
The GBT Tipping-Structure Model in C

Don Wells Lee King

March 21, 1995

Abstract

The finite element model of the GBT tipping structure has been translated into executable code
expressed in the C language, so that it can be used by the control software modules for the pointing,
focus-tracldng, quadrant detector, active-surface and laser-rangefinder subsystems of the GBT. We give
a description of this C-code version of the tipping structure model and two examples of its application
to practical problems.

1 From NASTRAN-output to C-code

The GBT structure was designed for CRSI1 by Loral using the "NISA IF'2 finite-element modelling package.
The final version of the tipping-structure was model "95B" (28 October 1993). The design was confirmed
by CRSI using the "ANSYS"3 modelling software, a different package from the one used by Loral. NRAO
verified the model using yet another package, "MSC/NASTRAN".4 The NASTRAN line-printer-listing file
produced by NRAO's execution of model 95B was parsed by a program coded in the AWK language in order
to extract the results for the nodes of the structure and reformat them into source code in the C language
(see Appendix C, p.15).

NRAO's version of the model currently contains only the nodes on the right-hand-side of the GBT. Nodes
which were not in the GBT's plane of symmetry were duplicated by the AWK program, and negative node-
IDs were assigned. The signs of components of the translational and rotational displacements for these
duplicated nodes were flipped in accordance with appropriate synunetry rules (for example, see the values
for nodes ±768012 on page 16). The full symmetric model has a total of 5577 nodes, of which 40% are the
active surface actuator nodes.

The 2209 active surface actuators are node-IDs 700001 through 768012. These ID numbers are composed of
700000 plus an angle part and a hoop part; e.g., node -768012 is —68.0 degrees from the plane of symmetry
(positive angles are clockwise as seen when looking down from the -|-Z axis) and is in hoop number 12 of the
structure. This hoop-and-angle notation is equivalent to the notation used to specify actuators in the active
surface control system and in the laser rangefinder system; e.g., the retroreflector named "ZG12-1-680" in
[Par94] is the node with ID "768012" in this model.

The undisplaced Z coordinates of this model include the 1900 inch height of the elevation axle above the
top of the azimuth track. I.e., to get coordinates in the elevation coordinate system (Xe, Ye, Ze) as defined
in [Kin94], 1900.0 inches should be subtracted from node_i->grid[2], the undisplaced Z value, which is
returned by the function get_node_data().

COMSAT RSI, formerly RSi.
2froin Engineering Mechanics Research Corporation.
3from Swanson Analysis Systems, Inc.
4 "NASTRAN" is a registered trademark of the National Aeronautics and Space Administration [NASA]; MSC/NASTRAN

is an enhanced, proprietary version developed and maintained by The MacNeal-Schwendler Corporation.

2 Page The GBT Tipping-Structure Model in C

2 Software to retrieve the model results

GBT Memo 124

Function get_node_data() (see Appendix A.l, p.9) retrieves values from the table of nodes (Appendix C,
p. 15). It takes the elevation angle as an argument and returns the undisplaced "grid" coordinates, the
displacements (to be added to the "grid" values) and the rotations. The displacements and rotations are
computed by forming a weighted sum of the values for the zenith and horizon gravitational deflection cases.

Function get_index() (see Appendix A.2, p.11) searches the table of nodes to find the table index for a
specified node-ID. The indicies are cached so that repeated calls for the same node-IDs are faster.

3 Applications

This structural model is expected to be used for the following purposes:

BFP, Gravity Pointing Term Deflections of the nodes which model the active surface actuators will be
fitted to derive parameters of the "best-fitting paraboloid" [BFP] as a function of elevation. The BFP
will be the primary component of the "commanded surface" in the open-loop active surface module.
Also, the tilt parameter of the BFP will be the a priori estimate of the gravitational deflection terms
of the "traditional" pointing correction module.

Active Surface The open-loop active surface control for "Phase-2" of the GBT project will consist of
driving the actuators with the difference between the structural model and the BFP, projected to local
surface normal.

Focus Tracking The focus tracking subsystem will depend on the structural model to compute
displacements of the prime focus and Gregorian optics relative to the prime focal point of the BFP
(which itself depends on the structural model).

Rangefinder Control & Analysis The laser-rangefinder subsystem will use the structural model to
compute the displaced locations of retroreflectors for acquisition and tracking purposes. The
displacements will also be used as corrections in fitting of range measurements to derive desired
parameters (such as the orientation of the distorted backup structure). Tilts of nodes will be important
when rangefinders are attached to the nodes, or when retroreflectors are attached to brackets which
are attached to nodes (the ends of the brackets are displaced by the tilts).

Quadrant Detector The a priori estimate of the "expected track" of the quadrant detector will be
computed using displacements and tilts from the structural model.

In the remainder of this section, we provide two numerical examples of the application of the structural
model to particular cases.

3.1 Tipping-structure Nodes Referred to Ground Coordinates

In this example, we will calculate the ground-based coordinates of the home-point of the prime focus box
(node 50000) for elevation 5°, azimuth 135° (southeast).5 get_node_data() will calculate the displacements
using numbers extracted from the table (see node 50000 in Appendix C) in the expression,6

" Ax ■ 0.0000 0.0000 "
Ay = -4.4914 9.7803
A, -3.4570 0.3821 _

" 0.0000 "
= 5.4367

sin 5° — sin 44°
cos 5° — cos 44° (1)

(2)

5 The example in this section is adapted from a numerical example in an unpublished memo [Par95] by Dave Parker.
6 See Eq.13 on p.10; node 50000 is one of the nodes which will be adjusted to have a rigging angle of 44°.

