
GBT Memo 131

GBT Best-Fitting-Paraboloid [BFP] in C

Don Wells Lee King

June 20, 1995

Abstract

The gravitational displacements of the GBT actuators have been fitted with a paraboloid. The
parameters of the paraboloid for various elevations have been fitted with polynomials and expressed as
C code which computes the parameters of this best-fitting-paraboloid [BFP] as a function of elevation.
The BFP will be used by the control software modules for the pointing, focus-tracking and active-surface
subsystems of the GBT. We give a description of this C-code version of the BFP and two examples of
its application to practical problems. We also give a function in C which fetches node data from the
structural model and transforms it to a coordinate system tied to the BFP. The predicted gravitational
term of the GBT's traditional pointing model and the predicted prime focus focus-tracking formula of
the GBT are given.

1 The BFP concept and strategy

In order to implement a consistent control strategy for the active surface of the GBT primary and the
Prime/Gregorian optics, we must choose a target paraboloid for the primary as a function of elevation. There
are many candidate paraboloids. One obvious choice is the paraboloid which most closely approximates the
surface as the structure deforms (almost) homologously as a function of elevation. This paraboloid has been
called the "BFP" [Best-Fitting Paraboloidl since the early days of the GBT project. The BFP choice would
have the advantage of minimizing the required surface actuator motions as .a function of elevation.

In 1989, early in the GBT project, D'Addario [D'A89] argued for a different target paraboloid strategy, one
in which the actuators would be used to maintain a fixed paraboloid, presumably with 60 meter focal length,
as a function of elevation. Thompson [Tho89] responded with arguments favoring the BFP strategy. After
this scholarly debate, a consensus emerged that the GBT active surface actuators and prime Gregorian foci
actuators would be designed on the assumption that the GBT will use the BFP strategy.

The debate was resumed three years later by von Hoerner [vH93], who argued that the active surface could
be used to move the prime focal point as a function of elevation in order to get an extra degree of freedom
for control of the Gregorian optics, von Hoerner advocated using this extra DOF to maintain constant
spillover while maximizing the gain as the gravitational deflections move the Gregorian optics away from
their nominal geometry. It appears that the needed motions would be just within the range of travel of
the surface actuators. A different concern is that the design (rigging angle) geometry of the GBT has been
chosen to minimize cross-polarization [MAY76], and a residual cross-polarization will appear as the optics
move; in principle the active surface might be used to avoid or minimize this problem rather than being used
to control spillover. It is unclear whether both effects could be controlled simultaneously.

At the present time, our intent is to use the BFP strategy, at least for initial operation of the GBT. It is
possible, however, that a future review will show that some variation on von Hoerner's concept is worth
adopting.

2 Page GBT Best-Fitting-Paraboloid [BFP] in C GBT Memo 131

2 Four datasets and four fitting programs

Several people have worked on the BFP problem, each producing a different fitting program. In addition, the
surface displacement datasets can be produced in several different ways. The programs produced previously
read different input data formats and produced their parameter-estimates in different output formats; these
differences hindered intercomparison tests. During the course of this project, the previous fitting programs
were modified to read surface displacement data in a common input format, and to produce their parameter
results in a common output format. In addition, a test dataset generator program and two new fitting
programs were developed.

Four different datasets were produced, containing a total of 43 cases to be fitted. There are three datasets
each containing cases for 12 different elevations plus a dataset of 7 test cases:

rmsnsdl This program was developed by King. It reads two files, surf grid, coor (the "grid" nominal
coordinates of the nodes) and dispzh.m95b (zenith and horizon node displacements of the nodes);
these two files were produced by King from the MSC/NASTRAN run of model 95b, and they are
believed to be equivalent to 4;he structural model in C [WK95] used by the program get_surf ace
described below, rmsnsdl produces a dataset containing only the 1127 nodes on the right-hand half of
the GBT primary mirror. Cases are produced for 12 elevations 90°, 80°, 70°, 60°, 50°, 44° (the surface
and optics rigging angle), 40°, 35°, 30°, 20°, 10° and 0°. King used his version of rmsnsdl to produce
the previously distributed [Kin94a] estimates of BFP parameters.

tippingl/tippingO These two datasets are produced by program get_surf ace (see Appendix F, p. 27),
which calls function get_node_data() [WK95, App. A.l, p.9]. The tippingO ("half) execution of
get_surf ace produces data for the 1127 nodes, analogous to the output of program rmsnsdl, while
the tippingl ("full") execution produces datasets with 2209 nodes. Cases are produced for the same
set of elevations listed above for program rmsnsdl.

testgen This program uses Fortran functions randgs () and rand()1 to produce normal deviates of specified
standard deviation which are added to the x, y and z coordinates of points on a paraboloid with specified
parameters. The chosen test case is approximately the BFP paraboloid for E = 60°. The vertex is
displaced by (-0.71,-0.44) inches from the vertex of the GBT's nominal paraboloid, the axis is tilted
by 0.1 milliradians and the focal length is 0.1 inch greater than the nominal 60 meters (2362.2 inches).
Seven cases are produced, one with zero noise and three each of two different RMS noise levels, 0.02 inch
and 0.04 inch, so that the accuracy of the fitting process can be explored.

There are four different fitting programs, each of which processes all 43 cases:

rms This program was originally developed at the Jet Propulsion Laboratory circa 1962 [KS66]. The
program was modified by King over the past two decades, as it was being used to check the design
of backup structures for successive NRAO antennas. King's original implementation for the GBT was
built to fit only the "half case, with 1127 nodes; Wells modified it to support 2209 nodes, rms solves
for the paraboloid which minimizes the RMS of the path-length residuals, not the RMS of ^-coordinate
residuals or the RMS of orthogonal-distance residuals. Program rms has the advantages of being
well-proven and of executing rapidly.

fitrefll This program was built for the GBT project by Fred Schwab in 1992 [Sch92]. It uses ODRPACK
[BBRS92] for fitting the paraboloids. Wells modified Schwab's program to use the most recent version
of ODRPACK. This program minimizes the residuals normal to the paraboloid (ODR is "Orthogonal
Distance Regression").

impodr This program was built by Wells, and it too solves the ODR problem by using ODRPACK. It
uses an "implicit ODR" formulation of the problem. It appears that, at least for fitting paraboloids,
this algorithm has no technical advantages over the "exphcit ODR" algorithm used by fitrefll, and
it has the disadvantage of executing more slowly. The user-function Fortran subroutine supplied to

1 These two functions were provided by Fred Schwab.

GBT Memo 131 GBT Best-Fitting-Paraboloid [BFP] in C Page 3

A/,
(in)

-0.31

-0.32

-0.33

-0.34

-0.35

-0.36

-0.37

-0.38

1 1 1

(-0.474,-0.340)
rms

I

o
+

i i i i i

-

fitrefll
impodr

gaussfit

□
X

A

£H-

-

- £ -

-

ZIP

+& ^ -

- + -

-0.55 -0.54 -0.53 -0.52 -0.51 -0.50 -0.49 -0.48 -0.47 -0.46 -0.45
A/y (in)

Figure 1: Prime-Focal-Point solutions for the testgeni datasets

ODRPACK expresses the implicit-ODR BFP problem with code which is essentially identical to the
code in the function used in gaussf it (described below; the code is shown in Appendix E). In addition
to computing the function values, the subroutine computes the necessary partial derivatives using
expressions which were produced by Mathematica (Fred Schwab advised on the analytic differentiation).
It is unclear whether the analytic derivatives have a performance advantage over the usual numerical
differentiation in this case, because of the complexity of the expressions.

gaussfit This is an AWK program which drives the "GaussFit" program which was developed circa 1988 by
the Astrometry Team of the Hubble Space Telescope project [JFMM88}. GaussFit is a versatile general-
purpose function-fitting application which is quite convenient. The user supplies the function, expressed
in an elegant C-like language; the function used for this project is shown in Appendix E (see p.25).
This function is capable of fitting arbitrary conic sections, not just paraboloids. GaussFit compiles
this function; it uses analytic differentiation to compute the Jacobians and other partial derivatives
needed for the regression problem. GaussFit automatically uses an ODR algorithm whenever, as in
this case, the independent variables are asserted to have errors. Even though GaussFit executes the
user-supplied function interpretively, it is a comparatively fast program.

The four programs operating on the four datasets produced 172 (43 x 4) BFP solutions, which were collected
into a single table to facilitate various intercomparisons.

