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Abstract 

The gravitational displacements of the GBT actuators have been fitted with a paraboloid. The 
parameters of the paraboloid for various elevations have been fitted with polynomials and expressed as 
C code which computes the parameters of this best-fitting-paraboloid [BFP] as a function of elevation. 
The BFP will be used by the control software modules for the pointing, focus-tracking and active-surface 
subsystems of the GBT. We give a description of this C-code version of the BFP and two examples of 
its application to practical problems. We also give a function in C which fetches node data from the 
structural model and transforms it to a coordinate system tied to the BFP. The predicted gravitational 
term of the GBT's traditional pointing model and the predicted prime focus focus-tracking formula of 
the GBT are given. 

1    The BFP concept and strategy 

In order to implement a consistent control strategy for the active surface of the GBT primary and the 
Prime/Gregorian optics, we must choose a target paraboloid for the primary as a function of elevation. There 
are many candidate paraboloids. One obvious choice is the paraboloid which most closely approximates the 
surface as the structure deforms (almost) homologously as a function of elevation. This paraboloid has been 
called the "BFP" [Best-Fitting Paraboloidl since the early days of the GBT project. The BFP choice would 
have the advantage of minimizing the required surface actuator motions as .a function of elevation. 

In 1989, early in the GBT project, D'Addario [D'A89] argued for a different target paraboloid strategy, one 
in which the actuators would be used to maintain a fixed paraboloid, presumably with 60 meter focal length, 
as a function of elevation. Thompson [Tho89] responded with arguments favoring the BFP strategy. After 
this scholarly debate, a consensus emerged that the GBT active surface actuators and prime Gregorian foci 
actuators would be designed on the assumption that the GBT will use the BFP strategy. 

The debate was resumed three years later by von Hoerner [vH93], who argued that the active surface could 
be used to move the prime focal point as a function of elevation in order to get an extra degree of freedom 
for control of the Gregorian optics, von Hoerner advocated using this extra DOF to maintain constant 
spillover while maximizing the gain as the gravitational deflections move the Gregorian optics away from 
their nominal geometry. It appears that the needed motions would be just within the range of travel of 
the surface actuators. A different concern is that the design (rigging angle) geometry of the GBT has been 
chosen to minimize cross-polarization [MAY76], and a residual cross-polarization will appear as the optics 
move; in principle the active surface might be used to avoid or minimize this problem rather than being used 
to control spillover. It is unclear whether both effects could be controlled simultaneously. 

At the present time, our intent is to use the BFP strategy, at least for initial operation of the GBT. It is 
possible, however, that a future review will show that some variation on von Hoerner's concept is worth 
adopting. 
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2    Four datasets and four fitting programs 

Several people have worked on the BFP problem, each producing a different fitting program. In addition, the 
surface displacement datasets can be produced in several different ways. The programs produced previously 
read different input data formats and produced their parameter-estimates in different output formats; these 
differences hindered intercomparison tests. During the course of this project, the previous fitting programs 
were modified to read surface displacement data in a common input format, and to produce their parameter 
results in a common output format. In addition, a test dataset generator program and two new fitting 
programs were developed. 

Four different datasets were produced, containing a total of 43 cases to be fitted. There are three datasets 
each containing cases for 12 different elevations plus a dataset of 7 test cases: 

rmsnsdl This program was developed by King. It reads two files, surf grid, coor (the "grid" nominal 
coordinates of the nodes) and dispzh.m95b (zenith and horizon node displacements of the nodes); 
these two files were produced by King from the MSC/NASTRAN run of model 95b, and they are 
believed to be equivalent to 4;he structural model in C [WK95] used by the program get_surf ace 
described below, rmsnsdl produces a dataset containing only the 1127 nodes on the right-hand half of 
the GBT primary mirror. Cases are produced for 12 elevations 90°, 80°, 70°, 60°, 50°, 44° (the surface 
and optics rigging angle), 40°, 35°, 30°, 20°, 10° and 0°. King used his version of rmsnsdl to produce 
the previously distributed [Kin94a] estimates of BFP parameters. 

tippingl/tippingO These two datasets are produced by program get_surf ace (see Appendix F, p. 27), 
which calls function get_node_data() [WK95, App. A.l, p.9]. The tippingO ("half) execution of 
get_surf ace produces data for the 1127 nodes, analogous to the output of program rmsnsdl, while 
the tippingl ("full") execution produces datasets with 2209 nodes. Cases are produced for the same 
set of elevations listed above for program rmsnsdl. 

testgen This program uses Fortran functions randgs ( ) and rand( )1 to produce normal deviates of specified 
standard deviation which are added to the x, y and z coordinates of points on a paraboloid with specified 
parameters. The chosen test case is approximately the BFP paraboloid for E = 60°. The vertex is 
displaced by (-0.71,-0.44) inches from the vertex of the GBT's nominal paraboloid, the axis is tilted 
by 0.1 milliradians and the focal length is 0.1 inch greater than the nominal 60 meters (2362.2 inches). 
Seven cases are produced, one with zero noise and three each of two different RMS noise levels, 0.02 inch 
and 0.04 inch, so that the accuracy of the fitting process can be explored. 