GBT Memo 124 The GBT Tipping-Structure Model in C Page 3

get_node_data() will also extract the undisplaced ("grid") coordinates (Xg,Yg,Zg) of node 50000 from the
table; deflected coordinates of node 50000 in the elevation coordinate system [Kin94, KM93] can then be
computed with the expression

(3)

(4)

(5)

These coordinates can be transformed from the elevation coordinate system to the alidade coordinate
system [Kin94, KM93] by multiplying by a rotation matrix7 and adding 1900.0 to the Z axis:

Xe(E) ■
Ye(E)
Ze(E) _

=
Xg

Zg - 1900.0
+

" A*
Ay

(E)]
(E)

0.00 ' 0.0
= -2159.02

4459.06 - 1900.0
+ 5.4367

2.2059

0.0 *
= -2153.58

Xa] [1 0 0
Ya = 0 sini? cosE
Za 0 —cosE s'mE

1 0 0
0 0.0872 0.9962
0 -0.9962 0.0872

0
2363.74
4268.74

These alidade coordinates can then be transformed to "base" coordinates8 with the expression

r Xe] r o 1
Ye + 0
ze 1900

0.0 0
-2153.58 + 0

(6)

(7)

(8)

X
Y
Z

cos A — sin A 0
sin A

0

-0.707
-0.707

0

cos A 0
0 1

+0.707 0
-0.707 0

0 1

r Xa 1
Ya

L Z° J
0

2363.74

(10)

(11)

(12)
+1671.16
-1671.16
+4268.74

where A is the astronomical azimuth, 135° in our example.

There are three corrections which should be included in a production version of the above calculations:

Elevation Axle Collimation Error The as-built elevation axle will not be orthogonal to the azimuth
axis. The correction for this problem will appear as an additional rotation matrix in the transformation
from elevation coordinates to alidade coordinates; the collimation angle for the matrix will be obtained
from the "traditional" pointing error model.

7 The rotation matrix of Eq.6 has been modified from the version in [Kin94, KM93] in order to accomodate the initial
condition E = 90° for the structure grid coordinates.

8[Kin94, KM93] defines these coordinates: Ae (Azimuth encoder value) is measured counter-clockwise from Ya (due South);
i.e., when Ac = 0°, Xa points West, Ya points South. The conventional azimuth, as used in the numerical example above, is
related to Ae by

A = 180° - Ae. (9)

In the "base" coordinate system +X is East, +Y is North and +Z is up, with the origin at the pintle bearing.

4 Page The GBT Tipping-Structure Model in C GBT Memo 124

Table 1: Upper-feedarm differential deflections

E
Greg . Feed (40700) Subreflectoi • (50005) Differences

8y 62 tr 6y S* tx AL A0 Ats^f Atf^s AFy AF2

(d) (in) (in) (rad) (in) (in) (rad) (in) (rad) (rad) (rad) (in) (in)

0 4.8 2.5 -0.0021 6.2 2.9 -0.0017 0.111 -0.0024 0.0006 0.0002 -0.351 «-0.190
5 4.5 2.2 -0.0020 5.7 2.6 -0.0017 0.090 -0.0022 0.0006 0.0002 -0.305 -0.158

10 4.1 1.9 -0.0018 5.2 2.2 -0.0015 0.070 -0.0020 0.0005 0.0002 -0.260 -0.128
15 3.6 1.6 -0.0016 4.6 1.9 -0.0014 0.053 -0.0018 0.0004 0.0002 -0.216 -0.101
20 3.1 1.3 -0.0014 4.0 1.6 -0.0012 0.037 -0.0015 0.0003 0.0001 -0.174 -0.076
25 2.5 LO -0.0011 3.2 1.2 -0.0010 0.025 -0.0013 0.0002 0.0001 -0.133 -0.054
30 1.9 0.7 -0.0009 2.4 0.9 -0.0008 0.014 -0.0010 0.0002 0.0001 -0.095 -0.035
35 1.2 0.5 -0.0006 1.6 0.6 -0.0005 0.007 -0.0006 0.0001 0.0001 -0.058 -0.020
40 0.6 0.2 -0.0003 0.7 0.2 -0.0002 0.002 -0.0003 0.0000 0.0000 -0.025 -0.007
45 -0.1 -0.0 0.0001 -0.2 -0.1 0.0001 -0.000 0.0001 -0.0000 -0.0000 0.006 0.002
50 -0.9 -0.3 0.0004 -1.1 -0.3 0.0004 0.000 0.0005 -0.0001 -0.0000 0.034 0.007
55 -1.6 -0.5 0.0008 -2.1 -0.6 0.0007 0.004 0.0008 -0.0001 -0.0001 0.058 0.009
60 -2.4 -0.7 0.0011 -3.1 -0.9 0.0011 0.010 0.0012 -0.0001 -0.0001 0.079 0.007
65 -3.1 -0.9 0.0015 -4.1 -1.1 0.0015 0.019 0.0016 -0.0002 -0.0001 0.096 0.002
70 -3.9 -1.1 0.0019 -5.1 -1.3 0.0019 0.031 0.0020 -0.0002 -0.0002 0.109 -0.007
75 -4.6 -1.2 0.0022 -6.1 -1.5 0.0023 0.045 0.0025 -0.0002 -0.0002 0.119 -0.019
80 -5.4 -1.3 0.0026 -7.1 -1.6 0.0027 0.061 0.0029 -0.0002 -0.0003 0.125 -0.035
85 -6.1 -1.4 0.0030 -8.0 -1.7 0.0031 0.080 0.0033 -0.0002 -0.0003 0.126 -0.054

Azimuth/Elevation Non-intersection Error The as-built elevation axis will not intersect the azimuth
axis. This correction will appear as a non-zero Y-axis element in the [0,0,1900.0] vector which is added
to transform from elevation coordinates to alidade coordinates.