2.1 Test generator results

The four sets of prime-focal-point solutions for the testgeni datasets are plotted in Figure 1; the coordinates
are relative to tne prime-focal-point of the undistorted 60 meter paraboloid at E = 44° (the rigging angle).
All four programs produce the correct answer (-0.474 -0.340) for the noiseless test problem. Some minor
differences are seen for the noisy cases. In particular, rms differs from the three ODR programs; this is

4 Page GBT Best-Fitting-Paraboloid [BFP] in C GBT Memo 131

0.0454^

0.040f-

0.035

0.030

RMS of n noc.
Surface 0-025

Fit
(in) 0.020

0.015

0.010

0.005

0.000
0

[Km94a] O
rmsnsdl fitted by rms -f

tippingO fitted by rms Q
tippingl fitted by fitrefll x
tippingl fitted by gaussfit A

10 20 30 40 50
Elevation

60 70 80 90

Figure 2: RMS-of-Fit as a function of Elevation

probably due to different weighting of the noisy data points (discussed in Section 2.2). The largest difference
is about 0.02 inch, six times smaller than the ±3 mm (0.12 inch) GBT construction tolerance and, relative
to the focal length, a difference of about 8 x 10-6 (about one part in 120000).

Gaussian noise of ±0.04 inch in the datapoints appears to produce a similar dispersion in the prime-
focal-point solutions. The dispersion of the solution points appears to be elliptical rather than circular.
This elongation is presumably due to the correlations between the parameters of the BFP solutions. The
correlation matrix for E = 60° computed by program GaussFit for the tippingl (full model) dataset is

rx Vz vy F
rx 1.00 0.43 0.96 0.81
Vz 1.00 0.63 -0.01
Vy 1.00 0.61

We see that parameters Vy and rx are highly correlated2 in the solutions, and other combinations also have
large correlations. The correlated errors in these BFP parameters are combined in the formulae for /y and
fz (see the last two statements of gbt_paraboloid.c in Appendix A).

2.2 RMS of the fits

All four programs report the RMS of the fit to be zero for the noiseless test problem. But for all cases
containing noise, program rms consistently reports smaller RMS values than do the other three programs,

2 "correlation coefficient — A measurement, which is unchanged by both addition and multiplication of the random
variable by positive constants, of the tendency of two random variables X and Y to vary together; it is given by the ratio of
the covariance of X and Y to the square root of the product of the variance of X and the variance of Y." [JFMM88, p.69]

GBT Memo 131 GBT Best-Fitting-Paraboloid [BFP] in C Page 5

A/,
(in)

1.0

0.8

0.6

0.4

0.2

0.0

-0.2 h

-0.4

-0.6

-0.8

-1.0

1 I 1 1 1 1

[Km94a] O
rmsnsdl fitted by rms +

tippingO fitted by rms □
tippingl fitted by rms x

tippingl fitted by f itref 1 A
- gbt_paraboloid() (Table 2)

! 1

40°^-^

-1.4 -1.2 -1.0 -0.* -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
Afy (in)

Figure 3: Six Prime-Focal-Point Trajectories

6 Page GBT Best-Fitting-Paraboloid [BFP] in C GBT Memo 131

which generally report exactly the same RMS (see Figure 2). The RMS reported by rms when fitting the
tippingl dataset is 10-12% smaller than the RMS of the same dataset being fitted by gaussfit or fitrefll.
Similarly, for the first of the three test cases with 0.04 inch noise in the XYZ coordinates, programs f itref 1,
impodr and gaussfit all report RMS = 0.0400 while rms reports RMS = 0.0354, 11% smaller. This
discrepancy is due to the fact that rms is minimizing the wavefront error, not the fit of the paraboloid to
the data. It is shown in [KS66] that half the pathlength change due to surface deformation is given by

^APL = 6cos<P/2, (1)

where <f) is the angle between the paraboloid axis and the point being fitted subtended at the focal point,
and 6 is the "normal component of the distortion vector" (i.e., the orthogonal distance residual). Program
rms computes the RMS using the formula

where the weights Ai are unity in these calculations. We see that this RMS summation is an ODR RMS
which is weighted by cos2 0/2. Calculation shows that the RMS of this function over the circular area offset
by 54 meters from the axis is 0.89, consistent with the observed 11% difference in the solutions. In summary,
the three ODR programs weight residuals uniformly while rms emphasizes the residuals closest to the axis
of the paraboloid, where surface residuals project almost completely into wavefront residuals.

2.3 Comparison with previous BFP solutions

King [Kin94a] produced preliminary BFP parameters which were distributed within the GBT project, and
which were used by Srikanth [Sri94] for optical design calculations. In Figure 3 we show how the preliminary
BFP results for the trajectory of the prime focal point compare with the new solutions. We see that the new
solutions by program rms agree well with the preliminary ones, but differ by slightly more than 0.1 inch
from the solutions produced by the ODR programs for E = 90°. This difference is probably produced by
the different weighting of the fits to the distorted surface, as discussed above in Section 2.2.

3 Which BFP solution to use?

We must choose one of the sets of solutions to use for the GBT. The actuators are normal to the surface;
therefore the ODR solutions would minimize the actuator travel as a function of elevation. However, the
wavefront (pathlength) solution produced by rms will be the best predictor of the prime focal point during the
initial period of operation of the GBT when the actuators are not yet functional. (The additional actuator
travel required for the rms solution is small, and has already been allowed for in the actuator design.) The
solutions produced from the full-surface (tippingl) dataset are slightly different from those produced from
the half-surface dataset, because the nodes on the plane of symmetry appear only once in the regression while
other nodes appear twice, producing different weighting. Therefore, strictly speaking, once the actuators
are operational, the ideal BFP solution would be produced by one of the three ODR programs operating
on dataset tippingl. However, the differences between all of the solutions are small, and the GBT will
operate satisfactorily with any of them. We have decided that, because preliminary versions of the BFP
solutions using program rms and dataset rmsnsdl (similar to dataset tippingO) have been used in analyses
of the GBT optics [Nor95, Sri94], there is some value in (almost) maintaining consistency with the prior
BFP results. For this reason, we have decided to select dataset tippingO fitted by program rms to provide
the BFP for the GBT.

GBT Memo 131 GBT Best-Fitting-Paraboloid [BFP] in C Page 7

Table 1: Program which computes Table 2

/* This program, paraboloid_tab_bfp.c, uses the gbt_paraboloid()
function to compute the BFP table of the BFP memo.
D.Wells, IRAO-CV, Dec94-Mar95 */

•include <stdlib.h>
*include <math.h>
♦include "structural_model.h"
•include "paraboloid.h"

mainO
{

FILE *tl;
double el, vxyz[3], rx, fl, bfp_xyz[3], bfp.dxyz[3] ;

tl = f open("paraboloid_tab_bfp.tex", "w"); /* BFP parameters table */
for (el = 0.0; el < 90.1; el += 5.0) {

bfp_xyz^0] = bfp_dxyz[0] = 0.0;
gbt.paraboloid (el, vxyz, ftrx, tfl, bfp_dxyz, bfp_xyz);
fprintf(tl,

"%2. Olf fty.6.31f k%6.31f Jky.9.61f t%9.31f t%6.31f k%6.31f ft%8.21f t%8.21f \\\\\n",
el, vxyzCl], vxyz[2], rx, fl,
bfp_dxyz[l], bfp_dxyz[2],
bfp_xyz [1], bfp_xyz[2]);

}
fclose(tl);
exit(EIIT_SUCCESS);

4 BFP produced by program rms for dataset tippingO

A program coded in AWK was used to read a table of the set of BFP solutions produced by program rms
for dataset tippingO , and to invoke GaussFit to fit Chebyshev polynomials as a function of elevation to the
columns. The program extracted the Chebyshev coefficients from the GaussFit output, and printed them
in the form of a function coded in C. This computed function gbt.paraboloid.c is shown in Appendix A
(see p.21); the include file containing its function prototype is shown in Appendix D. This function, which
concisely summarizes the BFP analysis, is code which is ready to be incorporated into the GBT M&C
applications.

The BFP function gbt.paraboloid.c is called by program paraboloid_tab_bfp.c (see Table 1) in order
to compute Table 2, which gives the results returned by gbt_paraboloidO as a function of elevation, at 5°
steps.

Figure 4 shows the vertex trajectory produced by gbt_pafaboloid(), plus the solution values which went
into the Chebyshev polynomial fit. The latter demonstrates that the Chebyshev fitting is correct. The
preliminary BFP [Kin94a] vertex trajectory is shown for reference.