There are four different fitting programs, each of which processes all 43 cases: 

rms This program was originally developed at the Jet Propulsion Laboratory circa 1962 [KS66]. The 
program was modified by King over the past two decades, as it was being used to check the design 
of backup structures for successive NRAO antennas. King's original implementation for the GBT was 
built to fit only the "half case, with 1127 nodes; Wells modified it to support 2209 nodes, rms solves 
for the paraboloid which minimizes the RMS of the path-length residuals, not the RMS of ^-coordinate 
residuals or the RMS of orthogonal-distance residuals. Program rms has the advantages of being 
well-proven and of executing rapidly. 

fitrefll This program was built for the GBT project by Fred Schwab in 1992 [Sch92]. It uses ODRPACK 
[BBRS92] for fitting the paraboloids. Wells modified Schwab's program to use the most recent version 
of ODRPACK. This program minimizes the residuals normal to the paraboloid (ODR is "Orthogonal 
Distance Regression"). 

impodr This program was built by Wells, and it too solves the ODR problem by using ODRPACK. It 
uses an "implicit ODR" formulation of the problem. It appears that, at least for fitting paraboloids, 
this algorithm has no technical advantages over the "exphcit ODR" algorithm used by fitrefll, and 
it has the disadvantage of executing more slowly.   The user-function Fortran subroutine supplied to 

1 These two functions were provided by Fred Schwab. 
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Figure 1: Prime-Focal-Point solutions for the testgeni datasets 

ODRPACK expresses the implicit-ODR BFP problem with code which is essentially identical to the 
code in the function used in gaussf it (described below; the code is shown in Appendix E). In addition 
to computing the function values, the subroutine computes the necessary partial derivatives using 
expressions which were produced by Mathematica (Fred Schwab advised on the analytic differentiation). 
It is unclear whether the analytic derivatives have a performance advantage over the usual numerical 
differentiation in this case, because of the complexity of the expressions. 

gaussfit This is an AWK program which drives the "GaussFit" program which was developed circa 1988 by 
the Astrometry Team of the Hubble Space Telescope project [JFMM88}. GaussFit is a versatile general- 
purpose function-fitting application which is quite convenient. The user supplies the function, expressed 
in an elegant C-like language; the function used for this project is shown in Appendix E (see p.25). 
This function is capable of fitting arbitrary conic sections, not just paraboloids. GaussFit compiles 
this function; it uses analytic differentiation to compute the Jacobians and other partial derivatives 
needed for the regression problem. GaussFit automatically uses an ODR algorithm whenever, as in 
this case, the independent variables are asserted to have errors. Even though GaussFit executes the 
user-supplied function interpretively, it is a comparatively fast program. 

The four programs operating on the four datasets produced 172 (43 x 4) BFP solutions, which were collected 
into a single table to facilitate various intercomparisons. 

2.1    Test generator results 

The four sets of prime-focal-point solutions for the testgeni datasets are plotted in Figure 1; the coordinates 
are relative to tne prime-focal-point of the undistorted 60 meter paraboloid at E = 44° (the rigging angle). 
All four programs produce the correct answer ( -0.474 -0.340 ) for the noiseless test problem. Some minor 
differences are seen for the noisy cases.   In particular, rms differs from the three ODR programs; this is 
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Figure 2: RMS-of-Fit as a function of Elevation 

probably due to different weighting of the noisy data points (discussed in Section 2.2). The largest difference 
is about 0.02 inch, six times smaller than the ±3 mm (0.12 inch) GBT construction tolerance and, relative 
to the focal length, a difference of about 8 x 10-6 (about one part in 120000). 

Gaussian noise of ±0.04 inch in the datapoints appears to produce a similar dispersion in the prime- 
focal-point solutions. The dispersion of the solution points appears to be elliptical rather than circular. 
This elongation is presumably due to the correlations between the parameters of the BFP solutions. The 
correlation matrix for E = 60° computed by program GaussFit for the tippingl (full model) dataset is 

rx Vz vy F 
rx 1.00 0.43 0.96 0.81 
Vz 1.00 0.63 -0.01 
Vy 1.00 0.61 

We see that parameters Vy and rx are highly correlated2 in the solutions, and other combinations also have 
large correlations. The correlated errors in these BFP parameters are combined in the formulae for /y and 
fz (see the last two statements of gbt_paraboloid.c in Appendix A). 

