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1. INTRODUCTION 

This memorandum addresses a question raised at the third GBT Design Review 
Meeting, held in Sterling, Va. on Oct. 20-22, 1992: What is the nature of the 
subreflector positioning errors that would result from imperfect behavior of the U- 
joints and the ball screws of the subreflector positioning mechanism? It was stated 
at the meeting that imperfections in the U-joints would result in joint positioning 
errors, due to backlash, of ~ it).75 mils (peak) at each of the twelve joints and 
that imperfections in the ball screws of the actuators (one per actuator), combined 
with servo-system granularity, would cause additional joint positioning errors of 
about the same amount. Several of the NRAO attendees have expressed concern 
that the resulting subreflector positional errors, both translational and rotational, 
are not sufficiently well understood and that the error analysis presented by the 
subcontractor at the meeting may have been too simplistic. 

2. ERROR ANALYSIS 

The three-dimensional Cartesian coordinate system used in describing the op¬ 
eration of the positioning mechanism has its origin located at the vertex of the 
subreflector. The orientation of the coordinate system is such that the (a;,2r)-plane 
is parallel to the subreflector mounting platform when the mechanism is positioned 
in its "home" configuration (see Loral Technical Memorandum No. 19, Equations 
of Motion—Subreflector Positioner, Revisions 0 and 1). Six linear actuators are at¬ 
tached, via U-joints, between mounting points Pi located on the feed arm and Qi on 
the subreflector mounting platform, i = 1,.. .,6. Following the conventions of the 
Loral memorandum, desired motions of the platform are specified by a column vec¬ 
tor (xDyyD,Z£),0x,Oz)

T of three translational parameters and two rotational ones; 
and, given an initial configuration (P, Qinitial) and a desired motion of the platform, 
the final configuration (P,Qfinal) can be calculated according to 
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(for i= 1,..., 6), where a = 36.7 degrees has been chosen to achieve the orientation 
of the x'-axis which is appropriate for optical alignment. The changes in actuator 
lengths which are needed in order to accomplish the desired change of configuration 
are given by A£t- = ||<2?na, - <2jnitia,||. 



Now let us suppose that the subreflector positioning mechanism is in some 
configuration of interest: maybe its "home" configuration (P, Qhome); or perhaps 
an arbitrary configuration (P,Q) that can be reached from the home position in 
a manner consistent with Equation 1. We wish now to see how perturbations in 
the actuator lengths affect the position and orientation of the subreflector mounting 
platform. These perturbations could, of course, tilt the platform about any of its 
three axes, so we now need an equation like Equation 1, but incorporating three 
rotational parameters. 

The natural choice for the rotational parameters might seem to be the Euler 
angles, but associated with this choice would be a problem that would effectively 
preclude a straightforward error analysis.1 The rotations that are of interest are 
small, so in place of Equation 1 we may use 
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of the transformation from the parameters (££>, yr>,zz), 0X, Oy, 0Z) to actuator lengths 
h (or length changes Ah) is straightforward to calculate analytically from Equa¬ 
tion 2. Having done so, one may evaluate the Jacobian numerically at any desired 

^he Euler-angle parametrization is non-unique and, in particular, is singular at the identity (i.e., 
for zero rotation); see [1, p. 135]. In the common definition [2, p. 107 ff.] a rotation by an angle 
y> about the .z-axis can be described by Euler angles (0, 0, V), or by the choice (or, 0, ij) — a) for 
arbitrary a. 



values of these parameters, and then approximate, numerically, the inverse Jacobian, 
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/ 
This matrix comprises the partial derivatives that would be required in order to 
apply the standard formulae for error propagation. 

For a continuously differentiable function / of n variables xi,...,a;n, the ab¬ 
solute error in /, given small perturbations Azi in the a:^, can be approximated 
by 

A/Oci,.. .,xn) « ^-Asi + • • • + -^-Axn • (5) 

If the errors are zero-mean random variables, the variance of / can be expressed in 
terms of the variances and covariances of the Xi (see, e.g., [3, p. 118]) by 
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From Equations 4 and 5, we see that absolute errors in the actuator lengths would 
propagate according to the formula 
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Also, from Equations 4 and 6 we see that uncorrelated random errors in the actuator 
lengths, with standard deviations a£., would propagate according to 
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For correlated random errors, the full form of Equation 6 would apply: in matrix 
terms, the variance/covariance matrix of the errors in {xp, yp, ZQ, 0X, Oy, 0Z} is given 
by the matrix product («/_1)V(J-1)T, where V denotes the variance/covariance 
matrix of the actuator length errors. 