Figure 5 shows the focal length of the BFP as a function of elevation. The axis tilt as a function of elevation
is shown in Figure 6. This tilt angle is the a priori estimate of the gravitational term of the "traditional"
pointing model (AE as function of E). The maximum value is about 0.8 milliradians, or 165 arcseconds
(2.8 arcminutes).

The trajectory of the prime-focal-point of the BFP is shown in Figure 7. This trajectory is computed by
function gbt_paraboloid() from a combination of the other BFP parameters (see the expressions which
compute dxyz[] in the last few lines of Appendix A). Note that /y and fz in Table 2 (which are xyzD
in Appendix A) are the coordinates of the prime focal point at the rigging angle, expressed in alidade
coordinates (the system of the structural model).

8 Page GBT Besfc-Fitting-Paraboioid [BFP/ in C GBT Memo 131

Table 2: BFP parameters returned as function of elevation

E

Vertex Tilt Focal Length Prime Focal Point
Figure 4 Figure 6 Figure 5 Figure 7
vy Vz rx F A/y Afz fy /,

(d) (in) (in) (rad) (in) (in) (in) (in) (in)

o 5.912 1.213 0.000800 2362.383 4.021 1.395 -2159.02 4459.05
5 5.010 1.090 0.000648 2362.333 3.480 1.223 -2159.02 4459.05

10 4.153 0.961 0.000510 2362.290 2.949 1.051 -2159.02 4459.05
15 3.349 0.827 0.000387 2362.254 2.436 0.881 -2159.02 4459.05
20 2.603 0.688 0.000279 2362.226 1.943 0.714 -2159.02 4459.05
25 1.921 0.547 0.000188 2362.205 1.477 0.552 -2159.02 4459.05
30 1.309 0.403 0.000114 2362.192 1.039 0.395 -2159.02 4459.05
35 0.770 0.259 0.000058 2362.188 0.634 0.246 -2159.02 4459.05
40 0.310 0.114 '0.000019 2362.191 0.265 0.106 -2159.02 4459.05
45 -0.069 -0.029 -0.000001 2362.203 -0.067 -0.026 -2159.02 4459.05
50 -0.364 -0.169 -0.000002 2362.222 -0.358 -0.147 -2159.02 4459.05
55 -0.572 -0.306 0.000015 2362.250 -0.608 -0.257 -2159.02 4459.05
60 -0.691 -0.439 0.000052 2362.285 -0.814 -0.354 -2159.02 4459.05
65 -0.722 -0.566 0.000107 2362.327 -0.974 -0.439 -2159.02 4459.05
70 -0.663 -0.687 0.000180 2362.376 -1.089 -0.511 -2159.02 4459.05
75 -0.515 -0.800 0.000271 2362.432 -1.156 -0.568 -2159.02 4459.05
80 -0.279 -0.905 0.000379 2362.494 -1.175 -0.611 -2159.02 4459.05
85 0.043 -1.001 0.000503 2362.562 -1.145 -0.639 -2159.02 4459.05

1 -

(in)

-1 -

-2

/

1

40^^^

lilt

-1 0 2 3
Vy (in)

Figure 4: Paraboloid-Vertex trajectory as a function of Elevation

GBT Memo 131 GBT Best-Fitting-Paraboloid [BFP] in C Page 9

2362.65

2362.60

2362.55

2362.50

„ , 2362.45
Focal

Length 2362.40
(in)

2362.35

2362.30 -

2362.25 -

2362.20

2362.15
0

tippingO fitted by rms O
[Kin94a] +

gbt_paraboloid()

10 20 30 40 50
Elevation

60 70 80 90

Figure 5: Focal length as a function of Elevation

5 Applications

The GBT Best-Fitting-Paraboloid [BFP] function gbt_paraboloid() is expected to be used in the M&C
system for the following purposes:

Gravity Pointing Term The tilt parameter of the BFP will be the a priori estimate of the gravitational
deflection terms of the "traditional" pointing correction module.

Active Surface The BFP will be the primary component of the "commanded surface" in the open-loop
active surface module. This component of the open-loop active surface control for Phase-2 of the
project will consist of driving the actuators with the difference between the displacements computed
by the structural model and the BFP paraboloid, projected to local surface normal.

Focus Tracking The focus tracking subsystems will compute displacements of the prime focus and
Gregorian optics relative to the prime focal point of the BFP, and will use these to maintain the
optics in proper alignment for optimum gain.

In the remainder of this section, we provide three numerical examples of the application of the BFP to
particular cases.

5.1 Relative Motions of the BFP and Prime Focus Box

The focus tracking subsystem for the GBT prime focus will move the prime focus box to correct for the
gravitational deflections of the prime focus box relative to the BFP prime focal point. The program shown in
Table 3 calculates this relative motion. In the loop on elevation, it reads a line of Table 2 to get the trajectory
of the prime focal point of the BFP. It then calls get_node_data() (see [WK95]) to get the gravitational

10 Page GBT Best-Fitting-Paraboloid [BFP] in C GBT Memo 131

tippingO fitted by rms O
[Kin94a] +

gbt_paraboloid()

40 50
Elevation

60 70 80 90

Figure 6: Axis Tilt as a function of Elevation

A/,
(in)

1 -

-1

1 l 1 I l

^^^3>0o

40°,^^^"^

-2 -1 12 3 4
A/y (in)

Figure 7: Prime-Focal-Point trajectory as a function of Elevation

GBT Memo 131 GBT Best-Fitting-Paraboloid [BFP] in C Page 11

Table 3: Program which computes Table 4
/* Program paraboloid_tab_pfb.c uses the BFP table (from

gbt_paraboloid()) plus the structural model functions to compute
the prime-focus-box table of the BFP memo.
D.Wells, IRAO-CV, Har95 */

tinclude <stdlib.h>
finclude <math.h>
tinclude "structural_model.h,,

tinclude "paraboloid.h"

mainO

const int pfid = 50000; /* prime-f ocus-box node-ID */
const double dtr = 0.017453293, mti = 39.37, box_angle = 45.5 * dtr;
FILE *tl, *t3;
int pfi, i;
double

el, ell, vy, vz, rx, fl, bfp_xyz[3], bfp_dxyz[3], pfb[3],
box_rotation, box[3];

struct node_data pf i_data;

tl = fopen("paraboloid_tab_bfp.tex", "r"); /* BFP parameters table */
t3 = fopen("paraboloid_tab_pfb.tex", "H") ; /* prime focus box table */
if ((pfi = get.index(pfid)) == 0) exit(EXIT_FAILDRE);

for (el = 0.0; el < 90.1; el += 5.0) {
bfp_xyz[0] = bfp_dxyz[0] =0.0;
fscanf (tl, '7.21ftXlftUft7.1f*%lftXlftUfJkXlf*%lf\\\\\n",

tell, ftvy, *vz, Jkrx, ftfl,
ftbfp.dxyz[1], tbfp_dxyz[2], ftbfp_xyz[l], tbfp.xyz [2]);

if (ell != el) {
printf("ell=Xlg, el=Ug, I0T EQUAL!?!\n", ell, el);
pr intf ("12. Olf t%6.31f t%6.31f «8.51f ft%7.41f k%9.31f 4X6.31f k%6.31f \\\\\n",

el, vy, vz, rx, f1, bfp_dxyz [l], bfp_dxyz [2]);
exit(EXIT_FAILURE);

}
fprintf(t3, '7.2.Olf", el);
if (get_node_data(pfi, el, ftpfi_data)) exit(EUT.FAILURE);
fprintf(t3, "k%5.2fkl5.2fkl8.Sf", pfi_data.at_elev.delta[l],

pfi_data.at_elev.delta[2], pfi_data.at_elev.tilt[0]);
for (i=0; i<3; i++) {

pfb[i] = (bfp.xyz[i] + bfp_dxyz[i])
- ((double)pfi_data.grid[i3 + pfi_data.at_elev.delta[i]);

}
fprintf(t3, "t5i5.21ft%5.21f", pfb[l] , pfb[2]);
box_rotation = box_angle + pfi_data.atjeleT.tiltCO];
box[0] = cos(box_rotation) * pfb[l] + sin(box_rotation) * pfb[2] ;

pfb[l] box[l] = -sin(box_rotation)
box [2] = pfb[0];
fprintf'(t3, ,,*%5.31fk%5.31f"
fprintf(t3, "WWW);

}
fclose(tl); fclose(t3);
exit(EIIT_SUCCESS);

+ cos(box_rotation) * pfb[2] ;

box[0], box[l]);