Encoder Zero-points The elevation E in the above expressions is not simply the raw elevation encoder
reading: a zero-point correction must be applied. Likewise, a zero-point correction must be applied to
the raw azimuth encoder reading Ae. These zero-point terms will be obtained from the "traditional"
pointing correction model.

3.2 Differential Displacements of the Upper Feedarm

This section presents calculations of certain distortions of the upper part of the feedarm as a function of
elevation. The results are interesting in their own right, but the real purpose here is tutorial: the program
which computes these results demonstrates how to use the structural model functions, and the problem posed
demonstrates the usefulness of the structural model for control of the optics (the focus-tracking problem).
We wish to compute differential motions of the subreflector and the Gregorian feedhorn. The subreflector
mirror and backup frame are represented in the model by node IDs 50004, 50005, 50010, 50040 and 50140;
in particular, node 50005 represents a point in the center of the subreflector mirror. The Gregorian feed is
node 40700. Table 1 presents the displacements 6X and 6y and tilt tx of nodes 40700 and 50005 as a function
of elevation.9 The displacements of these nodes are plotted in Figure 1.

The results shown in Table 1 were produced by the program shown in Table 2.10 The first 12 lines of

9 Displacement Sx and tilts tj, and tz are not shown in Table 1 because they are always zero for these nodes, which are in
the meridional plane, the plane of symmetry of the GBT.

10 At several points in this program, there are expressions similar to this one: "(dotible)greg-feed.gridCiD". The purpose
of the (double) in such expressions is to ensure that the float values from struct node.data will be cast into double precision
in order to avoid truncation errors in calculations.

GBT Memo 124 The GBT Tipping-Structure Model in C Page 5

Table 2: Program which computes Table 1

/* This program, tipping_niodel_tab_Tifdd.c, computes the 'ufdd'
[upper_feedarm_cliffereiitial_deflectioii] table of the
tipping_model.tex GBT memo. D.Veils, IR10-CV, 1/25-3/21/95 */

tinclude <stdlib.li>
tinclude <matlL.h>
tinclude "structural_model.li"

mainO {
struct node.data greg_feed, subr_vrtx;
double elevation, sf[3], sf44[3], lsf44, tsf44, sfsum, dlsf, dtheta,
delta_tsf, delta_tfs, stilt, ctilt, rotate[3] [3], sf44p[3], delta.f[3];
int greg_ind, subr_ind, i, j;
char form[200];

/* Gregorian-feed node */
/* Subreflector "Vertex" node */

greg_ind = get.index (40700);
subr.ind = get_index (50005);
elevation = 44.0;
if (get_node_data (greg.ind, elevation, *greg_feed)) exit(EIIT_FiILURE);
if (get_node_data (subr_ind, elevation, *subr_vrtx)) exit(EIIT_FAILURE);
for (i = 0, sfsum = 0.0; i < 3; i++) {

sf44[i] = ((double)greg_feed.grid[i] + greg_feed.at_elev.delta[il)
- ((double)subr_vrtx.grid[i] + subr_vrtx.at_elev.delta[i]);

sfsum += (sf44[i] * sf44[i]);
}
Isf44 = sqrt (sfsum) ; /* subref 1—>feed distance « 44d */
tsf44 = atan2 (sf44[2], sf44[ll); /* subrefl~>feed angle C 44d */

for (elevation =0.0; elevation <= 90.1; elevation += 5.0) {
if (get_node_data (greg_ind, elevation, tgreg.feed)) exit(EIIT_FAILURE);
if (get_node_data (subr_ind, elevation, tsubr.vrtx)) exit(EIIT_FAILURE);

for (i = 0, sfsum = 0.0; i < 3; i++) {
sf[i] = ((double)greg_feed.grid[i] + greg_feed.at.elev.delta[i])

- ((double)subr_vrtx.grid[i] + subr_vrtx.at_elev.delta[i]);
sfsum += (sf[i] * sfCi]);

}
dlsf = (sqrt (sfsum) - Isf44) ; /* change in subrefl—>feed distance */
dtheta = (atan2 (sf[2], sf[l]) - tsf 44); /* change in angle of line */
delta_tsf = subr_vrtx.at_elev.tilt[0] - dtheta; /* extra subr */
delta_tfs = greg_feed.at_elev.tilt[0] - dtheta; /* extra feed */

ctilt = cos(subr_vrtx.at_elev.tilt[0]); /* rotation about X-axis */
stilt = sin(subr_vrtx.at _ elev.t ilt[0]);
rotate[0][0] = 1.0; rotate[0] [l] =0.0;
rotate[l][0] = 0.0; rotated] [l] = ctilt;
rotate[2] [0] = 0.0; rotate[2][l] = stilt;

rotate[0][2] =0.0;
rotate[l][2] = -stilt;
rotate[2] [2] = ctilt;

for (i =0; i < 3; i++) {
for (j = 0, sf44p[i] = 0.0; j < 3; j++)

sf44p[i] += sf44[j] * rotate[i][j];
delta.f[i] =

((double)greg_feed.grid[i] + greg_feed.at_elev.delta[i])
- ((double)subr_vrtx.grid[i] + subr_vrtx.at_elev.delta[i]