2.2    RMS of the fits 

All four programs report the RMS of the fit to be zero for the noiseless test problem.   But for all cases 
containing noise, program rms consistently reports smaller RMS values than do the other three programs, 

2 "correlation coefficient — A measurement, which is unchanged by both addition and multiplication of the random 
variable by positive constants, of the tendency of two random variables X and Y to vary together; it is given by the ratio of 
the covariance of X and Y to the square root of the product of the variance of X and the variance of Y." [JFMM88, p.69] 
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Figure 3: Six Prime-Focal-Point Trajectories 
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which generally report exactly the same RMS (see Figure 2). The RMS reported by rms when fitting the 
tippingl dataset is 10-12% smaller than the RMS of the same dataset being fitted by gaussfit or fitrefll. 
Similarly, for the first of the three test cases with 0.04 inch noise in the XYZ coordinates, programs f itref 1, 
impodr and gaussfit all report RMS = 0.0400 while rms reports RMS = 0.0354, 11% smaller. This 
discrepancy is due to the fact that rms is minimizing the wavefront error, not the fit of the paraboloid to 
the data. It is shown in [KS66] that half the pathlength change due to surface deformation is given by 

^APL = 6cos<P/2, (1) 

where <f) is the angle between the paraboloid axis and the point being fitted subtended at the focal point, 
and 6 is the "normal component of the distortion vector" (i.e., the orthogonal distance residual). Program 
rms computes the RMS using the formula 

where the weights Ai are unity in these calculations. We see that this RMS summation is an ODR RMS 
which is weighted by cos2 0/2. Calculation shows that the RMS of this function over the circular area offset 
by 54 meters from the axis is 0.89, consistent with the observed 11% difference in the solutions. In summary, 
the three ODR programs weight residuals uniformly while rms emphasizes the residuals closest to the axis 
of the paraboloid, where surface residuals project almost completely into wavefront residuals. 

2.3    Comparison with previous BFP solutions 

King [Kin94a] produced preliminary BFP parameters which were distributed within the GBT project, and 
which were used by Srikanth [Sri94] for optical design calculations. In Figure 3 we show how the preliminary 
BFP results for the trajectory of the prime focal point compare with the new solutions. We see that the new 
solutions by program rms agree well with the preliminary ones, but differ by slightly more than 0.1 inch 
from the solutions produced by the ODR programs for E = 90°. This difference is probably produced by 
the different weighting of the fits to the distorted surface, as discussed above in Section 2.2. 

3    Which BFP solution to use? 

We must choose one of the sets of solutions to use for the GBT. The actuators are normal to the surface; 
therefore the ODR solutions would minimize the actuator travel as a function of elevation. However, the 
wavefront (pathlength) solution produced by rms will be the best predictor of the prime focal point during the 
initial period of operation of the GBT when the actuators are not yet functional. (The additional actuator 
travel required for the rms solution is small, and has already been allowed for in the actuator design.) The 
solutions produced from the full-surface (tippingl) dataset are slightly different from those produced from 
the half-surface dataset, because the nodes on the plane of symmetry appear only once in the regression while 
other nodes appear twice, producing different weighting. Therefore, strictly speaking, once the actuators 
are operational, the ideal BFP solution would be produced by one of the three ODR programs operating 
on dataset tippingl. However, the differences between all of the solutions are small, and the GBT will 
operate satisfactorily with any of them. We have decided that, because preliminary versions of the BFP 
solutions using program rms and dataset rmsnsdl (similar to dataset tippingO) have been used in analyses 
of the GBT optics [Nor95, Sri94], there is some value in (almost) maintaining consistency with the prior 
BFP results. For this reason, we have decided to select dataset tippingO fitted by program rms to provide 
the BFP for the GBT. 
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Table 1: Program which computes Table 2 

/* This program, paraboloid_tab_bfp.c, uses the gbt_paraboloid() 
function to compute the BFP table of the BFP memo. 
D.Wells, IRAO-CV, Dec94-Mar95 */ 

•include <stdlib.h> 
*include <math.h> 
♦include "structural_model.h" 
•include "paraboloid.h" 

mainO 
{ 

FILE *tl; 
double el,  vxyz[3], rx, fl, bfp_xyz[3], bfp.dxyz[3] ; 

tl = f open("paraboloid_tab_bfp.tex", "w");  /* BFP parameters table */ 
for  (el = 0.0;  el < 90.1;   el += 5.0)  { 

bfp_xyz^0] = bfp_dxyz[0] = 0.0; 
gbt.paraboloid (el,  vxyz, ftrx,  tfl, bfp_dxyz, bfp_xyz); 
fprintf(tl, 

"%2. Olf fty.6.31f k%6.31f Jky.9.61f t%9.31f t%6.31f k%6.31f ft%8.21f t%8.21f \\\\\n", 
el,  vxyzCl], vxyz[2], rx, fl, 
bfp_dxyz[l], bfp_dxyz[2], 
bfp_xyz [1], bfp_xyz[2]); 

} 
fclose(tl); 
exit(EIIT_SUCCESS); 

4    BFP produced by program rms   for dataset tippingO 

A program coded in AWK was used to read a table of the set of BFP solutions produced by program rms 
for dataset tippingO , and to invoke GaussFit to fit Chebyshev polynomials as a function of elevation to the 
columns. The program extracted the Chebyshev coefficients from the GaussFit output, and printed them 
in the form of a function coded in C. This computed function gbt.paraboloid.c is shown in Appendix A 
(see p.21); the include file containing its function prototype is shown in Appendix D. This function, which 
concisely summarizes the BFP analysis, is code which is ready to be incorporated into the GBT M&C 
applications. 