12 Page GBT Best-Fitting-Paraboloid [BFP] in C GBT Memo 131

Table 4: Focus Tracking for the prime focus box

(in)

E

Prime Boom (n ode 50000) PF-Box Focus Tracking

Figure 8 Figure 8 Figure 9

Apy Ap2 tx Aby Abz Bx B*
(d) (in) (in) (rad) (in) (in) (in) (in)

0 5.86 2.51 -0.00119 -1.84 -1.12 -2.095 0.525
5 5.44 2.21 -0.00114 -1.96 -0.99 -2.080 0.697

10 4.94 1.90 -0.00107 -1.99 -0.86 -2.008 0.811
15 4.37 1.60 -0.00098 -1.93 -0.73 -1.876 0.865
20 3.74 1.30 -0.00086 -1.80 -0.60 -1.687 0.859
25 3.05 1.01 -0.00072 -1.57 -0.47 -1.439 0.792
30 2.31 0.73 -0.00056 -1.27 -0.34 -1.136 0.664
35 1.52 0.46 -0.00038 -0.89 -0.22 -0.779 0.477
40 0.69 0.20 -0.00017 -0.42 -0.10 -0.370 0.232
45 -0.18 -0.05 0.00005 0.11 0.01 0.084 -0.069
50 -1.07 -0.28 0.00028 0.71 0.12 0.583 -0.424
55 -1.98 -0.49 0.00053 1.38 0.22 1.121 -0.829
60 -2.91 -0.68 0.00079 2.10 0.31 1.694 -1.281
65 -3.85 -0.85 0.00106 2.88 0.40 2.298 -1.778
70 -4.79 -0.99 0.00134 3.70 0.47 2.927 -2.315
75 -5.72 -1.11 0.00163 4.57 0.54 3.578 -2.887
80 -6.64 -1.21 0.00192 5.47 0.59 4.245 -3.492
85 -7.54 -1.28 0.00221 6.39 0.63 4.924 -4.125

-

l l l 1 l I l I 1

Afy, Afz (cf Fig.7) —
Apy, Afz
Aby, Ab2

i i i i i i i

0° -

^^ 90° -
^

-10 -9 -8-7-6-5-4-3-2-10 1 2 3 4 5 6 7
V (in)

Figure 8: Trajectories of BFP, PF-boom and difference

GBT Memo 131 GBT Best-Fitting-Paraboloid [BFP] in C Page 13

By
(in)

Figure 9: Prime-Focus-Box focus-tracking trajectory

deflection of the prime focus box (node 50000) at the tip of the prime focus boom. The program computes
the difference between these as Aby,Abz in Table 4.3 These three trajectories are plotted in Figure 8.

The prime focus box actuators are oriented at an angle of 45.5° relative to the coordinate system of the
tipping structure [Kin94b, KM93], so the Aby,Abz trajectory must be rotated to the prime focus coordinate
system. The appropriate coordinate rotation includes the gravitational tilt of the tip of the prime focus
boom tx (see Table 4 and the expression for box_rotation in Table 3). For E = 90°, the 2.5 mrad value of
tx displaces the trajectory by only about 0.02 inch (0.5 mm), negligible in comparison to wavelengths like
20 cm. The rotated coordinates are boxCi], Bx,By in Table 4; note that the boom displacement is in y, z
coordinates, while the box actuators are called the x, y axes. Figure 9 shows the focus-tracking trajectory
of the prime focus box, expressed in the prime-focus coordinate system [Kin94b, KM93].

An AWK program reads Table 4 and fits Chebyshev polynomials to the Bx and By columns, and outputs the
coefficients as a function gbt_pf _f ocus_track() expressed in the C language; see Appendix B (p.23). This
module is ready to be installed in the prime focus tracking application of the M&C system. The trajectory of
Bx appears to be well matched to the required travel range of the X-axis of the prime focus feed positioning
mechanism, ±7.22 inch. The Y-axis required range is ±20.71 inch, and By fits into this with room to spare.
The GBT elevation velocity limit is 0.25 deg/s and the t/p (By) velocity is 6 in/min. For a slew from the
rigging angle 44° to the zenith (the worst case), the elevation drive will need about 184 sec while the prime
focus box will need only about 47 sec.

5.2 Relative Motions of the BFP, subreflector and Feedhorn

The Gregorian focus tracking subsystem will move the subreflector to correct for the relative deflections of
the BFP, subreflector and Gregorian feedhorn. The program shown in Table 5 calculates these deflections;

3 Displacement Apx and tilts ty and t2 are not shown because they are always zero for these nodes, which are in the meridional
plane, the plane of symmetry of the GBT.

14 Page GBT Best-Fitting-Paraboloid [BFP] in C GBT Memo 131

Table 5: Program which computes Table 6
/* Program paraboloid_tab_greg.c uses function gbt_paraboloid() plus

the structural model fmictions to compute the
subreflector/Gregorian_focus table of the BFP memo.
D.Wells, IRAO-CV, Mar95 */

•include <stdlib.h>
♦include <math.h>
tinclude "structural_model.h"
♦include "paraboloid.h"
mainO {

const int svid = 50005, /* subreflector-vertex ID */
gfid = 40700; /* Gregorian-feed node-ID */

const double dtr = 0.017453293, mti = 39.37, rig_angle = 44.0;
int svi, gfi, i, j, status;
double start, el, vxyz[3], rx, fl, dl, dt, dtO,

stilt, ctilt, rot ate [3] [3], svfl[3], svflp[3],
bfp_xyz[3], bfp_dxyz[3], fl2C3], dp[3] ;

struct node.data svi_data, gfi_data;

if ((svi = get_index(svid)) == 0) exit(EIIT_FAILURE);
if ((gfi = get_index(gfid)) == 0) exit(EIIT.FAILURE);
for (el = start = -5.0; el < 90.1; el += 5.0) {

if (el == start) { el = rig_angle; dtO = 0.0; } /* initialization */
if (el != rig_angle) printf("y,2.Olf", el);
bfp_dxyz[0] = bfp_xyz[0] =0.0;

gbt.paraboloid (el, vxyz, ftrx, ftfl, bfp_dxyz, bfp_xyz);
if (get_node_data(svi, el, ftsvi_data)) exit(EIIT.FAILURE);
if (el != rig_angle)

printf ("k'/.5. 2fk%S. 2fty.8. 5f", svi.data. at.elev.delta[1] ,
svi_data.at_elev.delta[2], svi_data.at_elev.tilt[03);

if (get_node_data(gfi, el, tgfi_data)) exit(EIIT_FAILURE);
if (el != rig_angle) printf("*,/.5.2f*y.5.2f",

gfi_data.at_elev.delta[l], gfi_data.at_elev.delta[2]);
for (i=0, dl=0.0; i<3; i++) {

fl2[i] = (bfp_xyz[i] + bfp_dxyz[i])
- ((double)gfi_data.grid[i] + gfi_data.at_elev.delta[i]);

dl += fl2[i]*fl2[i];
}
dl = sqrt (dl) - (11.0 * mti);
dt = atan2 (fl2t2], fl2[l]) - dtO;
if (el == rig_angle) { dtO = dt; dt = 0.0; }
if (el != rig.angle) printf (•,ty.5.21ft%8.51f", dl, dt);
if (el == rig_angle)

for (i = 0; i < 3; i++)
svfl[i] = (bfp_xyz[i] + bfp_dxyz[i])

- ((double)svi_data.grid[i] + svi_data.at_elev.delta[i]);
ctilt = cos(svi_data.at_elev.tilt[0]); /* rotation about X-axis */
stilt = sin(svi_data.at_elev.tilt[0]);
rotate[0] [0] = 1.0; rotate[0][1] =0.0;
rotated] [0] = 0.0; rotated] [1] = ctilt;
rotate[2][0] = 0.0; rotate[2]d] = stilt;
for (i = 0; i < 3; i++) {

for (j = 0, svflpCi] = 0.0; j < 3; j++)
svflp[i] += svfl[j] * rotated] [j] ;

dp[i] = (bf p.xyz [i] + bfp.dxyzdl)
- ((double)svi_data.grid[i] + svi_data.at_elev.delta[i]

+ svflp[i]);
>
if (el != rig_angle) printf(,,t,/.6.31fftX6.31f", dpCl], dp[2]);
if (el != rig_angle) printf("\\\\\n");
if (el == rig_angle) el = start; /* undo initialization case */

