implicit real*8 (a-h.o-z) 
o nmax is maximum number of rangefinders. 

parameter (nmax-lO) 
real*8 x(nmax).yCnmax),z(nmax),d(nmax) 
real«8 h(3.3).hi(3,3),s(3),hh(2,2) 
real'4 f1(101.101),f2(101,101),f3(101,101) 

c R.m.s. error of each range determination (microns): 
sigma-SO.OdO 

c Focal length (meters): 
c-60d0 

c Define number of rangefinders and their locations (Cartesian 
c coordinates, in meters): 

n-4 

c Position near the top of the feed arm: 
x(l)- 0.714d0 
y(l)- O.dO 
z(l)-66.795d0 

I    c Positions on the feed arm support legs: 
■—   c Upper position (as in Payne's memo): 
_£   c    x(2)-10.181d0 
T*    c    y(2)-28.973d0 
\ 0    z(2)-24.095d0 

o Lower position: 
x(2)-18.047d0 
y(2)-41.180d0 
z(2)-14.851d0 

c Other leg: 
x(3)-x(2) 
y(3)— y(2) 
z(3)-z(2) 

c Added position on lower part of feed arm: 
x(4)- l.OOOdO 
y(4)- O.OdO 
z(4)-18.200d0 
do 1-1.n 

print «. 'i.x(l).y(l).z(i)-'.i,x(i),y(i),z(i) 
end do 

print 
print 
print 
print 
print 
read •,iopt 
if (iopt.lt 

Choose one: 
1   Solve for errors in x, y, and z' 
2   Solve for errors in delta, xO, and yO' 
3   Plot errors in x, y, and z' 
4 — Plot errors in delta, xO, and yO' 

or.lopt.gt.4) go to 1 
if (iopt.gt.2) go to 3 
if (lopt.eq.l) then 

,print *,'Type x.y (in meters)' 
read *,xO,yO 
Z0-(x0«*2+y0**2)/(4d0*o) 

ft?) do 1-1,n 
^"^ d(i)-sqrt((x(i)-x0)**2+(y(i)-y0)**2+(z(i)-z0)**2) 

end do 
else 

print *,'Type xO.yO,delta (meters,meters,microns)' 
read »,x0,y0,delta 
delta-delta*ld-6 
a-sqrt(x0**2+y0**2+4d0*o**2) 
Z0-(x0**2+y0**2)/(4d0*o) 
xOO-xO*(IdO-delta/a) 
yOO-yO*(IdO-delta/a) 
z00-z0+delta*2d0*o/a 
do i-l,n 

d(i)-sqrt(U(l)-x00)**2+(y(i)-y00)**2+(z(i)-z00)**2) 
end do 

end if 
print *,'x.y.z-',xO,yO,zO 
do 1-1,n 

print •,'i,d(l)-M,d(l) 
end do 

o Form Hessian matrix: 
hll-OdO 
hl2-0d0 
hl3-0d0 
h22-0d0 
h23-0d0 
h33-0d0 
do i-l.n 

xl-x(l) 
yi-y(i) 
zi-z(i) 
dl-d(i) 
if (lopt.eq.l) then 

pl-(x0-xi)/di 
p2-(y0-yi)/di 
p3-(z0-zi)/di 

r02-x0,,2+y0,»2 
pl- 

♦(4,C»(-2I+R02/C/4.0D0+2*C*DELTA/A)/A-2»Y0*(-YI-DELTA*Y0/A+Y0)/A-2» 
1 X0»(-XI-DELTA*Z0/A+X0)/A)/SQRT((-ZI+R02/C/4.0D0+2*C*DELTA/A)**2 
2 +(-YI-DELTA*Y0/A+YO)*,2+(-XI-DELTA*X0/A+X0)**2)/2.ODO 

p2- 
#(2»(X0/C/2.0D0-2*A»»(-3)'C*DELTA*X0)»(-ZI+R02/C/4.0D0 
1 +2»C»DELTA/A)+2*A*»(-3)*DELTA»X0*Y0*(-YI-DELTA*Y0/ 
2 A+Y0)+2»(A**(-3),DELTA*X0*»2-DELTA/A+1)*(-XI-DELTA 
3 •X0/A+X0))/SQRT((-ZI+R02/C/4.0D0+2*C*DELTA/A)**2+(-YI-DELTA*Y0/ 
4 A+Y0),»2+(-XI-DELTA»X0/A+X0)*»2)/2.0D0 

p3- 
#(2»(Y0/C/2.0D0-2,A*»(-3),C*DELTA»Y0)*(-ZI+R02/C/4.0D0 
1 +2*C*DELTA/A)+2*(A«*(-3)»DELTA»Y0**2-DELTA/A+1)*(- 
2 YI-DELTA»Y0/A+Y0)+2,A**(-3),DELTA*X0*(-XI-DELTA*X0 
3 /A+X0)»Y0)/SQRT((-ZI+R02/C/4.0D0+2*C*DELTA/A)**2+(-YI-DELTA«Y0/ 
4 A+Y0)**2+(-XI-DELTA*X0/A+X0)**2)/2.0D0 

