
T ' •■i•••■i• *.* -^'W'&M&^-M

GBT Monitor and Control Design Rationale
Mark Clark and Rick Fisher

September 16, 1992

This note is an attempt to translate the basic design concepts and
rationale of the GBT Monitor and Control system (GBT M&C Requirements
Analysis Model, Aug. 3, 1992 [draft]) into not-so-technical English and to
highlight the assumptions that have driven the design so far. The Monitor
and Control group has been assigned the task of building a computer system
for coordinating the actions of all subsystems of the GBT under observer or
telescope operator control. This group also has the task of displaying all
system monitor information and putting the astronomical data into a format
acceptable to a number of data analysis packages.

Three questions need to be answered at this stage of the project.
What is the Monitor and Control group promising to deliver at specified
milestones in the project? Are these milestone realistic and frequent
enough to measure slippage when corrective action is still possible? Is
the present design workable and somewhere near the best that we can do with
the current technology?

A list of milestones with dates and one-sentence descriptions is
attached to this document. Most include a demonstration of a specific
system function to members of the steering committee or other interested
persons. The milestones closely reflect completion of various components
of the system. The dates on this list are those that must be met in order
that the monitor and control system be ready when the telescope is. We are
now discussing whether the current manpower is adequate to meet this
schedule. The rest of this document addresses the third question above.

Assuming that the control system does what the astronomer wants,
the first important system requirement is reliability in the sense that it
does exactly what it is told, and it continues to operate predictably under
all conditions. The second requirement is that the control software must
accommodate additions and changes to the telescope hardware with a minimum
of disruption to normal operation. We are asking for a control system that
is more reliable than those that exist at most other telescopes, although
the telescope is more complex. The GBT Monitor and Control design is aimed
directly at taming the complexity.

The control and monitor software tasks are dictated by the
requirements specified by the user, which, in turn, largely reflect the
requirements of the hardware to be controlled. Not all software objects
have hardware counterparts, but nearly every substantial piece of hardware
is represented by a software object. However, a hardware block diagram
usually shows only the signal path which has simple output/input
connections between objects. A software diagram is concerned more with the
flow of control and monitor information. Also, the dependencies between
objects are much more involved. We want to maintain independence between
system objects but, at the same time, avoid duplication of design, coding
and testing effort. This requires that we look for similarities between
objects, and it requires a fair degree of object abstraction from the
control and monitor points of view. The aim is to allow any object or
piece of hardware to be removed, replaced, or changed internally with very
little or no effect on the rest of the system.

- 2 -

The following assumptions, derived mainly from experience, have
played a large part in the design:

First, it is feasible and desirable to distribute the control
software among a number of computers on a network and among a number of
relatively autonomous processes on each computer. The current design is
far enough along to convince us that modern networking software makes this
quite feasible for GBT Monitor and Control. Here we address mainly the
desirability of distributed processing in this design.

Second, time-critical software functions can and must be isolated
to small and very well tested pieces of the system. Control servo and
time-critical software is some of the most difficult code to debug and
verify, and it the most prone to failure when the processor on which it
runs is busy or receives an unforeseen combination of interrupts. This is
often the cause of unexplained system crashes or strange and difficult-to-
diagnose system operation. The only synchronization mechanisms between
time-critical functions in the M&C design are absolute time and common
high-level command software. The operation of any time-critical function
must not depend critically on the operation of any other.

Third, most of the monitor and control software needs only to be
fast enough to provide an imperceptible or completely acceptable delay
between command and action or response. This means that very few
independent processors are required to isolate time-critical functions. It
also means that most of the software can run on standard operating systems,
e.g. UNIX, and network protocols that make no guarantees about response
time but are easily fast enough on average.

Fourth, software units (functions, routines, classes, etc., which
we have been calling modules) must be small, independently verifiable, and
require a minimum of communication with other software units. This is an
old software maxim that is often violated when deadlines approach. This is
implementation issue, and it has a strong impact on system
reliability. Even the highest level software modules, which tie the whole
system together, may be small and testable because they communicate with
relatively few modules at the next lower level in very well defined and
restricted ways. Modern software languages, including C++, provide many of
the tools needed to implement modularity, and they encourage, if not
enforce, minimal communication between modules. The distribution of
software to a number of computers and processes is entirely compatible with
module isolation. Modules at the medium and large software scale are
exactly the same as objects in the design.