The BFP function gbt.paraboloid.c is called by program paraboloid_tab_bfp.c (see Table 1) in order 
to compute Table 2, which gives the results returned by gbt_paraboloidO as a function of elevation, at 5° 
steps. 

Figure 4 shows the vertex trajectory produced by gbt_pafaboloid(), plus the solution values which went 
into the Chebyshev polynomial fit. The latter demonstrates that the Chebyshev fitting is correct. The 
preliminary BFP [Kin94a] vertex trajectory is shown for reference. 

Figure 5 shows the focal length of the BFP as a function of elevation. The axis tilt as a function of elevation 
is shown in Figure 6. This tilt angle is the a priori estimate of the gravitational term of the "traditional" 
pointing model (AE as function of E). The maximum value is about 0.8 milliradians, or 165 arcseconds 
(2.8 arcminutes). 

The trajectory of the prime-focal-point of the BFP is shown in Figure 7. This trajectory is computed by 
function gbt_paraboloid() from a combination of the other BFP parameters (see the expressions which 
compute dxyz[] in the last few lines of Appendix A). Note that /y and fz in Table 2 (which are xyzD 
in Appendix A) are the coordinates of the prime focal point at the rigging angle, expressed in alidade 
coordinates (the system of the structural model). 
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Table 2: BFP parameters returned as function of elevation 

E 

Vertex Tilt Focal Length Prime Focal Point 
Figure 4 Figure 6 Figure 5 Figure 7 
vy Vz rx F A/y Afz fy /, 

(d) (in) (in) (rad) (in) (in) (in) (in) (in) 

o 5.912 1.213 0.000800 2362.383 4.021 1.395 -2159.02 4459.05 
5 5.010 1.090 0.000648 2362.333 3.480 1.223 -2159.02 4459.05 

10 4.153 0.961 0.000510 2362.290 2.949 1.051 -2159.02 4459.05 
15 3.349 0.827 0.000387 2362.254 2.436 0.881 -2159.02 4459.05 
20 2.603 0.688 0.000279 2362.226 1.943 0.714 -2159.02 4459.05 
25 1.921 0.547 0.000188 2362.205 1.477 0.552 -2159.02 4459.05 
30 1.309 0.403 0.000114 2362.192 1.039 0.395 -2159.02 4459.05 
35 0.770 0.259 0.000058 2362.188 0.634 0.246 -2159.02 4459.05 
40 0.310 0.114 '0.000019 2362.191 0.265 0.106 -2159.02 4459.05 
45 -0.069 -0.029 -0.000001 2362.203 -0.067 -0.026 -2159.02 4459.05 
50 -0.364 -0.169 -0.000002 2362.222 -0.358 -0.147 -2159.02 4459.05 
55 -0.572 -0.306 0.000015 2362.250 -0.608 -0.257 -2159.02 4459.05 
60 -0.691 -0.439 0.000052 2362.285 -0.814 -0.354 -2159.02 4459.05 
65 -0.722 -0.566 0.000107 2362.327 -0.974 -0.439 -2159.02 4459.05 
70 -0.663 -0.687 0.000180 2362.376 -1.089 -0.511 -2159.02 4459.05 
75 -0.515 -0.800 0.000271 2362.432 -1.156 -0.568 -2159.02 4459.05 
80 -0.279 -0.905 0.000379 2362.494 -1.175 -0.611 -2159.02 4459.05 
85 0.043 -1.001 0.000503 2362.562 -1.145 -0.639 -2159.02 4459.05 
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Figure 4: Paraboloid-Vertex trajectory as a function of Elevation 
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Figure 5: Focal length as a function of Elevation 

5    Applications 

The GBT Best-Fitting-Paraboloid [BFP] function gbt_paraboloid() is expected to be used in the M&C 
system for the following purposes: 

Gravity Pointing Term The tilt parameter of the BFP will be the a priori estimate of the gravitational 
deflection terms of the "traditional" pointing correction module. 

Active Surface The BFP will be the primary component of the "commanded surface" in the open-loop 
active surface module. This component of the open-loop active surface control for Phase-2 of the 
project will consist of driving the actuators with the difference between the displacements computed 
by the structural model and the BFP paraboloid, projected to local surface normal. 

Focus Tracking The focus tracking subsystems will compute displacements of the prime focus and 
Gregorian optics relative to the prime focal point of the BFP, and will use these to maintain the 
optics in proper alignment for optimum gain. 

In the remainder of this section, we provide three numerical examples of the application of the BFP to 
particular cases. 