end if 
hll-hll+pl,*2 
h22-h22+p2**2 
h33-h33+p3**2 
hl2-hl2+pl*p2 



1) (3 

^ 

hl3-hl3+pl*p3 
h23-h23+p2*p3 

end do 
h(l.l)-hll 
h(1.2)-hl2 
h(1.3)-hl3 
h(2,2)-h22 
h(2,3)-h23 
h(3,3)-h33 
h(2.1)-h(l,2) 
h(3.1)-h(1.3) 
h(3,2)-h(2,3) 
print *,*H-' 
do 1-1.3 

print *.h(i.l),h(i.2).h(i,3) 
end do 

c Invert H, and calculate errors (dlinrg is a matrix inversion routine 
c from the IMSL Library, anything else would work Just as well): 

call dlinrg(3,h,3,hi,3) 
print *.'H inverse-' 
do 1-1,3 

print «.hi(i,1),hi(i.2),hi(l,3) 
end do 
print *,'r.m.s. errors:' 
if (lopt.eq.l) then 

print *,'sigma(x)-',sqrt(hl(l,l))»sigma 
print *,'slgma(y)-',sqrt(hl(2f2))*sigma 
print *,'slgma(z)-'.sqrt(hl(3,3))*slgma 
hh(l.l)-h(2.2) 
hh(l,2)-h(2,3) 
hh(2.2)-h(3,3) 
hh(2,l)-hh(l,2) 
call dllnrg(2.hh.2,hh,2) 
print *,'sigma(yix)-',sqrt(hh(l,l))»sigma 
print *, 'sigmadix)-' ,sqrt(hh(2.2))*sigma 
hh(l.l)-h(l,l) 
hh(l,2)-h(l,3) 
hh(2,2)-h(3,3) 
hh(2,l)-hh(1.2) 
call dlinrg(2,hh.2.hh.2) 
print *,'sigma(xiy)-',sqrt(hh(lll))

,sigma 
print •,'sigma(ziy)-',sqrt(hh(2,2))*sigma 
hh(l.l)-h(l.l) 
hh(l,2)-h(1.2) 
hh(2.2)-h(2.2) 
hh(2,l)-hh(1.2) 
call dlinrg(2,hh.2.hh,2) 
print •,•sigma(xiz)-',sqrt(hh(l,l))*slgma 

*.'sigma(yiz)-',8qrt(hh(2,2))*sitfma 
•.'slgma(xiy,z)-',ldO/sqrt(h(l.llh'sigma 
*.'sigma(yix,z)-',ld0/sqrt(h(2.2))*slgma 
*. 'sigma(zix.y)-' , IdO/sqrt^h^S.S^^sigma 

hh(2,l)-hh(l,a) 

SSntd'1's!gm;(x;d4S;)-'.6qrt(hh(l,l))*sig;a 
lAll  «: 'Iigma(y.delta)-' .sqrt(hh(2.2))*sigma 

hh(l,l)-h(l.l) 
hh(l,2)-h(1.3) 
hh(2,2)-h(3.3) 
hh(2.1)-hh(1.2) 

?rlnt •.'slgma^yix)-',sqrt(hh(a.2))«sigma 

hh(l,l)-h(l.l) 
hh(l,2)-h(1.2) 
hh(2,2)-h(2,2) 
hh(2,l)-hh(l,2) 

^^6
d^•rsf&(Se2lta"y)^.sqrt(hhd.l)rsigma 

t»lnt •' 'sllmadtdelta y)-' ld0/sqrt(h(2.2))*sigma 
5rint .:'liima(y.dllta:i)-MdO/sqrt(h(3,3))-sigma 

end if j.  t     . 
print •,'correlation matrix: 
s(l)-sqrt(hl(l,l)) 
s(2)-sqrt(hi(2,2)) 
s(3)-sqrt(hi(3,3)) 
do 1-1,3 

d0 hidJ)-hld.J)/s(i)/s(J) 
end do 

end do 
do 1-1,3 

print 
end do 
go to 2 

•,hid,l),hld,2).hld.3) 

print 
print 
print 
print 

else 
print * 
print • 
print * 
hh(l.l) 
hh(l,2)-h(2.3) 
hh(2,2)-h(3,3) 

'sigma(delta)-',sqrt(hl(l.l))*sigma 
'sigma(x)-',6qrt(hl(2,2)),8igma 
'slgma(y)-'.sqrt(hi(3,3))*sigma 
h(2.2) 

o Generate contour plots over a 101 x 101 grid, with a grid spacing 
o of one meter in x and one meter In y. 