+ sf44p[i]);
}

strcpy (form, "%2.01f*%4.1f*%4.1f*%7.4fft%4.1fftX4.1f*%7.4f");
strcat (form, "t%5.31fft%7.41f*%7.41f»%7.41fk%5.31ft%5.31f\\\\\n");
printf (form, elevation, greg_feed.at_elev.delta[l],

greg_feed.at_elev.delta[2], greg_feed.at_elev.tilt[0],
subr_vrtx.at_elev.delta[l], subr_vrtx.at_elev.delta[2],
subr_vrtx.at_elev.tilt[0], dlsf, dtheta, delta.tsf, delta.tfs,
delta_f[1], delta_f[2]);

}
exit(EIIT_SUCCESS);

6 Page The GBT Tipping-Structure Model in C GBT Memo 124

-10.0

Figure 1: Two trajectories as a function of Elevation

executable code in this program demonstrate how to use functions get_index() and get_node_data() to
obtain information about the geometry of the GBT in order to perform simple geometric calculations on the
design (rigging-angle) geometry, such as the length (isf 44) and position angle (tsf 44) of the line connecting
two nodes. The f or-loop on variable elevation illustrates how to utilize node displacements and tilts as a
function of elevation. Three sets of results are shown in the table:

Change of Node-to-Node Line-of-Sight The line connecting nodes 40700 and 50005 changes length
and orientation as a function of elevation. AL is the difference between the length at the specified
elevation and the length (lsf44) at the rigging angle; it is plotted in Figure 2. A0 is the difference
between the position angle of the line-of-sight at the specified elevation and the position angle (tsf 44)
at the rigging angle; the principal effect represented in A0 is the gross bending of the entire feedarm.
A0 is plotted in Figure 3.

"Excess Rotation" of the Nodes Ats^f is the excess rotation of the subreflector relative to the rotation
of the line of sight from the subreflector to the Gregorian feed; see Figure 3. It is simply (tx — A9)
(i.e., 0.0006 at E = 0° is (-0.0017) - (-0.0024) , see the expression for delta.tsf in Table 2). A//_n
is the same difference for the Gregorian feedhorn.

Displacement of Second Focal Point Relative to Feedhorn If a rigid rod is attached to the
subreflector node, representing the second focal point of the ellipsoidal mirror, the tip of this rod
moves as a function of elevation. The subreflector node is displaced as a function of elevation, which
displaces the base of the rod, and it also tilts, which moves the tip of the rod relative to its base.
The algorithm shown here uses the node tilt to construct a rotation matrix which is multiplied by the
vector sf44[], representing the undisplaced orientation of the rod. The tilted rod is vector sf44p[],
which is added to the displaced position of node 50005 in order to get the position of the tip of the rod.
Vector delta_f [] is the position difference between that tip of the rod and the displaced position of
node 40700, the Gregorian feed; it appears in the table as AFy and AF*,11 and is plotted in Figure 4.
Correction of this position difference will be part of the focus tracking algorithm of the GBT.12

We offer the following comments and conjectures about the results in Table 1:

• Eleven of the twelve tabulated quantities change sign between the lines for 40° and 45°. This is because
of the 44° rigging angle.

11 AFi is always zero in the plane of symmetry.
12 The difference between the first focal point of the ellipsoid and the prime focal point of the best-fitting paraboloid [BFP] as

a function of elevation will the dominant term of the focus tracking algorithm (magnitude about 20X larger than the AFy ,AFZ

values in Table 1 and Figure 4): the displacement of the first focus is not only larger but also has a disproportionate effect on
the imaging and gain compared to the differential distortion of the feedarm because the first focus displacement is magnified
at the second focus by the ellipsoid.

GBT Memo 124 The GBT Tipping-Structure Model in C Page 7

AL
(in)

40 50
Elevation

Figure 2: Change of distance between nodes 40700 and 50005

tilts
(rad)

0.004

0.003

0.002

0.001

0.000

-0.001

-0.002

-0.003

-

l l l l l l

Greg. Feed tx
Subreflector tx

l I

— A0
At^j ^ y^ -

'■:■:

Atf^ ■ ■ ■ ^^^
'

10 20 30 40 50
Elevation

60 70 80 90

Figure 3: Five tilts as a function of Elevation

8 Page The GBT Tipping-Structure Model in C GBT Memo 124

0.02
0.00

-0.02 -
-0.04 -
-0.06 -

AF2 -0.08 -
(in) -0.10 -

-0.12 -
-0.14
-0.16
-0.18
-0.20

-0.40-0.35-0.30-0.25-0.20-0.15-0.10-0.05 0.00 0.05 0.10 0.15
AFy (in)

Figure 4: AFy,AFz trajectory as a function of Elevation

The displacements and tilts of the Gregorian feed and subreflector are similar (see Figures 1 and 3).
This shows the gross deflection of the upper part of the feedarm as a function of elevation, and the
associated rotation (bending). The trajectory of the subreflector is longer (see Figure 1) because it is
further out on the feedarm. The 8y components are large at small elevations; the values are positive
because when the feedarm is nearly horizontal, the -f-Y direction of the tipping coordinate system is
nearly parallel to the gravity vector.