}
exit(EXIT_SUCCESS);

rotate[0][2] =0.0;
rotated] [2] = -stilt;
rotate[2][2] = ctilt;

GBT Memo 131 GBT Best-Fitting-Paraboloid [BFP] in C Page 15

Table 6: Displacements of subreflector and Gregorian feedhorn

E

Subreflector (50005) Greg Feed EFPn+Greg. Feed Subr.f -BFP

Asy Asz 8sx Atfj, Agz

Figures 10 and 11 Figure 12
AL12 A0i2 APy APZ

(d) (in) (in) (rad) (in) (in) (in) (rad) (in) (in)

0 6.19 2.92 -0.00173 4.84 2.52 -1.20 0.00162 -1.908 -1.237
5 5.74 2.59 -0.00165 4.48 2.22 -1.09 0.00207 -2.012 -1.084

10 5.22 2.24 -0.00154 4.06 1.92 -0.98 0.00236 -2.034 -0.933
15 4.62 1.90 -0.00140 3.59 1.62 -0.85 0.00248 -1.972 -0.783
20 3.96 1.56 -0.00123 3.07 1.33 -0.72 0.00244 -1.825 -0.636
25 3.23 1.22 -0.00103 2.50 1.03 -0.58 0.00224 -1.596 -0.492
30 2.45 0.88 -0.00079 1.89 0.75 -0.44 0.00187 -1.284 -0.354
35 1.61 0.56 -0.00053 1.24 0.47 -0.29 0.00134 -0.893 -0.221
40 0.73 0.24 -0.00025 0.56 0.20 -0.13 0.00066 -0.426 -0.095
45 -0.19 -0.06 0.00006 -0.14 -0.05 0.03 -0.00018 0.113 0.023
50 -1.13 -0.35 0.00039 -0.87 -0.29 0.19 -0.00116 0.721 0.132
55 -2.11 -0.61 0.00074 -1.62 -0.51 0.35 -0.00227 1.391 0.232
60 -3.10 -0.86 0.00111 -2.37 -0.71 0.51 -0.00351 2.120 0.321
65 -4.09 -1.09 0.00148 -3.13 -0.90 0.67 -0.00486 2.900 0.400
70 -5.09 -1.29 0.00187 -3.89 -1.06 0.82 -0.00632 3.726 0.466
75 -6.08 -1.47 0.00227 -4.65 -1.20 0.98 -0.00787 4.592 0.521
80 -7.06 -1.62 0.00267 -5.39 -1.32 1.13 -0.00951 5.492 0.563
85 -8.02 -1.75 0.00307 -6.11 -1.41 1.27 -0.01122 6.419 0.592

16 Page GBT Best-Fitting-Paraboloid [BFP] in C GBT Memo 131

AL

10 20 30 40 50
Elevation

60 70 80 90

Figure 10: BFP-to-GregorianFeed distance minus 11 meters

its results are shown in Table 6.4

Program paraboloid_tab_greg also computes the length of the line connecting the prime focal point and
Gregorian feedhorn. The difference between this distance and the 11 meter nominal focal length of the
ellipsoid is plotted in Figure 10. The rotation of this line is also computed, and is plotted in Figure 11. Note
that A9i2 = —0.01259 (-0.7 deg) means 4 inch (10 cm) displacement at the end of an 11 meter lever arm for
£ = 90°.

Program paraboloid_tab_greg also computes the displacement between the first-focal-point of the
ellipsoidal subreflector and the prime-focal-point of the BFP; this is APy,APz in Table 6. This computation
is analogous to the "rigid rod" calculation of the displacement of the second-focal-point relative to the
feedhorn in Section 3.2 of [WK95]. It accounts for the tilt of the subreflector as well as its translation in
forming the difference, which is plotted in Figure 12.5 The ellipsoidal subreflector images the region around
its first-focal-point onto the region around its second-focal-point (the feedhorn). ; The mapping involves
longitudinal and lateral magnification. The displacement of the BFP prime-focal-point relative to the first-
focal-point is thus magnified at the feedhorn, producing de-focus (loss of gain) and a pointing offset. Because
of the magnification, the displacement shown in Figure 12 is the major factor in Gregorian focus tracking.

5.3 Displacements with-respect-to the BFP Axis

The 'prescription' for the Gregorian optics is simplified if it is expressed in a coordinate system attached to
the BFP. Such results have been distributed previously by King and used for analyses of the Gregorian optics
[Sri94, Table l(p.4)]. We present a new version of these calculations in Table 7, which has been produced
by the program shown in Table 9. King recently distributed a different version of these calculations [Kin95],
selected portions of which we show in Table 8. The version shown in Table 7 covers the elevation range
in 5° steps, is based on function get_node_wrt_bfp() and is relative to the new focal point of the BFP
rather than the nominal focal point. The agreement between the two sets of results is good; for example,

4 Displacement Asx and tilts Ssy and 6sz are not shown because they axe always zero for these nodes, which are in the
meridional plane, the plane of symmetry of the GBT.

5This trajectory is expressed in the eltvation coordinate system, not in the subreflector coordinate system, which is rotated
to an angle of 36.7° relative to the elevation system [Kin94b, KM93].

GBT Memo 131 GBT Best-Fitting-Paraboloid [BFP] in C Page 17

0.004

0.002

0.000

-0.002

A012 -0.004 |-

(rad) _o.006

-0.008

-0.010

-0.012

-0.014
0 10 20 30 40 50

Elevation
60 70 80 90

Figure 11: Rotation of the BFP-to-GregorianFeed line

APz

(in)

-3 -2 -1

1 1 1 1 1 1 1 1

1

^—*—e—<^~
0 -^>90o

12 3
APy (in)

Figure 12: Trajectory of BFP relative to first-focal-point

18 Page GBT Best-Fitting-Paraboloid [BFP] in C GBT Memo 131

Table 7: Gravity-induced Deformations wrt the BFP Axis

E AF rx

Greg. Feed (40700) Subreflector i '50005)
Aflfy Agz tigx Asy Asz 5sx

(d) (in) (rad) (in) (in) (rad) (in) (in) (rad)

0 0.183 0.000800 0.473 1.153 -0.00295 2.291 1.662 -0.00253
5 0.133 0.000648 0.720 1.024 -0.00265 2.361 1.471 -0.00230
10 0.090 0.000510 0.893 0.891 -0.00234 2.345 1.279 -0.00205
15 0.054 0.000387 0.988 0.758 -0.00202 2.244 1.084 -0.00179
20 0.026 0.000279 1.005 0.624 -0.00168 2.055 0.890 -0.00151
25 0.005 0.000188 0.943 0.490 -0.00134 1.781 0.697 -0.00121
30 -0.008 0.000114 0.802 0.357 -0.00099 1.423 0.507 -0.00091
35 -0.012 0.000058 0.584 0.226 -0.00063 0.985 0.321 -0.00059
40 -0.009 0.000019 0.291 0.099 -0.00028 0.469 0.140 -0.00026
45 0.003 -0.000001 -0.076 -0.024 0.00007 -0.120 -0.034 0.00006
50 0.022 -0.000002 -0.513 -0.142 0.00041 -0.777 -0.199 0.00040
55 0.050 0.000015 -1.017 -0.253 0.00075 -1.497 -0.355 0.00073
60 0.085 0.000052 -1.582 -0.358 0.00108 -2.274 -0.499 0.00106
65 0.127 0.000107 -2.206 -0.455 0.00139 -3.102 -0.632 0.00138
70 0.176 0.000180 -2.884 -0.543 0.00169 -3.975 -0.751 0.00169
75 0.232 0.000271 -3.609 -0.622 0.00197 -4.887 -0.857 0.00200
80 0.294 0.000379 -4.378 -0.690 0.00223 -5.830 -0.947 0.00229
85 0.362 0.000503 -5.185 -0.749 0.00247 -6.799 -1.022 0.00256

Table 8: Optics movements under gravity loads wrt BFP (from [Kin95])

E

(d)

AF
(in)

rx
(rad)

Node 40700 Node 50005

A9y
(in) (in)

ASy
(in)

Asz
(in)

A^ = 1.337 for E = 0 in Table 8 should be compared with Agz + AF = 0.183 + 1.153 = 1.336 in Table 7
and Agy = 0.477 should be compared with 0.473.

The results in Table 7 are ready to use in optical calculations, with one exception: node 50005 is the center
of the off-axis ellipsoid, not its vertex. The optical prescription needs the displaced location of the ellipsoid
vertex and the tilt of the ellipsoid axis. The tilt is 6sx and the trajectory of the ellipsoid vertex can be
obtained by combining Asy, Asz and 8sx in a calculation analogous to the calculation of the trajectory of
the first focal point, as discussed in Section 5.2, which uses code shown in Table 5.