5.1    Relative Motions of the BFP and Prime Focus Box 

The focus tracking subsystem for the GBT prime focus will move the prime focus box to correct for the 
gravitational deflections of the prime focus box relative to the BFP prime focal point. The program shown in 
Table 3 calculates this relative motion. In the loop on elevation, it reads a line of Table 2 to get the trajectory 
of the prime focal point of the BFP. It then calls get_node_data() (see [WK95]) to get the gravitational 
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Figure 6: Axis Tilt as a function of Elevation 
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Figure 7: Prime-Focal-Point trajectory as a function of Elevation 
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Table 3: Program which computes Table 4 
/* Program paraboloid_tab_pfb.c uses the BFP table (from 

gbt_paraboloid()) plus the structural model functions to compute 
the prime-focus-box table of the BFP memo. 
D.Wells, IRAO-CV, Har95 */ 

tinclude <stdlib.h> 
finclude <math.h> 
tinclude "structural_model.h,, 

tinclude "paraboloid.h" 

mainO 

const int pfid = 50000; /* prime-f ocus-box node-ID */ 
const double dtr = 0.017453293, mti = 39.37, box_angle = 45.5 * dtr; 
FILE *tl,  *t3; 
int pfi,  i; 
double 

el,  ell, vy, vz, rx, fl, bfp_xyz[3], bfp_dxyz[3], pfb[3], 
box_rotation, box[3]; 

struct node_data pf i_data; 

tl = fopen("paraboloid_tab_bfp.tex", "r"); /* BFP parameters table */ 
t3 = fopen("paraboloid_tab_pfb.tex", "H") ; /* prime focus box table */ 
if  ((pfi = get.index(pfid)) == 0)  exit(EXIT_FAILDRE); 

for  (el = 0.0;  el < 90.1;  el += 5.0)  { 
bfp_xyz[0] = bfp_dxyz[0] =0.0; 
fscanf (tl,  '7.21ftXlftUft7.1f*%lftXlftUfJkXlf*%lf\\\\\n", 

tell, ftvy,  *vz, Jkrx, ftfl, 
ftbfp.dxyz[1], tbfp_dxyz[2], ftbfp_xyz[l], tbfp.xyz [2]); 

if  (ell   != el)  { 
printf("ell=Xlg, el=Ug, I0T EQUAL!?!\n", ell,  el); 
pr intf ("12. Olf t%6.31f t%6.31f «8.51f ft%7.41f k%9.31f 4X6.31f k%6.31f \\\\\n", 

el, vy, vz, rx, f1, bfp_dxyz [l], bfp_dxyz [2]); 
exit(EXIT_FAILURE); 

} 
fprintf(t3, '7.2.Olf", el); 
if  (get_node_data(pfi, el, ftpfi_data)) exit(EUT.FAILURE); 
fprintf(t3, "k%5.2fkl5.2fkl8.Sf", pfi_data.at_elev.delta[l], 

pfi_data.at_elev.delta[2], pfi_data.at_elev.tilt[0]); 
for  (i=0;   i<3;   i++)  { 

pfb[i]  =  (bfp.xyz[i] + bfp_dxyz[i]) 
- ((double)pfi_data.grid[i3 + pfi_data.at_elev.delta[i]); 

} 
fprintf(t3,  "t5i5.21ft%5.21f", pfb[l] , pfb[2]); 
box_rotation = box_angle + pfi_data.atjeleT.tiltCO]; 
box[0]  =    cos(box_rotation) * pfb[l]  + sin(box_rotation) * pfb[2] ; 

pfb[l] box[l] = -sin(box_rotation) 
box [2] = pfb[0]; 
fprintf'(t3,  ,,*%5.31fk%5.31f" 
fprintf(t3,  "WWW); 

} 
fclose(tl); fclose(t3); 
exit(EIIT_SUCCESS); 

+ cos(box_rotation)  * pfb[2] ; 

box[0], box[l]); 
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Table 4: Focus Tracking for the prime focus box 

(in) 

E 

Prime Boom (n ode 50000) PF-Box Focus Tracking 

Figure 8 Figure 8 Figure 9 

Apy Ap2 tx Aby Abz Bx B* 
(d) (in) (in) (rad) (in) (in) (in) (in) 

0 5.86 2.51 -0.00119 -1.84 -1.12 -2.095 0.525 
5 5.44 2.21 -0.00114 -1.96 -0.99 -2.080 0.697 

10 4.94 1.90 -0.00107 -1.99 -0.86 -2.008 0.811 
15 4.37 1.60 -0.00098 -1.93 -0.73 -1.876 0.865 
20 3.74 1.30 -0.00086 -1.80 -0.60 -1.687 0.859 
25 3.05 1.01 -0.00072 -1.57 -0.47 -1.439 0.792 
30 2.31 0.73 -0.00056 -1.27 -0.34 -1.136 0.664 
35 1.52 0.46 -0.00038 -0.89 -0.22 -0.779 0.477 
40 0.69 0.20 -0.00017 -0.42 -0.10 -0.370 0.232 
45 -0.18 -0.05 0.00005 0.11 0.01 0.084 -0.069 
50 -1.07 -0.28 0.00028 0.71 0.12 0.583 -0.424 
55 -1.98 -0.49 0.00053 1.38 0.22 1.121 -0.829 
60 -2.91 -0.68 0.00079 2.10 0.31 1.694 -1.281 
65 -3.85 -0.85 0.00106 2.88 0.40 2.298 -1.778 
70 -4.79 -0.99 0.00134 3.70 0.47 2.927 -2.315 
75 -5.72 -1.11 0.00163 4.57 0.54 3.578 -2.887 
80 -6.64 -1.21 0.00192 5.47 0.59 4.245 -3.492 
85 -7.54 -1.28 0.00221 6.39 0.63 4.924 -4.125 