Atg^j is consistent with AFy (as we would expect): the distance between nodes 40700 and 50005 is
about 600 inches, so the 0.6 milliradian excess rotation of the subreflector at E = 0° implies a lateral
motion of the second focal point of the ellipsoid relative to the Gregorian feedhorn of about 0.36 inches
(compared to AFy = —0.35). The sign of AFy is negative because the subreflector sags downward,
away from the feedarm, in the +Y direction, and AFy is computed as the Gregorian feed minus the
focal point (see the formula for delta_f □ in Table 2).

Atft->s is the excess rotation of the Gregorian feed horn relative to the line of sight from the feedhorn
to the center of the subreflector. The rotation is positive for low elevations because the feedroom sags
downward (-Z direction) at high elevations, which is a negative rotation about the X axis (right-hand
rule). The distance between nodes 40700 and 50005 is about 600 inches, and so the 0.2 milliradian
misalignment for E = 0° implies a lateral shift of the power pattern of the horn on the subreflector by
about 0.12 inch (about 3 mm). This will produce a very slight change of the spillover.

4 Three limitations of the tipping-structure model

Users of these functions should be aware that the as-built undisplaced XYZ coordinates of nodes will be
different from the values returned by function get_node_data() in the array *node_i.grid[], for several
reasons:

Construction Tolerances CRSI will assemble the structure with accuracy no better than ±3 mm.

Temperature Variations Temperature changes during assembly and during operation will cause
substantial changes from the as-designed coordinates: the expansion coefficient of steel is about 10~5

per 0C, which, for a 100 meter structure, implies displacements of about 1 mm per 0C.

GBT Memo 124 The GBT Tipping-Structure Model in C Page 9

Elevator Assymetry NRAO's current NASTRAN model is symmetric - the left half is a mirror image
of the right half. This is slightly incorrect, because of the elevator on the right half. The mass of
the elevator has been included in the model, and so the mean deflection of the structure has been
modelled. However, the assymetry of the mass distribution will cause a small rotational deflection of
the feed arm. We should replace the present model with the assymetric version eventually, so that the
focus-tracking subsystem will properly compensate for this deflection by rotating the optical axis of
the Gregorian ellipsoid about its Z-axis.

5 Availability

The complete package of code and data for the structural model is available at the URL

ftp://fits.cv.nrao.edu/pub/gbt_tipping.tsar.gz

This compressed "tar" file is 355 kilobytes in length. Use "gunzip" to decompress it, then "tar" to unpack
it and then do command "make" in the directory. In addition to the three pieces of code listed in the
appendices of this document, the tar-file contains a Makefile and two testcases for compiling and testing
the code. It also contains a copy of this GBT memo in Postscript, plus a 330 kilobyte Postscipt file which
prints a convenient listing of the node coordinates of the tipping structure.

References

[Kin94] Lee King. GBT coordinate systems. Limited-distribution memo, January 1994.

[KM93] Lee King and Greg Morris. Foci arrangement and coordinate systems for the GBT. GBT Drawing
C35102M081, NRAO, December 1993. The first sheet of this set of five drawings schematically
defines six different coordinate systems to be used in the GBT project. Sheets 2-5 define the
algebraic relationships between these coordinate systems.

[Par94] David H. Parker. GBT Actuator/retroreflector/panel Spreadsheet. GBT Memo 114, National
Radio Astronomy Observatory, September 1994. This memo describes a Quattro Pro spreadsheet
which has been built from the actuator and panel information on drawings 12520/2 (11/13/92) and
121010/7/A (11/12/93).

[Par95] David Parker. FEA model. Limited-distribution memo. This memo discusses details of the
coordinate conventions used in the NASTRAN model of the tipping structure, and includes a
numerical example of representing a node of the structure in the ground-referenced coordinate
system., January 1995.

A The C-functions

These functions are in two files, get_node_data.c and get_index.c.

A.l Function to retrieve data for nodes

The text reproduced below is the file get_iiode_data.c, which contains the ANSI-C code for fetching
values from the structural model. Note that this module depends on include-file structural_model. h
(see Appendix B) and that it also references the table of nodes (Appendix C) in a manner which causes that
structure definition to be linked as a static entity known to this function.

10 Page The GBT Tipping-Structure Model in C GBT Memo 124

The gravitational deformations as a function of elevation are computed in the f or-loop near the end of
function get_node_data(). The displacements node_i->at_elev.delta[] are computed as a weighted
sum of values from the model; this sum can be represented as the vector-matrix product13

r **&)] <Tx,-z Crx,y

^y(E) = ffy,-z "V.y
sin E — sin Er

cos E — cos Er
(13)

where AX(E), Ay(E) and AZ(E) are the deformations from the rigid body nominal coordinates at the
rigging angle, (Tt)J- are the deformations computed by NASTRAN for the i direction for a gravity force in the
j direction, E is the elevation and Er is the rigging angle.

