
Comments on GBT Memo No 89:
"GBT Monitor and Control Design Rationale"

by M. Clark and R. Fisher, September 16, 1992.

Larry R. D'Addario
November 13, 1992

I have been fairly critical of some of the design decisions
€l:ken in the GBT monitor and control system and have been asKed to
explain these criticisms in writing. The present note is intended to
accomplish that. It is assumed that the reader has a copy of the
subject memo available for reference. It would be helpful, but not
essential, also to be familiar with GBT Memo No. 88.

First, I do not intend to criticize the methodology or
object-oriented approach or most of the general principles employed.
For the most part, these are reasonable. My criticisms have to do
mainly with the resulting design decisions. It is a little difficult
to identify these design decisions in the available writings since
they are buried within abstract statements of principles.

One overall criticism is that the present design is very
non-quantitative and seems to have been made in something of a vacuum.
Not only in the referenced document, but also in the 45-page Memo No.
88, there is nowhere a consideration of the time scales of anything.
How can a real-time control system be designed without any
quantitative consideration of the timing requirements? It is assumed
that every controlled device will have time-of-day information. But
to what accuracy? For each device, how long does it take to change
state in response to a command? What data rates are needed to keep
devices properly updated? It seems to me that a real design cannot
begin until these numbers are known, at least approximately. The
proposed design is far too abstract. I understand that this is
intentional, in the hope that logical relationships can be established
independent of any real hardware or quantitative considerations; but
this is quite unreasonable, and has been carried to such an extreme
that hardly any connection to reality remains.

The subject memo is just 2.5 pages long, and the first
page discusses only general principles on which there is no
disagreement. The second page lists six "assumptions," and these
require some discussion.

"First, it is feasible and desirable to distribute the control
software..." Some degree of distributed processing is certainly
feasible, but what degree? The existence of modern networking
software is cited, and the performance of this software and the
corresponding hardware (e.g., ethernet controllers) determines
quantitatively the extent to which real-time processing can be
distributed. For example, it might be possible for a central
controller to guarantee updated information to all peripheral
processors once per second. It is probably not feasible to do this
once per millisecond. But what is really required? What is
desirable? This depends on quantitative specifications such as the
data rates needed to update each hardware device, and these
specifications are completely absent. The authors promise to "address
the desirability of distributed processing..." but, by the end of the
document, they never do. They seem to have assumed that distributed
processing and networking are to be used for the same reason that

Comments on GBT Memo No. 89 Page 2

mountains are to be climbed: because they are there.

Now, I don't mean to imply that distributed processing is bad.
Indeed, some very complex functions of the GBT might each be assigned
to a separate computer for reasons of CPU loading, ease of development
and testing, and for physical separation (minimizing wiring). For
example, it seems fairly clear that the active surface needs its own
control computer (as well as various subordinate processors embedded
in range finders and other devices, although these should be regarded
as part of the hardware). What's wrong is to assume, in advance and
without any quantitative specifications on the requirements of
individual devices, that distributed processing should be used as much
as possible. Instead, each case should be considered individually and
a separate processor should be allocated if and only if it is
justified by the circumstances.

"Second, time-critical functions...must be isolated." The
principles stated here are reasonable, but what is "time-critical"?
Is an event that must be scheduled with a precision of 1 msec
"time-critical"? How about 1 sec? How about 1 min? This makes a big
difference in the design. But the statement, "The only
synchronization mechanisms...in the M&C design are absolute time and
common high-level command software" is not a *principle* or
assumption but rather a significant design decision. This is not
the only approach that adheres to the principle of isolation, and it
should not be pulled out of the air and adopted without consideration
of alternatives.