- 

l     l     l     1     l     I     l     I     1 

Afy, Afz (cf Fig.7) — 
Apy, Afz      
Aby, Ab2   

i    i    i    i    i    i    i 

0°     - 

^^             90° - 
^  

-10 -9  -8-7-6-5-4-3-2-10    1    2    3    4    5    6    7 
V (in) 

Figure 8: Trajectories of BFP, PF-boom and difference 
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By 
(in) 

Figure 9: Prime-Focus-Box focus-tracking trajectory 

deflection of the prime focus box (node 50000) at the tip of the prime focus boom. The program computes 
the difference between these as Aby,Abz in Table 4.3 These three trajectories are plotted in Figure 8. 

The prime focus box actuators are oriented at an angle of 45.5° relative to the coordinate system of the 
tipping structure [Kin94b, KM93], so the Aby,Abz trajectory must be rotated to the prime focus coordinate 
system. The appropriate coordinate rotation includes the gravitational tilt of the tip of the prime focus 
boom tx (see Table 4 and the expression for box_rotation in Table 3). For E = 90°, the 2.5 mrad value of 
tx displaces the trajectory by only about 0.02 inch (0.5 mm), negligible in comparison to wavelengths like 
20 cm. The rotated coordinates are boxCi], Bx,By in Table 4; note that the boom displacement is in y, z 
coordinates, while the box actuators are called the x, y axes. Figure 9 shows the focus-tracking trajectory 
of the prime focus box, expressed in the prime-focus coordinate system [Kin94b, KM93]. 

An AWK program reads Table 4 and fits Chebyshev polynomials to the Bx and By columns, and outputs the 
coefficients as a function gbt_pf _f ocus_track() expressed in the C language; see Appendix B (p.23). This 
module is ready to be installed in the prime focus tracking application of the M&C system. The trajectory of 
Bx appears to be well matched to the required travel range of the X-axis of the prime focus feed positioning 
mechanism, ±7.22 inch. The Y-axis required range is ±20.71 inch, and By fits into this with room to spare. 
The GBT elevation velocity limit is 0.25 deg/s and the t/p (By) velocity is 6 in/min. For a slew from the 
rigging angle 44° to the zenith (the worst case), the elevation drive will need about 184 sec while the prime 
focus box will need only about 47 sec. 

5.2    Relative Motions of the BFP, subreflector and Feedhorn 

The Gregorian focus tracking subsystem will move the subreflector to correct for the relative deflections of 
the BFP, subreflector and Gregorian feedhorn. The program shown in Table 5 calculates these deflections; 

3 Displacement Apx and tilts ty and t2 are not shown because they are always zero for these nodes, which are in the meridional 
plane, the plane of symmetry of the GBT. 
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Table 5: Program which computes Table 6 
/* Program paraboloid_tab_greg.c uses function gbt_paraboloid() plus 

the structural model fmictions to compute the 
subreflector/Gregorian_focus table of the BFP memo. 
D.Wells, IRAO-CV, Mar95 */ 

•include <stdlib.h> 
♦include <math.h> 
tinclude "structural_model.h" 
♦include "paraboloid.h" 
mainO  { 

const int  svid = 50005, /* subreflector-vertex    ID */ 
gfid = 40700; /* Gregorian-feed    node-ID */ 

const double dtr = 0.017453293, mti = 39.37, rig_angle = 44.0; 
int  svi,  gfi,  i,   j,  status; 
double start,  el,  vxyz[3], rx, fl,  dl,  dt,  dtO, 

stilt,  ctilt,  rot ate [3] [3], svfl[3], svflp[3], 
bfp_xyz[3], bfp_dxyz[3], fl2C3], dp[3] ; 

struct node.data svi_data, gfi_data; 

if ((svi = get_index(svid)) == 0) exit(EIIT_FAILURE); 
if ((gfi = get_index(gfid)) == 0) exit(EIIT.FAILURE); 
for  (el = start = -5.0;  el < 90.1;  el += 5.0)  { 

if  (el == start)  { el = rig_angle; dtO = 0.0;  } /* initialization */ 
if  (el  != rig_angle) printf("y,2.Olf", el); 
bfp_dxyz[0] = bfp_xyz[0] =0.0; 