The logic in this function supports two different rigging angles, called birdbath (66°) and surf _rig (44°).
The GBT structure will be assembled in the "birdbath" orientation, which therefore is the default rigging
angle, but the surface and optics nodes will be adjusted to the correct coordinates (within a tolerance, of
course) for rigging angle 44°. The IDs of the nodes which will be adjusted are specified in the if-statement
below. There is a possibility that the feedarm will be assembled at some other angle, not 66°; if that happens
we will introduce the third rigging angle into the logic of this function.

/* Function get_node_data() forms a weighted sum of the zenith and
horizon cases of the GBT structural model, in order to compute the
translation and rotation of a specified node for a specified
elevation. The computation accounts for the "rigging angle",
including the fact that different parts of the GBT will be built
with different rigging angles. The node is specified as the index
in the model table. Such indicies can be obtained for a specified
node_id by calling function get_indexO .
Don Wells <dwellsenrao.edu>, NRAO-CV, Mar94-Mar95. */

#include "structural_model.h"
#include <math.h>

int get_node_data (int i, /* tipping_model[] index to get */
double elev, /* elevation (deg) */
struct node_data *node_i) /* results returned in a struct */

{
extern struct model_node GBT_TIPPING;
struct model.node *tipping_model = ftGBT_TIPPING;
const double

dtr ■ 0.017453293,
birdbath = (66.0 * dtr), /* backup structure rigging_angle */
surf_rig - (44.0 * dtr), /* surface actuator rigging_angle */
sin_birdbath = sin(birdbath),
cos_birdbath = cos(birdbath),
sin_surf_rig - sin(surf_rig),
cos_surf_rig = cos(surf_rig);

double sin_elev, cos_elev, sin_rig, cos_rig;
int 1, status, abs_node_id;

sin_elev = sin(elev * dtr);
cos_elev = cos(elev * dtr);

if ((i >= 0) ftft (i <= tipping_model[0] .node_id)) { /* legal index? */
node_i->node_id = tipping_modelCil.node_id; /* yes */

/* get the sine and cosine of the appropriate rigging_angle: */

'This notation is adapted from Dave Parker's memo [Par95].

GBT Memo 124 The GBT Tipping-Structure Model in C Page 11

abs_node_id = (node_i->node_id < 0)

? -(node_i->node_id) : node_i->node_id;

if (((abs_node_id >= 700001) ftft (abs_node_id <= 768012)) /* surface */

I I (abs_node_id == 40700) /* plus Gregorian Feed node */

I | (abs_node_id == 50000) /* and Prime Focus feedbox */

I I (abs_node_id == 50005)) { /* and the Subreflector "vertex". */

sin_rig = sin_surf_rig; /* rigging for surface (actuator) nodes */

cos_rig = cos_surf_rig; /* plus optics nodes */

y else {
sin_rig = sin_birdbath; /* rigging for other nodes */

cos_rig = cos_birdbath;

>

/* form the weighted sum of the zenith and horizon models: */
for (1 = 0; 1 < 3; 1++) {

node_i->grid[l] = tipping_model[i].gridCl];
node_i->at_elev.delta[l] =

(sin_elev - sin_rig) * tipping_model[i].zenith.delta[1]
+ (cos_elev - cos_rig) * tipping_model[i].horizon.delta[l];

node_i->at_elev.tilt[l] =
(sin.elev - sin_rig) * tipping_model[i] .zenith.tilt[1]

+ (cos_elev - cos_rig) * tipping_model[i].horizon.tilt[1];
status = 0;

}
} else {

status =13; /* return bad status on illegal requested index */
}
retum(status) ;

A.2 Function to search for indicies of node-IDs

/* Function get_index() searches the GBT structural model table to

find the index (subscript) for the data in the array of struct

tipping_modein for a specified node_id. It caches the index in a

hash table to speed up subsequent calls for the same node.id. In

many practical cases, with only a few relevant nodes, get_index()

can be executed once for each node of interest, and the indicies

saved and used repeatedly to call get_node_data() for various

elevations. D.Wells <dwells«nrao.edu>, NRAO-CV, Mar94-Jan95. */

#include "structural_model.h"

#include <math.h>

/* Define the hash table as a static array. Dimension HASH_M should be

a prime number which is at least 10 percent greater than the number

of nodes in the model, tipping_model[0] .node_id (which is currently

5577). */

♦define HASH.M 7993
static struct hash_node {

int node_id;

int model_index;

};
static struct hash_node hash_table[HASH_M+l] ;
static int hash_init = 0, hash_count, chain_count, inaix_chain;

12 Page The GBT Tipping-Structure Model in C GBT Memo 124

int get.index (int node_id)
{

int i, k, k_step, index, hash_chain;
unsigned int u_node_id;
extern struct model_node GBT_TIPPING;
struct model.node *tipping_model = &GBT_TIPPING;

if (hash_init == 0) {
for (i = 0; i <= HASH_M; i++)

hash_table[ij.node_id = hash_table[i].model_index = 0;
hash_count - chain_count = max_chain = 0;
hash_init = 1;

}
u_node_id = (node.id < 0) ? (1000000 - node_id) : node_id;
k = (int) hashl (u_node__id, HASH_M) ;
k_step = index = 0;
for (hash_chain =0; ; hash_chain-H-) {_

/* is this node_id in the hash table? */
if (hash_table[k] .node_id == node_id) {

/* found it! return value: */
index = hash_table[k].model_index;
break;