6 Availability

The complete package of code for the BFP is available at the URL

ftp://fits.cv.nrao.edu/pub/gbt_paraboloid.tax.gz

GBT Memo 131 GBT Best-Fitting-Paraboloid [BFP] in C Page 19

Table 9: Program which computes Table 7

/* Program paraboloid_tab_Brt.c uses structural model function
get_node_Hrt_bfpO to compute a table of trajectories of two nodes
with respect to the BFP axis. D.Wells, IRAD-CV, May95 */

tinclude <stdlib.h>
tinclude <math.h>
tinclude *'structural_model.h"
tinclude "paraboloid.h"

mainO
{

const int svid = 50005, gfid = 40700;
int svi, gfi;
double el, vxyz[3], ri, fl, bfp_diyz[3], bfp_iyz[3];
char form[100];
struct node ..data svi_data, gfi.data;

if ((svi = get_indei(svid)) == 0) exit(EIIT.FAILURE);
if ((gfi = get.index(gfid)) == 0) exit(EXIT.FAILURE);
for (el = 0.0; el < 90.1; el += 5.0) {

gbt.paraboloid (el, vxyz, trx, ftfl, bfp_dxyz, bfp_xyz);
if (get_node_Hrt_bfp(svi, el, ftsvi.data)) exit(EXIT_FAILURE);
if (get_node_wrt_bfp(gfi, el, ftgfi_data)) exit(EIIT_FAILURE);
printf ('7.2. Olft%5.31fk%8.61ffty.6.31ft%6.31ft7.8.51ft%6.31fft7.6.31fty.8.51f WWW

el, (fl - 60.0*39.37), rx, gfi_data.at_elev.delta[1] ,
gfi_data.at_elev.delta[2], gfi_data.at_elev.tilt[Ol,
svi_data.at_elev.delta[l],
svi_data.at_elev.delta[2], svi_data.at_elev.tilt[0]);

}
exit(EIIT_SUCCESS);

20 Page GBT Best-Fitting-Paraboloid [BFP] in C GBT Memo 131

This compressed "tar" file is about 120 kilobytes in length. Use "gunzip" to decompress it. In addition to
the code, it contains a Makefile and several testcases for compiling and verifying the code. It also contains
a copy of this GBT memo in Postscript.

References

[BBRS92]

[BBS87]

[BDBS89]

[D'A89]

[GKHK75]

[JFMM88]

[Kin94a]

[Kin94b]

[Kin95]

[KM93]

[KS66]

Paul T. Boggs, Richard H. Byrd, Janet E. Rogers, and Robert B. Schnabel. User's
Reference Guide for ODRPACK Version 2.01—Software for Weighted Orthogonal Distance
Regression. National Institute of Standards and Technology, Gaithersburg, MD 20899,
June 1992. ODRPACK is a software package for weighted orthogonal distance regression,
i.e., for finding the set of parameters that minimize the sum of the weighted
orthogonal distances from a set of observations to the curve or surface determined
by the parameters. It can also be used to solve the nonlinear ordinary least squares
problem. See URL=http://netlib.att. com/magic/netlib_f ind?db=0&pat=odrpack (or
URL=ftp://netlib.att.com/netlib/odrpack/). Also see [BBS87] and [BDBS89]. This is
report NISTIR 92-4834.

Paul T. Boggs, Richard H. Byrd, and Robert B. Schnabel. A stable and efficient algorithm for
nonlinear orthogonal distance regression. SIAM Journal on Scientific and Statistical Computing,
8(6):1052-1078, November 1987.

P. T. Boggs, J. R. Donaldson, R. H. Byrd, and R. B. Snabel. Algorithm 676, ODRPACK
- software for weighted orthogonal distance regression. ACM Transactions On Mathematical
Software, 15:348-364, 1989.

L. R. D'Addario. Active surface adjustment to nominal vs. nearby paraboloid. GBT Memo 20,
National Radio Astronomy Observatory, October 1989.

The VNR Concise Encyclopedia of W. Gellert, H. Kiistner, M. Hellwich, and H. Kastner.
Mathematics. Van Nostrand Reinhold Company, 1975.

William H. Jefferys, Michael J. Fitzpatrick, Barbara E. McArthur, and James E.
McCartney. User's Manual - GaussFit: A system for least squares and robust
estimation. The University of Texas at Austin, 1.0-12/2/88 edition, December 1988. See
URL=f tp: //clyde. as .utexas. edu/pub/gaussf it/.

Lee King. GBT BFP parameters. Email memo to gbt.dis. This summary of the BFP (Best
Fitted Paraboloid) parameters was taken directly from output of King's, surface-fitting program
rms, and was requested by R. Norrod for distribution at a 10/24/94 GBT meeting, October
1994.

Lee King. GBT coordinate systems. Limited-distribution memo, January 1994.

Lee King. GBT optics movements under gravity loads. The relative distances of
the turret, the prime focus and the subreflector vertex with respect to the best-fitted
paraboloids are calculated for gravity loadings. This Email summary memo was sent
to seven people on 5/19/95. Details of the calculations, including source code, are in
URL=ftp://gbtsp20.cv.nrao.edu/pub/optics.defl/, May 1995.

Lee King and Greg Morris. Foci arrangement and coordinate systems for the GBT. GBT
Drawing C35102M081, NRAO, December 1993. The first sheet of this set of five drawings
schematically defines six different coordinate systems to be used in the GBT project. Sheets 2-5
define the algebraic relationships between these coordinate systems.

M. S. Katow and L. W. Schmele. Antenna structures: Evaluation techniques of reflector
distortions. JPL Space Programs Summary, 37-40(IV):176-184, August 1966. This report
is in the NRAO-Charlottesville library under "US/PASA/JPL/". The original version of this
program was described in [UB63], and references to other versions are given in this paper.

GBT Memo 131 GBT Best-Fitting-Paraboloid [BFP] in C Page 21

[MAY76] Y. Mizugutch, M. Akagawa, and H. Yokoi. Offset dual reflector antenna. In Int. IEEE/AP-S
Symp. Digest, pages 2-4. IEEE, 1976. This is the original paper for the "Mizugutch condition",
in which cross-polarization is minimized in an off-axis dual antenna if the axis of the secondary
is tilted by a small angle (5.57° in the GBT).

[Nor95] Roger D. Norrod. GBT surface accuracy. GBT Memo 119, National Radio Astronomy
Observatory, January 1995. This discussion of GBT surface accuracy uses results from [Kin94a]
and [Sri94].

[Sch92] Fred Schwab. FITREFL: A computer program to calculate Best-Fitting Paraboloids and
Ellipsoids by ordinary least squares or by orthogonal distance regression (version 0). This memo
documents Schwab's implementation based on the ODRPACK library from NIST [BBRS92],
January 1992.

[Sri92] S. Srikanth. Correcting for gravity induced deformations. GBT Memo 78, National Radio
Astronomy Observatory, May 1992. Deformations extracted from NASTRAN models. Note:
this memo has been (mostly) superceded by [Sri94].

[Sri94] S. Srikanth. Gain reduction due to gravity-induced deflections of the GBT tipping structure
(model 95, version B) and its compensation. GBT Memo 115, National Radio Astronomy
Observatory, September 1994. See Table 1 on page 4, "Gravity-induced deformations". See the
addendum [Sri95] to this memo; an earlier version of this memo is [Sri92].).

[Sri95] S. Srikanth. Addendum to GBT memo No. 115. Technical Report 121, National Radio
Astronomy Observatory, September 1995.

[Tho89] A. R. Thompson. Comments on 'active surface adjustment to nominal vs. nearby paraboloid'.
GBT Memo 21, National Radio Astronomy Observatory, October 1989.

[UB63] S. Utku and S. M. Barondess. Computation of weighted root-mean-square of path length changes
caused by the deformations and imperfections of rotational paraboloidal antennas. Technical
Memorandum 33-118, Jet Propulsion Laboratory, Pasadena, CA, March 1963.

[vH93] Sebastian von Hoerner. Shift of prime focus location by small surface adjustments. GBT Memo
100, National Radio Astronomy Observatory, January 1993.