gbt.paraboloid (el,  vxyz, ftrx, ftfl, bfp_dxyz, bfp_xyz); 
if  (get_node_data(svi, el, ftsvi_data)) exit(EIIT.FAILURE); 
if (el  != rig_angle) 

printf ("k'/.5. 2fk%S. 2fty.8. 5f", svi.data. at.elev.delta[1] , 
svi_data.at_elev.delta[2], svi_data.at_elev.tilt[03); 

if  (get_node_data(gfi,  el,  tgfi_data)) exit(EIIT_FAILURE); 
if  (el   != rig_angle) printf("*,/.5.2f*y.5.2f", 

gfi_data.at_elev.delta[l], gfi_data.at_elev.delta[2]); 
for  (i=0,  dl=0.0;   i<3;   i++)  { 

fl2[i]  =  (bfp_xyz[i] + bfp_dxyz[i]) 
-   ((double)gfi_data.grid[i] + gfi_data.at_elev.delta[i]); 

dl += fl2[i]*fl2[i]; 
} 
dl = sqrt   (dl)   -  (11.0 * mti); 
dt = atan2 (fl2t2], fl2[l]) - dtO; 
if  (el == rig_angle) { dtO = dt;  dt = 0.0;   } 
if  (el   != rig.angle) printf (•,ty.5.21ft%8.51f", dl,  dt); 
if (el == rig_angle) 

for  (i = 0;   i < 3;   i++) 
svfl[i]  =  (bfp_xyz[i] + bfp_dxyz[i]) 

-  ((double)svi_data.grid[i] + svi_data.at_elev.delta[i]); 
ctilt = cos(svi_data.at_elev.tilt[0]); /* rotation about X-axis */ 
stilt = sin(svi_data.at_elev.tilt[0]); 
rotate[0] [0] = 1.0;  rotate[0][1] =0.0; 
rotated] [0] = 0.0;  rotated] [1] = ctilt; 
rotate[2][0]  = 0.0;  rotate[2]d] = stilt; 
for  (i = 0;   i < 3;   i++)  { 

for  (j  = 0,   svflpCi]  = 0.0;  j   < 3;   j++) 
svflp[i] += svfl[j]  * rotated] [j] ; 

dp[i]  =  (bf p.xyz [i] + bfp.dxyzdl) 
-  ((double)svi_data.grid[i] + svi_data.at_elev.delta[i] 

+ svflp[i]); 
> 
if  (el  != rig_angle) printf(,,t,/.6.31fftX6.31f", dpCl], dp[2]); 
if  (el  != rig_angle) printf("\\\\\n"); 
if   (el == rig_angle) el = start;  /* undo initialization case */ 

} 
exit(EXIT_SUCCESS); 

rotate[0][2] =0.0; 
rotated] [2] = -stilt; 
rotate[2][2] = ctilt; 
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Table 6: Displacements of subreflector and Gregorian feedhorn 

E 

Subreflector (50005) Greg Feed EFPn+Greg. Feed Subr.f -BFP 

Asy Asz 8sx Atfj, Agz 

Figures 10 and 11 Figure 12 
AL12 A0i2 APy APZ 

(d) (in) (in) (rad) (in) (in) (in) (rad) (in) (in) 

0 6.19 2.92 -0.00173 4.84 2.52 -1.20 0.00162 -1.908 -1.237 
5 5.74 2.59 -0.00165 4.48 2.22 -1.09 0.00207 -2.012 -1.084 

10 5.22 2.24 -0.00154 4.06 1.92 -0.98 0.00236 -2.034 -0.933 
15 4.62 1.90 -0.00140 3.59 1.62 -0.85 0.00248 -1.972 -0.783 
20 3.96 1.56 -0.00123 3.07 1.33 -0.72 0.00244 -1.825 -0.636 
25 3.23 1.22 -0.00103 2.50 1.03 -0.58 0.00224 -1.596 -0.492 
30 2.45 0.88 -0.00079 1.89 0.75 -0.44 0.00187 -1.284 -0.354 
35 1.61 0.56 -0.00053 1.24 0.47 -0.29 0.00134 -0.893 -0.221 
40 0.73 0.24 -0.00025 0.56 0.20 -0.13 0.00066 -0.426 -0.095 
45 -0.19 -0.06 0.00006 -0.14 -0.05 0.03 -0.00018 0.113 0.023 
50 -1.13 -0.35 0.00039 -0.87 -0.29 0.19 -0.00116 0.721 0.132 
55 -2.11 -0.61 0.00074 -1.62 -0.51 0.35 -0.00227 1.391 0.232 
60 -3.10 -0.86 0.00111 -2.37 -0.71 0.51 -0.00351 2.120 0.321 
65 -4.09 -1.09 0.00148 -3.13 -0.90 0.67 -0.00486 2.900 0.400 
70 -5.09 -1.29 0.00187 -3.89 -1.06 0.82 -0.00632 3.726 0.466 
75 -6.08 -1.47 0.00227 -4.65 -1.20 0.98 -0.00787 4.592 0.521 
80 -7.06 -1.62 0.00267 -5.39 -1.32 1.13 -0.00951 5.492 0.563 
85 -8.02 -1.75 0.00307 -6.11 -1.41 1.27 -0.01122 6.419 0.592 
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Figure 10: BFP-to-GregorianFeed distance minus 11 meters 

its results are shown in Table 6.4 

Program paraboloid_tab_greg also computes the length of the line connecting the prime focal point and 
Gregorian feedhorn. The difference between this distance and the 11 meter nominal focal length of the 
ellipsoid is plotted in Figure 10. The rotation of this line is also computed, and is plotted in Figure 11. Note 
that A9i2 = —0.01259 (-0.7 deg) means 4 inch (10 cm) displacement at the end of an 11 meter lever arm for 
£ = 90°. 