}
/* has search reached an empty node? */
if (hash_table[k].node_id == 0) {

/* table node is empty, does this node_id even exist? */
for (i = 1; i <= tipping_model[0].node_id; i++) {

if (tipping_model[i].node_id == node_id) {
/* node_id does exist; install it in this table node: */
index = i;
hash_table[k].node_id = node_id;
hash_table[k].model_index = index;
chain_count += hash_chain;
if (hash_chain > max_chain) max_chain = hash_chain;
/* check whether hash_table is too full: */
hash_count++;
if (hash.count > (int) (0.9 * HASH_M)) {

printf ("hash_count=y.d > ninety percent of */,d. ABORT.\n",
hash_count, HASH_M);

exit (HASH.M);
}
break;

}
}
/* if node_id doesn't exist, will return zero */
break;

} else {
/* step around hash table: */
if (k_step == 0) k_step = (int) hash2 (u_node_id, HASH_M);
k = (k + k.step) % HASH.M;

}
>
return(index);

}

/* The first hash function here is used for initial probes into the
hash table. The original version of this function was based on
function hash() on p.233 of Sedgewick, "Algorithms in C"

GBT Memo 124 The GBT Tipping-Structure Model in C Page 13

(Addison-Wesley 1990, ISBN=0-201-51425-7, L0C=QA76.73.C15S43). The
current version is a DonWells idea (multiply each byte by a
different prime number). */

unsigned int hashl (unsigned int k, /* input key value to be hashed */
unsigned int m) /* hash table size */

{
/* int i; */
unsigned int h;
union {

unsigned int kp;
char kc[4];

} u;
/* const int multiplier =64; */

u.kp = k; /* kcC] now contains 4 bytes of input k */

/* h = 0; the algorithm from Sedgewick */
/* for (i = 0; i < 4; i++) */
/* h = (multiplier * k + u.kc[i]) % m; */

h = (u.kc[0] * 71
+ u.kc[l] * 113
+ u.kc[2] * 173
+ u.kc[3] * 229) */. m;

return (h) ;
}

/* The second hash function is used to calculate the step size for
linear probing when we have collisions in the hash table, i.e. it
is used for "double hashing". Originally this was the first h2()
function on p.240 of Sedgewick, but now it is like hashl(), but
with different primes in the formula. */

unsigned int hash2 (unsigned int k, /* input key to be hashed */
unsigned int m) /* hash table size */

{
unsigned int h;
union {

unsigned int kp;
char kc[4];

} u;

u.kp = k; /* kcG now contains 4 bytes of input k */

/* h = (m - 2) - k */, (m - 2) ; the original Sedgewick code */

h = (u.kcLO] * 73
+ u.kcCl] * 127
+ u.kc[2] * 179
+ u.kc[3l * 233) % m;

return (h);

/* Function get_hash_chainO is used to retrieve internal statistics
maintained in static memory by the hash-table-building algorithm of

14 Page The GBT Tipping-Structure Model in C GBT Memo 124

get_index(). */

void get_hash_chain (int *hash_size, /* size of hash table */
int *hash_total, /* number of entries */
int *chain_total, /* number of linear search steps */
int *chain_max, /* longest linear search */
double *chain_avg) /* average linear search */

{
*hash_size = HASH_M;
*hash_total = hash_count;
*chain_total = chain_count;
*chain_max = max_chain;
*chain_avg = ((double) chain_count / (double) hash_count);

B The "include" file

The text reproduced below is the file stmctural.model. h, which contains definitions for the data structures,
plus the ANSI-C prototypes for the functions.

/* The include for the GBT structural model functions and data table.
Note use of 'float' rather than 'double' in these declarations in
order to save space.
DonWells, NRAO-CV, 3/18/94,5/19,12/16,1/26/95. */

struct displacement {
float delta[3] ; /* displacements in XYZ (inches) */
float tilt[3]; /* rotations about XYZ (radians) */

};

struct node_data { /* struct returned by get_node_data() */
int node_id; /* node_id returned by get_node_data() */
double elevation; /* elevation for node_data (degrees) */
float grid[3] ; /* undisplaced XYZ of node_id (inches) */
struct displacement at_elev; /* displacement ft tilt at elevation */

};

struct model_node { /* the model is an array of this struct */
int node_id; /* node id code */
float grid[3]; /* XYZ of undisplaced node (inches) */
struct displacement zenith;
struct displacement horizon;

};

#define GBT.TIPPING static_gbt_tipping

/* -=-=-=-=-=-=-=-=-=-=- function prototypes: -=-=-=-=-=-=-=-=-=-=-=-=- */

int get_node_data (int i, /* tipping_model[] index to get */
double elev, /* elevation (deg) */
struct node_data *node_i) /* results returned in a struct */

int get_index (int node_id)

unsigned int hashl (unsigned int k, /* input key value to be hashed */
unsigned int m) /* hash table size */

GBT Memo 124 The GBT Tipping-Structure Model in C Page 15

unsigned int hash2 (unsigned int k, /* input key to be hashed */
unsigned int m) /* hash table size */

void get_hash_chain (int *hash_size,
int *hash_total,
int *chain_total,
int *chain_max.