3. NUMERICAL RESULTS 

I have written a Mathematica program which can perform the calculations de¬ 
scribed in Section 2 and have used it to carry out some analysis of the positioning 
mechanism of the current GBT structural model. Figure 1 shows the "home" con¬ 
figuration of the subreflector actuators. The coordinates (measured in inches) of the 
connection points to the feed arm are 

P = {(58.391,150.161,0), (-29.753,166.683,51.123), 

(-29.753,166.683, -51.123), (-163.08,82.478,51.123), 

(-163.08,82.478,-51.123), (-17.798,70.290,-12.25)}. 

The connection points to the subreflector mounting platform are 

Qhome = {(57.225,39.219,0), (-30.15,55.703,51.123), 

(-30.15,55.703, -51.123), (-40.493,48.375,51.123), 

(-40.493,48.375,-51.123), (-18.495,48.856,45.473)}. 

The first three coordinates in each list pertain to the y-actuators, the next two to 
the x-actuators, and the final one to the .z-actuator. 

The r.m.s. errors in the actuator lengths are expected to be around 0.75 mils. 
I have computed (from Eq. 8), for two configurations of the mechanism, the r.m.s. 
translational and rotational errors that would result from (zero-mean) independent, 
identically distributed, actuator length errors with <T^. =0.75 mils.2 In the neigh¬ 
borhood of the "home" configuration, (crrD,o-yp,<jZD) « (0.68,0.43,1.05) mils and 
(a$x, (Tey, <Tot) ~ (2.5,2.0,2.2) arc seconds. In the neighborhood of an "extreme" 
configuration—namely (££>, yp,ZD,0X, 0Z) = (17.95in, —24.34in, 1.25in, 0,0)—the 
errors are not very different: here, (<TXD , ayD, crZD) « (0.72,0.47,1.33) mils and 
(<Tex, (Tgy, <Tgz) « (2.9,1.9,2.2) arc seconds. I selected this particular "extreme" con¬ 
figuration because it showed up in Loral's analysis as a worst case. I have explored 
the parameter space a bit further and have not found much larger errors in other 
parts of the configuration space. The errors have very little dependence on the tilt 
angles 0X and 0Z when the latter are varied over the narrow range to which they will 
be restricted (±1?5 and ±0?5, respectively). 

However, the errors are not likely to be independent. We can expect, since 
the y-actuators are roughly parallel, that they will be similarly loaded and that 
their length errors will be positively correlated. Similarly for the rc-actuator errors. 
Assuming no other correlations, the variance/covariance matrix would be of the 
form 

V = (j' 

(1 712 713 0 0 0\ 
712 1 723 0 0 0 
713 723 1 0 0 0 
0 0 0 1 745 0 
0 0 0 745 1 0 

(9) 

2 The results scale directly with 07. 



with all of these 7*j > 0. I have performed a very simple-minded analysis of the error 
propagation, by assuming, for the moment, that 712 = 713 = 723 = 745 = 7 and, 
again, that a = 0.75 mils. The results, for 0 < 7 < 1, are summarized in Figure 2 (for 
the "home" position) and Figure 3 (for the "extreme" position). The translational 
errors remain of order 0.75 mils: (Tzz>, the largest, decreases with increasing 7, while 
axv and OyD increase significantly but remain less than aZD. However, as 7 —► 1 the 
rotational errors tend to zero. (Again there is not a dramatic difference in behavior 
between the "home" and the "extreme" position.) 

For correlation coefficients equal to one-half, the rotational errors are reduced 
by a factor of about two-thirds. But very strong, > 90%, correlations would be 
required to reduce the rotational errors by a factor of one-third or better. Such 
high correlations are probably unlikely, because of many possible effects: differences 
in the machining of the joints; differences in their orientations; differences in their 
wear; somewhat different gravitational loadings among the grouped actuators (e.g., 
actuators 2 and 3 among the y-actuators will be loaded differently than actuator I);3 

differing amounts of relaxation, with time, of the pre-load conditions; etc. The 
contributions from the servo system (expected to be ~ ±0.5 mils, peak) would, I 
think, be uncorrelated. 