"Third, most of the... software needs only to be fast enough to
provide an...acceptable delay..." Well, this is a trivial and obvious
statement, but the sentences that follow do not logically flow from
it. What is an "acceptable delay"? Once again, a quantitative
analysis of the timing is needed before any design decisions can be
made. Yet, in the vacuum of no such analysis, the profound design
decision seems to have been made that UNIX and its standard networking
tools can be used, in spite of having no guarantee of response times.
It is well known that programmers at the NRAO are very familiar with
UNIX and like it; could it be that this design decision came about
from such bias? The argument might be: real time programming is
difficult; UNIX is not a real time OS; the Sun workstation on my desk
runs UNIX; therefore, let's design the control system so that there
are no real time requirements on most modules; whenever a real time
requirement arises, we'll force it into a separate computer. This
reasoning leaves out *all* considerations of system requirements. It
could easily have the effect of requiring all real-time work to be
handled by the engineers responsible for the associated hardware
devices, so that the real-time processors and their software are made
part of the Electronics Division's responsibility and budget, rather
than the Computer Division's. While the total system becomes more
complex than necessary, this fact is hidden by the separation of
responsibility. The formal M&C system becomes simpler only because
the hard part has been thrown over the fence into the neighbor's yard.

I have been told (M. Clark, private communication) that such a
shift of responsibility is not intended, and that the Computer
Division will take responsibility for all real-time code.
Nevertheless, unless reasonable, quantitative timing specifications
are set at the beginning, much work will be forced onto the design
engineer; given a special requirement in the hardware, the engineer is
likely to handle it with a simple imbedded processor over which he has
complete control, rather than trying to explain his needs to the
Computer Division and have them fit it into their very complex

Comments on GBT Memo No. 89 Page 3

processor. (I have seen this happen in many other projects.) The
result is that the complex "real time" computer (in which, remember,
it is intended to have as little real time code as possible) has
almost no real work to do.

The fourth ("software units...must be small...[with] a minimum
of communication"), fifth ("new modules may be added...with minimal
disturbance"), and sixth ("safety issues must be handled at the lowest
software level") points are ones that I agree with. But under point
four it is mentioned that distributed processing is compatible with
isolation of software units; of course, this is true, and in fact it
helps to enforce such isolation. But it is certainly not true that the
isolation principle requires the use of distributed processing.

The penultimate paragraph of the document describes a major
design decision which I believe deserves very strong criticism. The
description, however, uses language that fails to convey the actual
design decision. The authors call their design "asynchronous" or
"delegated-authority," and they choose to label all alternatives as
"micro-managed," perhaps imposing a bias based on the way the same
terms are used for human management. What they have actually decided
is that every device in the system must be able to accept commands
that are to be executed at some specified time in the future, rather
than immediately. In this way, the main control system is relieved of
all real-time requirements. It can be learned from studying Memo No.
88 that this idea arises mainly as a way of dealing with the antenna
motion, which is rather complicated and for which the completion of a
particular command (arrival at a desired position) will often be many
minutes in the future. Whether this is a good design for the antenna
motion control is arguable (but I won't argue it here), but it is
certainly not a reasonable design for the vast majority of other
devices. It implies that every device, no matter how simple, must
have a rather sophisticated computer capable of supporting the control
system's communication protocol (presumably TCP/IP over ethernet, and
therefore requiring a rather powerful processor and operating system)
as well as its higher level command protocol and must also know the
absolute time (which Memo No. 88 suggests should be distributed by the
complex and expensive IRIG-B). In fact, the control of nearly all
devices (front ends, local oscillators, "routers," and most back ends)
consists of a few bits of switch settings and/or a few simple
numerical parameters which can be effected within a few milliseconds
(in some cases microseconds) of the receipt of a command. In nearly
all cases this execution delay is completely negligible and can be
ignored, so that the software could consider commands as being
executed immediately.

If the software design allowed it, most hardware devices could
have a very simple control interface. This would facilitate the
adding of new devices in the future, especially those (like front
ends) that require very little in the way of computer control. The
proposed design forces all devices to the level of complexity of the
most complex device (presumably the antenna motion). This is not
reasonable.