Fifth, new modules may be added at any level, an entirely new
back-end, for example, with minimal disturbance to the system. Any software
module may be removed without affecting the operation of the system except
to remove the services supplied by that module. This will be an effective
system test for robustness. Any module may be internally modified,
optimized, or simulated with no affect on the rest of the system as long as
the communication rules for this module are not changed. All of these rules
must be enforced to help solve to old problem of mysterious system
operation or failure when supposedly innocuous changes are made to the
software.

Finally, safety issues must be handled at the lowest software level
possible. Interlocks that involve software of any kind must survive a
major computer system failure which means that they must not depend on the

- 3 -

network or the computer operating system. This is an extreme extension of
the isolation of time-critical functions.

The issue of whether a system is or should be synchronous or
asynchronous is strictly one of implementation. Possibly better phrases
for the concepts that have been discussed at various meetings are
micro-managed versus delegated-authority designs, respectively. In a
micro-managed system there is strong coupling between the high level code
and the modules it commands for various actions. Commands generally are
short term, assume little intelligence in the subordinate modules, and
require quick response time. In the M&C delegated-authority design,
commands are issued to subordinate modules that specify actions over
relatively extended periods of time, such as where the telescope should be
pointed at all times during a five minute scan. It assumes that each
module will execute its commands correctly and on time and that the modules
have enough intelligence to detect and report error conditions. Either
design can be made to work, but the micro-managed design is much more
difficult to divide into well isolated subsystems.

Our arguments are that rigorous software modularization will
produce software which can be tested more confidently than has been the
case in past telecope control systems and that distributed processing is
entirely consistent with this philosophy. This software should be more
testable and less vulnerable to software errors introduced by changes or
additions to the system, and additions should be less disruptive to normal
operation.

Milestones

frontend proto
12/15/92

Demonstration of the basic coordination sequences, control, and
monitoring of an emulated prime focus frontend from both the
engineer's and observer's point of view using prototype
software.

manager
2/ 5/93

console
3/15/93

graph display
4/12/93

converter prot
6/ 2/93

frontend beta
7/23/93

collator
7/23/93

mirror
8/20/93

LO
9/20/93

Demonstration of the coordinator and various pseudo-managers
controlling the iteration of the system through observation

Demonstration of the console control windows for setting up
and controlling various devices.

Menu driven selection and display via meters and/or graphs of
monitor values from any of the currently operating hardware.

Demonstration of the basic coordination sequences of the
frontend mixer system for Doppler correction and frequency
switching.

Demonstration of the basic coordination sequences, control, and
monitoring of an active prime focus frontend from both the
engineer's and observer's a workstation windows.

Demonstration of the combining and packaging of data
from an actual backend with partial header information and
emulated data associated parameters.

Demonstration of the control panel and management of motions
the primary telescope mirror.

Demonstration of the LO system through a workstation window.

message
10/ 4/93

OSH prototype
10/26/93

on-line access
12/ 2/93

frontend
1/11/94

OSH I
1/25/94

frontend 12-18
2/ 8/94

holography
4/ 6/94

OSH II
6/ 3/94

monitor analysi
8/ 2/94

alt user-inter
8/16/94

log
9/28/94

Demonstration of the message system including display, levels
of messages, supplementary information, and generation.

Demonstration of a UNIX shell (BASH) as an observation control
language with graphical user interface.

Run-time access of collated data for analysis and display.

Demonstration of all coordination sequences, control, and
monitoring of a prime focus frontend fully integrated with
its LO system from both the engineer's and observer's consoles

Demonstration of an enhanced UNIX shell (BASH) as an
observation control language with graphical user interface.

Demonstration of all coordination sequences, control, and
monitoring of the 12-18 GHz frontend fully integrated with
its LO system from both the engineer's and observer's consoles

Operation of the holography backend via its control panel and
manager.

Demonstration of the full observation control language with,
graphical user interface.

Use of PV_WAVE or KHOROS to access and analize monitor
information.

Demonstration of an alternate user-interface as ported from
another system on the GBT.

Demonstration of logging of monitoring information including
selection, searching, and display.

