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1. General Remarks 

Memo 105 by Heiles and Maddalena has given ample reasons for having an astronomical 
pointing system, obtained by observing radio sources of known position. They discuss types of 
sources and observing methods, and they include the elliptical beam shapes of polarized or off- 
axis observations.   Their final discussion concerns presentation and use of such systems. 

The present memo is confined to the pointing parameters only, describing the corrections 
AA for azimuth and AE for elevation. Their system shall correct the repeating pointing errors 
(misalignments, gravity, refraction). The least-squares method is described which yields the 
pointing parameters and their mean errors. Also weighted observations are described, for 
combining observations of different quality. 

I want to emphasize the need for knowing the mean errors of these parameters. First, 
the errors will show whether the observations have been sufficient, and if not, how many more are 

needed. Second, if observations give different parameter values for different conditions 
(wavelength, Gregorian/prime, season, after a year, ...), it is important to know whether or not the 
difference is significant. Third, errors are needed when weights shall be used (weight = 1/error2). 
In order to minimize the errors and their correlations, one should schedule the observations such 
that the neighborhood of the cardinal angles is emphasized: 0° and 90° for elevation though not 
too close to the horizon, and 0°, ±90° and ±180° for azimuth. Observations near 45° cannot 

decide between sine and cosine. And the observations should be done only at calm nights with 
a constant (and not extreme) temperature. 

In cases where the pointing does not depend on wavelength, the highest accuracy will be 
obtained at the shortest good wavelength. And shortest means here that the beam shape has not 
yet been deteriorated by the surface rms errors. If the beam is bumpy or very skewed, pointing 
becomes a matter of definition.   Do you use the maximum, or the center of gravity? 

It is not always realized that a completely healthy structure cannot have any hysteresis 
at all. Hysteresis can only be produced by friction (gears, bearings), slack (gears, loose bolts, 
cables), or oil-canning (a joint with all members coplanar). Thus hysteresis, large enough to be 
measured, should never be tolerated.   Even if it takes a long dedicated effort to fight it. 

If the telescope is part of an interferometer, one must know two additional repealing errors, 
the horizontal translation AY, and the vertical AZ. They do not effect the pointing but the 
location. They are not discussed in the present memo which deals only with the pointing, but 
they must be worked out later. 

2. Expected Parameters 

Parameters, to be solved for, must first be defined. Sometimes this is done (or at least 
suggested) by just solving for a series of spherical Fourier terms up to a given order. But this 

I would call "Fishing in the Dark".   Results may be used but wouldn'tell you anything. 



It is recommended to solve first only for those parameters which are to be expected even 
for a good healthy structure: small misalignments, deformations from gravity, and atmospheric 
refraction. Only after a set of good and stable values for these parameters has been obtained, only 
then should one investigate the residuals (if they give pointing errors larger than specified). 
Looking at various plots, or doing a Fourier analysis, may indicate some additional correlations. 
One may then solve again for these unexpected parameters and their errors. And if they are 
significant, one should try to identify their physical cause and to understand it. Sometimes it 
can be removed or minimized. And if not, also these parameters must be included in the system, 

after additional tests for their significance and stability. 

The following listing of expected parameters and their angular functions is taken from my 
VLA Test Memo No. 136, May 1982, with the convention E=0 at horizon, A=0 at North, and the 

sign as A = observed — true. We had eight parameters for a symmetrical alt-azimuth mount, 

where gravity needs only AE = P cos(E). But in our case of an asymmetrical main dish and 
heavy feed arm, we need the term with sin(E) as well, with nine parameters. The unbalanced 
turret may even give small terms AA, which I assume negligible. The atmospheric refraction term 
is taken from my Engineering Division Internal Report No. 101, May 1976,   for the 140-ft. 

PI = Azimuth axis offset to North 

AE = + Pj cos(A) AA cos(E) = + Pi sin(E) sin(A) (1) 

P2 = Azimuth axis offset to East 

AE = + P2 sin(A) AA cos(E) = - P2 sin(E) cos(A) (2) 

P3 = Elevation axis not perpendicular azimuth axis 

AE = 0 AA cos(E) = + P3 sin(E) (3) 

P4 = Zero elevation offset, and feed offset to Y 

AE = + P4 AA = 0 (4) 

Ps = Beam not perpendicular elevation axis, and feed offset to X 

AE = 0 AA cos(E) = + P5 (5) 

P6 = Zero azimuth offset 

AE = 0 AA = + P6 (6) 

P7 = Gravity, symmetrical 

AE = + P7 cos(E) AA = 0 (7) 

Pg = Gravity, asymmetrical 

AE = + P8   sin(E) AA = 0 (8) 

P9 = Refraction 

AE = + P, R(E) AA = 0 (9) 
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These single contributions add up as: 

AE = P, cos(A) + P2 sin(A) + P* + P7 cos(E) + P8 sin(E) + \\ R(E) (10) 

AA cos(E) = P! sin(E) sin(A) - P2 sin(E) cos(A) + P3 sin(E) + P5 + Pb c'os(E) (11) 

The refraction term R(E) was handled as follows. At the interferometer we measured, 
and wired to the 140-ft: the barometric pressure Pb„ in mmHg, the temperature t in 0C, and the 
dew-point temperature D in 0C. From these we have the temperature T = t + 273.15 in 0K; 

while the water vapor pressure PW»(D) in mmHg was approximated as 

Pwv = 4.58 + 3.369 (D/10) + 1.029 (D/10)* + 0.2080 (D/10)3 + 0.02778 (D/10)* (12) 

from which 
K = 0.354 Pbai/T - 0.0585 PW¥/T + 1701 Pwv/T

2 (13) 

where 
K « 1.0 arcmin, for average days at Green Bank. (14) 

For a flat Earth we would simply have   R(E) = K cot(E). 