3    np-101 
11-0 
do ix-4,104 

11-11+1 
12-0 
do iy—50,50 

12-12+1 
X0-1X 
yO-iy 
delta-OdO 
z0-(x0,»2+y0*,2)/(4d0»o) 
dOid)-8qrtC(x(i)-x0)-2+(yd)-y0)'*2+(a(l)-Z0)-2) 

end do 
o Form Hessian matrix: 

hll-OdO 
hl2-0d0 
hl3-0d0 
h22-0d0 



I ?-'    h23-0d0 
h33-0d0 
do i-l.n 

xi-x(i) 
yi-yd) 
zi-zd) o 
di-dd) o 
if (iopt.eq.3) then 

pl-(xO-xi)/di 
p2-(y0-yi)/dl 
p3-(z0-zi)/dl 

else 
a-sqrt(x0**2+y0**2+4d0*o**2) 
r02-x0*»2+y0*«2 
pl- 

*(4,C*(-ZI+R02/C/4.0D0+2*C,DELTA/A)/A-2*Y0,(-YI-DELTA*Y0/A+Y0)/A-2* 
1 X0*(-XI-DELTA*X0/A+X0)/A)/SQRT((-ZI+R02/C/4.0D0+2*C»DELTA/A)»*2 
2 +(-YI-DELTA*Y0/A+Y0)**2+(-XI-DELTA*X0/A+X0)**2)/2.0D0 

p2- 
*(2*(X0/C/2.0D0-2*A**(-3)*C*DELTA»X0)*(-ZI+R02/C/4.0D0 
1 
2 
3 
4 

+2*C*DELTA/A)+2*A**(-3)*DELTA*X0*Y0»(-YI-DELTA«Y0/ 
A+Y0)+2*(A**(-3)«DELTA*X0«*2-DELTA/A+1)«(-XI-DELTA 
•X0/A+X0))/SQRT((-ZI+R02/C/4.0D0+2*C,DELTA/A)**2+(-YI-DELTA*Y0/ 
A+Y0),«2+(-XI-DELTA*X0/A+X0)**2)/2.0D0 

p3- 
#(2,(Y0/C/2.0D0-2*A*«(-3)«C,DELTA*Y0)»(-ZI+R02/C/4.0D0 

\ 1   +2'C*DELTA/A)+2*(A*»(-3)«DELTA*Y0**2-DELTA/A+1)*(- 
1    2   YI-DELTA,Y0/A+Y0)+2*A««(-3)*DELTA*X0*(-XI-DELTA«X0 
    3   /A+X0)*Y0)/S<5RT((-ZI+R02/C/4.0D0+2,C,DELTA/A)«»2+(-YI-DELTA*Y0/ 
(JN   4   A+Y0)»*2+(-XI-DELTA*X0/A+X0)»*2)/2.0D0 

end if 
> hll-hll+pl*^ 
' h22-h22+p2*»2 

h33-h33+p3«*2 
hl2-hl2+pl*p2 
hl3-hl3+pl*p3 
h23-h23+p2*p3 

end do 
h(l.l)-hll 
h(1.2)-hl2 
h(l,3)-hl3 
h(2,2)-h22 
h(2.3)-h23 
h(3.3)-h33 
h(2.1)-h(1.2) 
h(3.1)-h(l,3) 
h(3.2)-h(2,3) 

c Invert K, and store standard errors in array (truncate at 600 microns, 
c so not too many contours are displayed at singularities): 

call dlinrg(3.h.3.hi,3) 
fldl.i2)-min(500. .6ngl(sqrt(hi(l. l))*sigma)) 
f2(11.i2)-mln(500.,6ngl(sqrt(hl(2,2))*slgma)) 
f3(11.i2)-min(500.,sngl(sqrt(hi(3.3))'Sigma)) 

end do 
end do 
call plott(fl,np) 
call plott(f2,np) 
call plott(f3.np) 
st'op 

subroutine plott(fo,np) 
Generates a contour plot using routines from the Calteoh firauhios 
package, PGPLOT. B -^-J-VJO 

real*4 fc(np,np).alev(500),tr(6).fmln,fmax 
dx-100./(np-l) 
dy-100./(np-l) 
fmin-fo(l.l) 
fmax-fc(l,l) 
do i-l,np 

x-4.+(i-i)«dx 
do J-l.np 

y—50. + (i-l)»dy 
fmin-mln(fo(i,J),fmin) 
fmax-max(f0(1,J),fmax) 

end do 
end do 
print »,'fmin.fmax-',fmln,fmax 

xo-5. 
il-fmin/xo 
JJ-fmax/xo+1 
nlev-JJ-il+i 
alev(l)-ii»xo 
do i-2,nlev 

alevd)-alev(i-l)+xo 
end do 
print *.'nlev-',nlev 
print ••'alev(i)-',alev(l) 
print •,'alev(nlev)-',alev(nlev) 

call pgbegln(0,'/QMS',1,1) 
call pgenv(4.,104.,-50.,50..1.0) 
tr(l)-4.-dx 
tr(2)-dx 
tr(3)-0.0 
tr(4)— 50.-dy 
tr(5)-0.0 
tr(6)-dy 
call pgsoi(l) 
call Pgoont(fo,np,np,l,np,l,np,alev,nlev,tr) 
call pgend 
return 
end 