[WK95] Don Wells and Lee King. The GBT Tipping-Structure Model in C. GBT Memo 124, National
Radio Astronomy Observatory, March 1995. Abstract: The finite element model of the GBT
tipping structure has been translated into executable code expressed in the C language, so
that it can be used by the control software modules for the pointing, focus-tracking, quadrant
detector, active-surface and laser-rangefinder subsystems of the GBT. We give a description
of this C-code version of the tipping structure model and two examples of its application to
practical problems. See URL=h.ttp://info.gb.nrao.edu/GBT/memos/memol24.ps.

A The BFP C-function

This function is in file gbt_paraboloid.c:

/* GBT ConiHianded_Paraboloid as function, of Elevation
Computed Tue May 30 18:18:38 EDT 1995
from least-squares fits to Model 95b
Don Wells <dwellsfinrao.edu>, Dec94-May95 */

char BFP_SELECT[]=MtippingO rms";

#include "math.h"
#include "structural_model.h"

22 Page GBT Best-Fitting-Paraboloid [BFPJ in C GBT Memo 131

#include "paraboloid.h"

void gbt_paraboloid (double el, /* Elevation (degrees) */
double vxyz[], /* Vertex_Offset (inches) */
double *rx, /* Tilt_about_X (radians) */
double *fl, /* Focal_Length (inches) */
double dryz[], /* Focus_Offset (inches) */
double xyzO[]) /* Rigging.Focus (inches) */

{
const double flO = (60.0 * 39.37); /* fl=60_m at rigging angle */

double *vy, *vz;
double x = (el - 45.0) / 45.0; /* Elevation scaled to [-1,+1]

for Chebyshev polynomial */
double tO = 1.0;
double tl = x;
double t2 = 2.0*x*x -1.0;
double t3 = 4.0*x*x*x -'S.O+x;
double t4 = 8.0*x*x*x*x -8.0*x*x +1.0;
double t5 = 16.0*x*x*x*x*x -20.0*x*x*x +5.0*x;

vxyz[03 =0.0;
vy - ftvxyz[1];
vz = ftvxyz [2] ;

*vy =
+
+
+
+
+

/*

*vz =
+
+
+
+
+

/*

*rx =
+
+
+
+
+

/*

*f 1 =
+
+
+
+
+

/*

1.5767)
-2.8064)
1.6245)
0.0751)

-0.0213)
-0.0006)
0.0003)

0.01778)
-1.18147)
0.04579)
0.03169)
-0.00054)
-0.00022)
0.00026)

to
tl
t2
t3
t4
t5;
sigma-of-fit for Chebyshev polynomial */

to
tl
t2
t3
t4
t5;
sigma-of-f it for Chebyshev polynomial */

0.0003644)
-0.0000827)
0.0003606)
0.0000034)
-0.0000048)
-0.0000007)
0.0000024)

2362.3580)
0.1293)
0.1531)

-0.0034)
-0.0021)
0.0002)
0.0003)

to
tl
t2
t3
t4
t5;
sigma-of-fit for Chebyshev polynomial */

to
tl
t2
t3
t4
t5;
sigma-of-fit for Chebyshev polynomial */

GBT Memo 131 GBT Best-Fitting-Paraboloid [BFP] in C Page 23

xyzO[0] = 0.0;
xyzO[l] = -2159.02;
xyz0[2] = 196.85

+1900.0
+ flO;

/* offset vertex wrt El axis */
/* offset vertex wrt El axis */
/* offset El axis wrt alidade */
/* plus nominal focal length */

dxyz[0] = 0.0;
dxyz[l] = *vy - *fl * sin(*rx);
dxyz[2] = *vz + *fl * cos(*rx) - flO;

B The Prime Focus focus-tracking function

This function is in file gbt_pf_focus_track.c:

/* GBT Prime-Focus Focus-Tracking as function of Elevation
Computed Tue May 30 18:19:35 EDT 1995
from least-squares fits to Model 95b.
Results bx.by.bz are in prime focus coordinate system.
Don Wells <dwells«nrao.edu>, March 1995 */

#include "structural_model. h"
#include "paraboloid.h"

void gbt_pf_focus_track (double el,
double *bx,
double *by,
double *bz)

/* Elevation (degrees) */
/* Box_0ffset_X (inches) */
/* Box_0ffset_Y (inches) */
/* Box_0ffset_Z (inches) */

double x = (el - 45.0) / 45.0; /* Elevation scaled to [-1,+1]
for Chebyshev polynomial */

double tO
double tl
double t2
double t3
double t4
double t5

1.0;

x;
0*x*x
0*x*x*x

= 8.0*x*x*x*x

-1.0;
-3.0*x;
-8.0*x*x +1.0;

= 16.0*x*x*x*x*x -20.0*x*x*x +5.0*x;

*bx =
+
+
+
+
+

/*

*by
+
+
+
+
+

/*

0.933)
3.959)
0.837)
-0.109)
-0.011)
0.002)
0.000)

-1.112)
-2.726)
-1.030)
0.074)
0.013)
-0.002)
0.000)

to
tl
t2
t3
t4
t5;
sigma-of-fit for Chebyshev polynomial */

to
tl
t2
t3
t4
t5;
sigma-of-f it for Chebyshev polynomial */

bz = 0.000; / no Z box-offset for symmetric model */

24 Page GBT Best-Fitting-Paraboloid [BFP] in C GBT Memo 131

C Function to retrieve data for nodes wrt BFP

This function is in file get_node_wrt_bfp.c:

/* Function get_node_wrt_bfp() is similar to function get_node(). The
difference is that, rather than delivering a struct node_data in

the 'elevation' coordinate system (plus 1900 inches in Z) , it

delivers the struct with_respect_to the axis of the best fitting

paraboloid for the requested elevation. The node is computed in the

elevation system, and then is transformed to be relative to the BFP
vertex, and then is rotated by the BFP rotation. The BFP focal

length is subtracted from the new Z so that the coordinates will be

relative to the prime focal point of the BFP at the elevation. This

version of the node_data struct facilitates optical calculations:

gbt .paraboloid () gives the focal length of the primary paraboloid,

while wrt_bfp->gridn plus wrt_bfp->at_elev.delta[] gives the

position of the Gregorian feedhorn (or prime focus box or

subreflector 'vertex') relative to the focal point of the primary

paraboloid. The tilts relative to the BFP axis for these nodes are

returned in wrt_bfp->at_elev.tilt[]. D.Wells, NRAO-CV, May95. */

tinclude "math.h"

tinclude "structural_model.h"

#include "paraboloid.h"

int get_node_wrt_bfp(int i_node, /* tipping.modelD index */
double elev, /* elevation (deg) */
struct node_data *wrt_bfp) /* results returned here */

{

const double refl_orig[3] = {0.0, -2159.02, +2096.85}; /*reflector origin*/
const double flO = (60.0 * 39.37);

int i, j;

double refl[3], wrt_untilted[3], ctilt, stilt, rotate[3][3], wrt_tilted[3];
double vxyz[3], rx, fl, bfp_dxyz[3], bfp_xyz[3];
struct node_data tipping_node;

gbt.paraboloid (elev, vxyz, ftrx, ftfl, bfp_dxyz, bfp_xyz);
if (get_node_data(i_node, elev, fttipping_node)) return(13);
wrt_bfp->node_id = tipping_node.node_id;
wrt_bfp->elevation = tipping_node. elevation;
for (i = 0; i < 3; i++) {

refl[i] =
((double)tipping_node.grid[i]
- refl_orig[i]) ;

wrt_untilted[i] =
(refl[i]
+ (double)tipping_node.at_elev.delta[i]
- vxyz[i]);

}
ctilt = cos(-rx); stilt = sin(-rx);
rotate [0] [0] = 1.0; rotate [0] [1] =0.0; rotate [0] [2] = 0.0;
rotated] [0] = 0.0; rotate[1] [1] = ctilt; rotated] [2] = -stilt;
rotate[2] [0] = 0.0; rotate[2] [1] = stilt; rotate[2] [2] = ctilt;
for (i = 0; i < 3; i++) for (j = 0, wrt_tilted[i] = 0.0; j < 3; j++)

wrt_tilted[i] += wrt_imtilted[j] * rotated] [j] ;
for (i = 0; i < 3; i++) {

GBT Memo 131 GBT Best-Fitting-Paraboloid [BFP] in C Page 25

wrt_bfp->grid[i] = tipping_node.grid[i] ;
wrt_bfp->at_elev.delta[i] = wrt_tilted[i] - refl[i];
wrt_bfp->at_elev.tilt[i] = tipping_node.at_elev.tilt[i];