It is expected that the maximum actuator length errors will be ~ ±2.25 mils. 
The absolutely worst-case errors can be approximated from Equation 7, by now 
taking the absolute values of each element of the inverse Jacobian and of each A^; 
i.e.. 
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In the neighborhood of the "home" configuration the calculated worst-case er¬ 
rors are (Azp, AyD, A,zD)max = (4.04,2.26,6.01) mils and (A0X, A0y, A0z)mSLX = 
(14.4,11.0,10.7) arc seconds. In the neighborhood of the "extreme" configuration, 
the corresponding errors are (3.91,2.76,7.59) mils and (17.5,10.1,11.1) arc seconds, 
respectively. 

3 From geometrical considerations alone (see Fig. 1) one would expect that 723 > 712 > 723 > 713» 
and 712 « 713- 



By examining the individual elements of the inverse Jacobian we can discover 
which patterns in sign of the actuator errors would cause each of the worst-case 
errors to be realized. At the "home" configuration, J-1 is equal to 

/ -0.520251 0.121654 0.121654 0.516602 0.516602 0 
-0.345096 -0.326634 -0.326634 -0.00309505 -0.00309505 0 
-0.0491685 -0.756083 0.43103 -0.178991 0.189781 1.06678 

0 -0.00945832 0.00945832 0.00603182 -0.00603182 0 
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Thus, in this configuration, the sign pattern (—,+,+,+,+,±) (or its negative) in 
the actuator length errors would lead to the worst-case error in Axp, the pattern 
(—,—,—,—,—,±) (or its negative) would lead to the worst-case error in AyD, simi¬ 
larly for the pattern (-, -, +, -, +, +) and AZD, the pattern (±, -, +, +, -, ±) and 
A0X, the pattern (±, -, +, -, +, ±) and A0y, and the pattern (+, -, -, +, +, ±) and 
A0Z. At the "extreme" configuration, J-1 is equal to 

-0.512483 0.0409619 0.0336339 0.565557 0.577145 -0.00697503 

-0.338461 -0.367908 -0.364487 0.0693016 0.0751308 0.0112076 

-0.112041 -1.03735 0.446309 -0.345475 0.12328 1.30999 

0 -0.0109494 0.0109494 0.00785587 -0.00785587 0 
0 -0.00275432 0.00275432 -0.00810922 0.00810922 0 
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(12) 
Here, the corresponding sign patterns are (—,+,+,+,+,—), (—, —, —, +, +,+), 
and (—,—,+,—,+,+) for the translational errors, and (±,—,+,+,—,±), 
(±, —, +,—,+, ±), and (+, —,—,+,—,—) for the three respective rotational errors. 

With regard to pointing, the rotational errors are the ones which are of chief con¬ 
cern. The worst-case rotational errors (with one exception) all occur when the three 
y-actuator errors are of different parity and—simultaneously—the two x-actuator er¬ 
rors are of different parity. (The exceptional case is that of A0Z in the neighborhood 
of the "home" configuration; this is a bit immaterial, since the two matrix elements 
equal to ~ 4.11 x 10~5 in the sixth row of J-1 are much smaller in magnitude than 
the other nonzero elements of that row.) 

By the same arguments which led, in the analysis of random errors, to Equa¬ 
tion 9, the typical length errors of the three y-actuators (especially actuators 2 
and 3) would not be of differing parity, nor would those of the two a:-actuators; and 
I doubt that simultaneous conditions of non-parity would be frequent. At certain 
elevations where actuators switch from tension to compression, or vice-versa, wind 
buffeting may be a problem. 

Figure 4 shows the Mathematica commands that can be used to do the error 
calculations and which were used to generate Figures 2 and 3; they take about thirty 
seconds to run. 

4. DISCUSSION 

According to [8], subreflector rotational errors do not translate directly into 
errors in the direction of the main telescope beam, but rather there is around a 7 : 1 
demagnification effect. (A tilt of 1.0 arc second about the x- or the 2-axis causes a 



main-beam pointing error of 0.13 or 0.15 arc second, respectively.) The translational 
errors also affect pointing; translational motions AXD = 1 mil, Ay^ = 1 mil, or 
AZD = 1 mil would cause pointing errors of 0.074, 0.054, or —0.096 arc seconds, 
respectively. 