/* size of hash table */
/* number of entries */
/* number of linear search steps */
/* longest linear search */

double *chain_avg) /* average linear search */

C The table of nodes

In this section, we reproduce the data for selected nodes from the file gbt_tipping. c, whose 1.1 megabytes
of text contains the structural model information for the 5744 nodes of the tipping structure. Readers will
notice that the information for the left-half nodes (with negative node-IDs) has been computed from the
right-half nodes, and they may wonder why memory space is being used for redundant numbers. The reason
is that we will eventually substitute an assymetric model for this symmetric one (see Sect. 4), and we prefer
not to have to revise the software at that time. Several of the nodes in the table have special significance:

Node-ID Significance

Two of these five nodes have a special property: the Euclidean distance between nodes 40700 and 50000 is
433.08 inches, which is exactly 11.000 meters (the design focal length of the ellipsoidal subreflector).

The compiled code for this table is about 368 kilobytes; this is also the amount of memory which is needed
for the table at execution time. (Each node is represented as 16 4-byte objects, therefore 5744 nodes
will need 367616 bytes.) The reader will see that each node is represented in this table by three lines of
text. The sixteen numbers appearing in the three linefe are grouped by nested brackets. These groupings
correspond to the elements of C-structs model.node (which uses struct displacement), as defined in file
structural_niodel.h (Appendix B). Distances are in inches, angles in radians. The rotation convention for
the angles is "right-hand-rule": if the thumb of the right hand points in the plus-X direction, the fingers curl
in the plus-rotation sense of the first rotation number (rotation about the X-axis).

#include nstructural_model.h"

char GBT_TIPPING_TEXT[] =

"MODgS.DAT GRAVITY LOADS (ZEN/HOR) OCTOBER 28, 1993 MSC/NASTRAN 4/15/93";

/*
/* 0010
/* 0012
/* 3444
/* 6931
/*

DATA2/LKING/M0DEL95 DIRECTORY
SORTEDBULKDATAECHO

ZENITH GRAVITY (-1 Z GRAVITY: 386.00 IN/SEC"2) SUBCASE 1
HORIZON GRAVITY (+1 Y GRAVITY: 386.00 IN/SEC"2) SUBCASE 3

*/
*/
*/
*/
*/
*/

14 This node, which is referred to as the "vertex" of the subreflector, is associated with the center of the off-axis subreflector,
not with the true vertex of the full ellipsoid.

16 Page The GBT Tipping-Structure Mode] in C GBT Memo 124

struct model.node GBT_TIPPINGD = {

{ 5744, /* number of nodes */
{0.0,0.0,0.0},{{0.0,0.0,0.0},{0.0,0.0,0.0}},{{0.0,0.0,0.0},{0.0,0.0,0.0}}},

1000, { 0.00, 0.00, 1900.00},
0.0000, 0.0387, -0.7573},{ 0.00021, 0.00000, 0.00000}},
0.0000, 0.6583, -0.0561},{ -0.00060, 0.00000, 0.00000}}},

1200, { 463.89, 0.00, 1900.00},
-0.1498, -0.0793, -0.5635},{ 0.00035, -0.00033, -0.00013}},
-0.0417, 0.6162, 0.0261},{ -0.00081, -0.00020, 0.00003}}},

-1200, { -463.89, 0.00, 1900.00},
0.1498, -0.0793, -0.5635},{ 0.00035, 0.00033, 0.00013}},

{ 40700, {
{{
{{

0.00, -2201.06,
0.0000, -3.7888,
0.0000, 7.8618,

4028.03},
-3.3679},{ 0.00148, 0.00000, 0.00000}},
0.6270},{ -0.00399, 0.00000, 0.00000}}},

{ 50000, {
{{
{{

0.00, -2159.02,
0.0000, -4.4914,
0.0000, 9.7803,

4459.06},
-3.4570},{ 0.00037, 0.00000, 0.00000}},
0.3821},{ -0.00332, 0.00000, 0.00000}}},

{ 50005, {
{{
{{

0.00, -2327.96,
0.0000, -4.6923,
0.0000, 10.4457,

4608.71},
-3.8280},{ 0.00065, 0.00000, 0.00000}},
0.9416},{ -0.00454, 0.00000, 0.00000}}},

{ 700001, {
{{
{{

0.00, -2002.17,
0.0000, -0.0058,
0.0000, 0.8346,

2099.45},
-1.3308},{ 0.00014, 0.00000, 0.00000}},
0.9210},{ -0.00085, 0.00000, 0.00000}}},

{{ 0.0396, 0.8825, 0.8192},{ -0.00109, 0.00009, -0.00008}}},
{ 768011, { 1073.13, -1743.40, 2231.31},

{{ 0.0615, -0.0327, -1.2592},{ 0.00088, 0.00018, -0.00028}},
{{ -0.0207, 0.8458, 0.8163},{ -0.00115, -0.00035, 0.00061}}},

{-768011, {- 1073.13, -1743.40, 2231.31},
{{ -0.0615, -0.0327, -1.2592},{ 0.00088, -0.00018, 0.00028}},
{{ 0.0207, 0.8458, 0.8163},{ -0.00115, 0.00035, -0.00061}}},

{ 768012, { 1162.50, -1707.29, 2256.94},
{{ 0.0549, -0.0116, -1.2660},{ 0.00094, 0.00006, 0.00006}},
{{ -0.0313, 0.8508, 0.8095},{ -0.00087, -0.00010, -0.00006}}},

{-768012, {- 1162.50, -1707.29, 2256.94},
{{ -0.0549, -0.0116, -1.2660},{ 0.00094, -0.00006, -0.00006}},