}
wrt_bfp->grid[2] -= flO; /* new origin is at prime_focal_point */
wrt_bfp->at_elev.delta[2] -= (fl - f 10);
wrt_bfp->at_elev.tilt[0] -= rx; /* new coor system is tilted */
retum(O) ;

D The "include" file

The text reproduced below is the file paraboloid.h, which contains the ANSI-C prototypes for the BFP
and PF-focus-tracking functions:

/* Include for the best-fitting-paraboloid functions
D.Wells, NRAO-CV, Dec94-May95 */

void gbt.paraboloid (double el, /* Elevation (degrees) */
double vxyz[], /* Vertex_Offset (inches) */
double *rx, /* Tilt_about_X (radians) */
double *fl, /* Focal_Length (inches) */
double dxyz[], /* Focus_Offset (inches) */
double xyzO[]) /* Rigging.Focus (inches) */

void gbt_pf_focus_track (double el, /* Elevation (degrees) */
double *bx, /* Box_Offset_X (inches) */
double *by, /* Box_Offset_Y (inches) */
double *bz) /* Box_Offset_Z (inches) */

/* The 'node_data' reference below means that structural_model.h
should be included before this include: */

int get_node_wrt_bfp(int i, /* tipping.modelQ index */
double elev, /* elevation (deg) */
struct node_data *wrt_bfp) /* results returned here */

E The Gaussfit "program" for fitting conic sections

In this section, we reproduce the source code file model.gf, which GaussFit [JFMM88] uses to fit conic
sections to data. The equations of condition for the regression are the argument of the export () function
call in the program. The equation is based on the common vertex equation of the conic sections [GKHK75,
p.315], for the case of the axis of the conic along the Z-axis:

x2 + y2 = 2pz-(l-e2)z2, (3)

26 Page GBT Best-Fitting-Paraboloid [BFP] in C GBT Memo 131

where e is the numerical eccentricity and p is the "semiparameter"6 of the conic. For a paraboloid, we have
£ = 1 and p = 2F, and so Eq.(3) reduces to

x2 + y2

4F (4)

where F is the focal length (60 meters for the GBT primary mirror). The substitution 2p = 4F has been
made in the model. gf shown below, as a convenience for the BFP analysis.

The numerical eccentricity variable is still present to enable the code to fit ellipsoids.7 For an ellipsoid, we
have p = b2/a, where a is the semi-major axis and b is the semi-minor axis, so that the model.gf code shown
here is able to solve for an "F" which is 62/2a. We have a2 — e2 = b2 and e = e/a; it follows that model.gf
will solve for an ellipsoid size parameter

b2 .1

2a "e(2£ ;). (5)

where e is the "linear eccentricity" (one-half the desired inter-focal distance) and e is the "numerical
eccentricity". The nominal values, for the GBT are e = 5.5 meters (11 meters between the foci) and
e = 0.528). If the declaration "constant eps;" is changed to "parameter eps;", model.gf will be able to
fit for the numerical eccentricity as well as the ellipsoid size parameter.

/* GaussFit program to fit paraboloids to the distorted GBT surface */
/* Don Wells, NRAO-CV, 08-December-1994,3/16/95 */

observation x;
observation y;
observation z;

parameter vy;
parameter vz;
parameter rx;
parameter fl;
constant eps;

mainO
{

variable xO, yO

xO = 0.0;
yO = vy;
zO = vz;
srx = sin(rx);

/* + = away from plane of symmetry */
/* + = away from feed arm */
/* + = up, height of surface */

/* vertex position */

/* paraboloid tilt about x-axis (radians) */
/* focal length */
/* eccentricity */

/* COMPUTE PREDICTED VALUES */
while (import()) {

xp = x - xO;
yp = y - yO;
zp = z - zO;
/* positive rx is right -hand-rule about +X: */
xpp = xp ;
ypp = +crx * jp +srx * zp;
zpp = -srx * yp +crx * zp;

6 "The parameter 2p of a parabola y2 = 2px in the vertex position is defined as the length of the chord of the parabola
perpendicular to the axis through the focus; it measures the width, so to speak, of the parabola at the focus. This definition
can be carried over to the other conies: The parameter of a conic is defined as the length of the chord perpendicular to the
principal axis through a focus." [GKHK75, p.314]

7The original version [Sch92] of f itref 1 is also able to fit ellipsoids.

GBT Memo 131 GBT Best-Fitting-Paraboloid [BFP] in C Page 27

/* Common vertex equation of the conies (VNR, p.315): */
export((xpp"2 + ypp"2)

- (((4.0 * fl) - (1.0 - eps"2) * zpp) * zpp));

F The surface-data generator

This program is file get_surface.c:

/* get_surface.c compute actuator coors as fn of Elevation
D.Wells, NRAO-CV, Dec94-Mar95 */

#include <stdlib.h>
tinclude <math.h>
♦include "structural_model.h"
#define MAX.SURF 2300
main() {

int
num_nodes, i, j, pass, node_count, full_flag, id, aid, num_surf,
first = 1, dif f ..count, surf .index [MAX.SURF] , surf _id[MAX_SURF] ;

const double
surface_rig_angle = 44.0, /* degrees */
fl = (60.0 * 39.37), /* 60m in inches */
translate_to_vertexD = {0.0, 2159.020, -2096.85},
tolerance = 4.0; /* inches */

double
elev, /* degrees */ xyz[3], rad2, zp, diff;

char line [100], name [20];
struct node_data surf_node;
FILE *f2;

/* make a list of the surface (actuator) nodes: */
if ((num.nodes = get_index(0)) == 0) exit(EXIT.FAILURE);
for (1=1, num_surf =0; 1 <= num_nodes; i++) {

if (get_node_data(i, elev, ftsurf.node)) exit(EXIT.FAILURE);
id = surf_node.node_id;
aid = id > 0 ? id : -id;
if ((aid >= 700001) ftft (aid <= 768012)) {

surf.indexDrum.surf] = i;
surf_id[num_surf] = id;
if ((num.surf++) > MAX_SURF) exit(EXIT.FAILURE);

}
>
f2 = fopen("surf_diffs.out", "w"); /* for unusual actuator Z-coors */
if (gets(line) == NULL) { printf ("EOF?! ?\nM); exit (EXIT.FAILURE) ; }
sscanf(line, "•/.d", &f ull_f lag) ;
while (gets(line) != NULL) {

sscanf (line, "7.1f", ftelev); if (elev > 90.0) break;
strcpy(name, "half"); if (full_flag) strcpy(name, "full");
printf ("tipping7,ld %s tipping.model at el_angle wrt surf ace.rig.angleXn",

full_flag, name);
for (pass = 1, node_count = 0, diff_count = 0;

pass <= 2; pass++) {
for (i = 0; i < num_surf; i++) {

if (get_node_data(surf.index[i] , elev, ftsurf.node)) exit(EXIT_FAILURE)

28 Page GBT Best-Fitting-Paraboloid [BFP] in C GBT Memo 131

if ((id = surf.node.node.id) != surf_id[i]) exit(EXIT.FAILURE);
if (full_flag II (!full_flag &ft (id > 0))) {

if (pass == 1) {
node_count++; /* how many in dataset? */

} else { /* pass ==2: */
for (j = 0; j < 3; j++) xyz[j] = (double)surf_node.grid[j]

+ trcinslate_to_vertex[j] ;
rad2 = (xyz [0] *xyz [0] + xyz[l]*xyz[l]) ;
zp = rad2 / (4.0 * f1);
/* check difference btw grid coors and paraboloid: */
if (first ftft fabs(diff = xyz[2] - zp) > tolerance) {

diff_count++;
fprintf(f2,

"n=7.3d: id=7.7d, r=7.6.11f, d=7.5.21f (=7.7.21f-7.7.21f)\n",
diff_coimt, id, sqrt(rad2), diff, zp, xyz[2]);

}
/* The GBT surface will be adjusted to 60m paraboloid

at surface_rig_angle, so we overwrite xyz[2]: */
xyz[2] = zp;
printf ("7.8d7.8.21f7.8.21f7.8.21f7.8.21f",

id, 1.0, xyz[0], xyz[l], xyz[2]);
printf ("7.8.5^7.8.5^7.8.51^", surf_node.at_elev.delta[0] ,

surf_node.at_elev.delta[1],
surf_node.at_elev.delta[2]);

}

}
}
if (pass == 1) printf ("7.6d7.8.2f\n", node.count, elev);

}
first = 0;

}
fclose(f2); exit(EXIT_SUCCESS);

}