The subreflector positional errors, according to the above analysis, will be 
< ~1.3 mil, r.m.s., in the translational components and < ~3 arc seconds, r.m.s, 
in the rotations. The worst possible errors, of 5 to 6 times these r.m.s. values, are 
frighteningly large, but perhaps improbable. 2a actuator length errors should cause 
smaller than 1-arc-second main-beam pointing errors, but 3<T errors would not. 

My numerical results show that the rotational errors are significantly reduced 
if there are strong positive correlations among the errors of the three y-actuators 
and strong positive correlation between the errors of the two x-actuators. One 
possible design implication is that it might be desirable to choose matched pairs of 
U-joints (for the x-actuators) and matched triples (for the y-actuators), in order to 
strengthen the correlation. Similarly, it might be helpful to position the grouped 
U-joints in identical spatial orientations if this possibility is not precluded by other 
design considerations. 

Lee King has suggested that the best-performing actuator mechanism be as¬ 
signed to actuator six. From the sixth column of the inverse Jacobian matrices it 
is evident that this choice would help to minimize the largest translational error 
component, Az£>, but we see that actuator six is the one with the least effect on the 
rotational errors. According to [8], AZD is the translational error component which 
has the largest effect on pointing, so this still might be a good choice. 

Additional Remarks. A kinematic analysis of the subreflector positioning mecha¬ 
nism was carried out last year, by Johann Schraml and myself, in order to determine 
the actuator speed and acceleration requirements. I see, in retrospect, that we could 
have addressed the problem more directly, via the Jacobian matrix formulation of 
Section 2 above. The complete forward and inverse instantaneous kinematics could 
have been derived fairly straightforwardly. See [4], [5], and [6]. I mention this 
because I believe that some related work is continuing at Loral. 

Reference [7] addresses the configuration of in-parallel-actuated manipulators in 
great generality, with particular emphasis on the connectivity (i.e., which spherical 
joints coalesce). It is pointed out there that a configuration with one triply-coalesced 
joint and one doubly-coalesced joint—essentially like our configuration—is more 
easily controlled than a configuration like the Stewart platform, with three doubly- 
coalesced joints. Specific restrictions which ought to be applied when controlling 
a mechanism such as ours are discussed in detail in the concluding section of the 
paper. I would recommend this paper to the structural and mechanical engineers 
involved with the GBT project. 
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Figure 1. The GBT subreflector positioning mechanism in its "home" configuration. The connec¬ 
tion points to the feed arm are represented by the /*,-, and the connection points to the subreflector 
mounting platform by the Q,-. 
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Figure 2. Subreflector r.m.s. translational errors (crXD, <TyD, aZD) (Top) and rotational errors 
{^Ox^Byi^^t) (Bottom) corresponding to 0.75 x 10~3 inch r.m.s. errors in the actuator lengths, 
with the mechanism in its nominal "home" configuration. The values at the leftmost abscissa 
(correlation coefficient = 0) correspond to uncorrelated errors in the actuator lengths. The abscissa 
represents the (positive) coefficient of correlation between the three y-actuator errors, as well as 
the coefficient of correlation between the two i-actuator errors. 
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Figure 3. Subreflector r.m.s. translational errors (Top) and rotational errors (Bottom) corre¬ 
sponding to 0.75 x 10~3 inch r.m.s. errors in the actuator lengths, with the mechanism in an 
extreme configuration, far from the "home" configuration. The errors shown here are not much 
larger than those shown in Figure 2. 
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(*m={0,0,0,0,0,0}*) 
in={17.95/-24.34,1.25, 0,0,0} 
sd=.00075 
emax=.00225 
$DefaultFont={"Times-Roman",12} 
sigmal=Table[sd,{i,6}] 

V={{l,cc,cc,0,0,0},{cc,l,cc,0,0,0),{00,00,1,0,0,0},{0,0,0,1,cc,0}, 
{0,0,0,cc,l,0},{0,0,0,0,0,1}}   sdA2 

const=3600/Degree//N 
alpha=36.7 Degree 
papex={{58.391,150.161,0},{-29.753,166.683,51.123},{-29.753,166.683,-51.123}, 