At low elevations we have two complications. First, the corrections may become so large 
that we must make a difference between Elru and E^, = Etni + AE, where the refraction does 
depend on the true elevation of the source. Second, for the curvature of the Earth J derived the 

approximation 
cos (Eu,) 

R(E)      K sin(E,ru) + 0.00175 cot(E,ru + 2.5°) *lo) 

I recommend that someone at NRAO checks these old equations again, with new literature. 
But please make sure that AE does not diverge close to horizon, which some published cases did! 
Also I would like to mention another complication if we want high accuracy. At low elevations, 
equation (15) can be used if the true elevation is known, which means for calibrating the pointing 
parameters, and later for observing sources of known location. However if we discover a new 
source close to horizon, for example far south, and want to get its true location, then we would 
have to "iterate backwards": use (15) with EoitB, get an approximate AE, subtract it from Eob8 and 
apply (15) again. But at high elevations we have the opposite case. For obtaining AA, the critical 
term l/cos(E) should be replaced by l/cos(£oba), at least regarding P1 and P2 (maybe not P3 and 

Ps). But maybe this complication can be neglected if the "zone of avoidance", as defined by the 
speed limit of the azimuth drive, is large enough, which should be checked. 

3. Least Squares Method 

After a pointing run, we have n observations, each with the two values AE and A A cos(E), 
to be explained by equations (10) and (11) with m unknown pointing parameters, multiplied by 
given angular functions of E and A. Wc call these functions ¥& and Glk for observation i and 
parameter k; for example FJ2 

== sin(Ai) and G^ = sin(Ei) cos(Ai) for observation i = 1 ... n. The 
number of parameters is m=9 for the expected parameters, but larger if we have to add some 

unexpected ones.   We rewrite (10) and (11) as two vectors   U = AE   and   V=AAcos(E)   as 

m m 
Us =      S Fik Pk and V; =      S Gik Pk 

k=l k=l 
i=l ... n (16) 

which would be exact if we had no observing errors, called   £; for AEj and   T^ for AAicos(Ei). 
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We now define the quadratic residual   R0 = S ^r + S r|r   as 

R0 =   E { (U, - SF,^)2 + (V, -   SG,^)2} (IT) 
i k k 

and "Least Squares" means   R0 = minimum, which we obtain by lotting all m partial derivatives 

dRJdPi = 0. This leads to a set of m linear equations 

E S (F^ Fik + Gij Gik) Pk =  S (F5 U, + eg V,) \   j= 1 ... m (18) 
k    i i ! 

which we write as 

with matrix M 

and vector W 

M P = W (19) 

M = FT F + GT G (20) 

W = F U + GT V (21) 

where   F7 is the transpose of matrix F, and   Gl the transpose of matrix G. With    I = M-1 the 
inverse of matrix M, we finally obtain the wanted parameters, P, ... Pm as the solution of our 

system (18) as 
P = 1 W. (22) 

Next we ask for the mean errors €k of these derived parameters Pk. We insert all Pk 

into equation (17) and obtain the quadratic residual R0. It can be shown that the errors then are 

given, for   P. ± *, as ^ = ^ ^ /(n_m)}1/2 (23) 

One should also obtain the symmetrical error correlation matrix,   which is 

Ckj = Ikj / (Ilk y^ (24) 

with   m diagonal members   Ckk=l,   and   m(m—1)/2   independent members, normalized to 

-1 * Ckj £ +1. 

We should watch out for bad correlations, where Ckj comes close to ± 1. This means most 
probably that in our pointing run the locations (E, A) of the observations had been badly 
distributed. Either not close enough to all the cardinal angles, or too crowded at some few 
locations, not enough at some others.   A good schedule for the observations is very important. 

4) Weighted Observations 

If within one run we have observations with different errors, as estimated from their noise, 
and assuming ^ = Th, the weight of observation i then is w; = i/r)?. We multiply the right- 
hand side of (17) and both sides of (18) by Wj/Ewj and proceed from (19) through (24) as before, 
except that in (23) the number n of observations is now replaced by the effective number ne < n 

ne = (Swjf/Ewi*. (25) 

However, if several runs (r = l...s) of different accuracy are combined, we use for each 
parameter Pkr from run r its mean error €kr yielding the weight wtr — l/ekr

2. The weighted 
average of Pk and its mean error then are   (with   r =  l...s   for all summations): 

Pk = (SwkrPkr)/Swkr   ±   l/(Ewkr)"
2. (26) 