{-163.08,82.478,51.123},{-163.08,82.478,-51.123},{-17.798,70.290,-12.25}} 
p0={{57.225,39.219,0},{-30.15,55.703,51.123},{-30.15,55.703,-51.123}, 

{-40.493,48.375,51.123},{-40.493,48.375,-51.123},{-18.495,48.856,45.473}} 

Z[a_]:={{Cos[a],-Sin[a],0},{Sin[a],Cos[a],0},{0,0,l}} 
g t {xs_,ys_, zs_} ] = {xd,yd, zd} + 

Z[-alpha].{{l,Sin[thz],-Sin[thy]},{-Sin[thz],l,SinIthx]}, 
{Sin[thy],-Sin[thx],1}}.Z[alpha].{xs,ys,zs} 

pl=Table[gtpO[[i]]],{i,l,6}] 
10=Table[Sqrt[(papex[[i]]-pO[[i]]).(papex[[i]]-pO[[i]])],{i,6}] 
ll=Table[Sqrt[(papex[[i]]-pi[[i]]).(papexf[i]]-pi[[i]])],{i,6}] 
deltal=ll-10 

J={{D[deltal[[1]],xd]^[deltalt[1]],yd],D[deltal[[1]],zd],D[deltal[[1]],thx], 
D[deltal[[1]],thy],D[deltal[[1]],thz]}, 
{D[deltal[[2]],xd],D[deltal[[2]],yd],D[deltal[[2]],zd],D[deltal[[2]],thx], 
D[deltal[[2]],thy],D[deltal[[2]],thz]}, 
{D[deltal[[3]],xd],D[deltalI[3]],yd],D[deltal[[3 J],zd],D[deltal[[3]],thx], 
D[deltal[[3]],thy],D[deltal[[3]],thz]}, 
{D[deltal[[4]],xd],D[deltal[[4]]^d],D[deltal[[4]],zd],D[deltal[[4]],thx], 
D[deltal[[4]],thy],D[deltal[[4]],thz]}, 
{D[deltal[[5]],xd],D[deltal[[5]],yd]^[deltal[[5]],zd],D[deltal[[5]],thx], 
Dfdeltal[[5]],thy],D[deltal[[5]],thz]}, 
{D[deltal [ [6] ] ^d], Dfdeltal [ [6] ],yd] ^[deltal [ [6] ], zd] ,D[deltal [ [6] ], thx] , 
D[deltal[[6]],thy],Dfdeltal[[6]],thz]} }/. 
{xd->m[ [1] ] ,yd->m[ [2] ] ,zd->m[ [3] ] ,thx->in[ [4] ]Degree, thy->m( [5] ]Degree, 
thz->m[[6]]Degree}//N 

JI=PseudoInverse[J] 
sigina=Table[Sqrt[Sum[JI[[i, j]]/v2 sigmal [ [ j ] ] ~2, {j,6}3] If [i<=3 ,1, const], {i,6}] 
COV=JI.V.Transpose[JI] 
sigmac=Table[Sqrt[Abs[COV[[i,i]]]] If[i<=3,lrconst],{i,6}] 

pit[i_]:=ListPlot[Tablet{cc,sigmacf[i]]},{cc,0,1,.01}],PlotJoined->True] 
lab=FontForm[StringForm["x='', y='', z='', thetax='', thetay='', thetaz=''", 

in[[l]],m[[2]],m[[3}],m[[4}],m[[5]]/m[[6]]],{"Courier",10}] 
pltl=Show[plt[1],plt[2],plt[3],PlotLabel->lab,Frame->True,GridLines->Automatic, 

FrameLabel->{"Correlation Coefficient","Translational Error (in)"}] 
plt2=Show[plt[4],pit[5],plt[6],PlotLabel->lab,Frame->True,GridLines->Automatic, 

FrameLabel->{"Correlation Coefficient","Rotational Error (arc sec)"}] 

f[{xl_,x2_,x3_,x4_,x5_,x6_}]:={xl,x2/x3,const x4,const x5,const x6} 
mcLxerr=f [Map[Abs, JI] .Transpose [ {1,1,1,1,1,1} emax] ] ; 

Figure 4.   The Mathematica commands which were used to generate Figures 2 and 3 and to 
perform most of the related computations. 
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