Program paraboloid_tab_greg also computes the displacement between the first-focal-point of the 
ellipsoidal subreflector and the prime-focal-point of the BFP; this is APy,APz in Table 6. This computation 
is analogous to the "rigid rod" calculation of the displacement of the second-focal-point relative to the 
feedhorn in Section 3.2 of [WK95]. It accounts for the tilt of the subreflector as well as its translation in 
forming the difference, which is plotted in Figure 12.5 The ellipsoidal subreflector images the region around 
its first-focal-point onto the region around its second-focal-point (the feedhorn). ; The mapping involves 
longitudinal and lateral magnification. The displacement of the BFP prime-focal-point relative to the first- 
focal-point is thus magnified at the feedhorn, producing de-focus (loss of gain) and a pointing offset. Because 
of the magnification, the displacement shown in Figure 12 is the major factor in Gregorian focus tracking. 

5.3    Displacements with-respect-to the BFP Axis 

The 'prescription' for the Gregorian optics is simplified if it is expressed in a coordinate system attached to 
the BFP. Such results have been distributed previously by King and used for analyses of the Gregorian optics 
[Sri94, Table l(p.4)]. We present a new version of these calculations in Table 7, which has been produced 
by the program shown in Table 9. King recently distributed a different version of these calculations [Kin95], 
selected portions of which we show in Table 8. The version shown in Table 7 covers the elevation range 
in 5° steps, is based on function get_node_wrt_bfp() and is relative to the new focal point of the BFP 
rather than the nominal focal point. The agreement between the two sets of results is good; for example, 

4 Displacement Asx and tilts Ssy and 6sz are not shown because they axe always zero for these nodes, which are in the 
meridional plane, the plane of symmetry of the GBT. 

5This trajectory is expressed in the eltvation coordinate system, not in the subreflector coordinate system, which is rotated 
to an angle of 36.7° relative to the elevation system [Kin94b, KM93]. 
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Figure 11: Rotation of the BFP-to-GregorianFeed line 
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Figure 12: Trajectory of BFP relative to first-focal-point 
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Table 7: Gravity-induced Deformations wrt the BFP Axis 

E AF rx 

Greg. Feed (40700) Subreflector i '50005) 
Aflfy Agz tigx Asy Asz 5sx 

(d) (in) (rad) (in) (in) (rad) (in) (in) (rad) 

0 0.183 0.000800 0.473 1.153 -0.00295 2.291 1.662 -0.00253 
5 0.133 0.000648 0.720 1.024 -0.00265 2.361 1.471 -0.00230 
10 0.090 0.000510 0.893 0.891 -0.00234 2.345 1.279 -0.00205 
15 0.054 0.000387 0.988 0.758 -0.00202 2.244 1.084 -0.00179 
20 0.026 0.000279 1.005 0.624 -0.00168 2.055 0.890 -0.00151 
25 0.005 0.000188 0.943 0.490 -0.00134 1.781 0.697 -0.00121 
30 -0.008 0.000114 0.802 0.357 -0.00099 1.423 0.507 -0.00091 
35 -0.012 0.000058 0.584 0.226 -0.00063 0.985 0.321 -0.00059 
40 -0.009 0.000019 0.291 0.099 -0.00028 0.469 0.140 -0.00026 
45 0.003 -0.000001 -0.076 -0.024 0.00007 -0.120 -0.034 0.00006 
50 0.022 -0.000002 -0.513 -0.142 0.00041 -0.777 -0.199 0.00040 
55 0.050 0.000015 -1.017 -0.253 0.00075 -1.497 -0.355 0.00073 
60 0.085 0.000052 -1.582 -0.358 0.00108 -2.274 -0.499 0.00106 
65 0.127 0.000107 -2.206 -0.455 0.00139 -3.102 -0.632 0.00138 
70 0.176 0.000180 -2.884 -0.543 0.00169 -3.975 -0.751 0.00169 
75 0.232 0.000271 -3.609 -0.622 0.00197 -4.887 -0.857 0.00200 
80 0.294 0.000379 -4.378 -0.690 0.00223 -5.830 -0.947 0.00229 
85 0.362 0.000503 -5.185 -0.749 0.00247 -6.799 -1.022 0.00256 

Table 8: Optics movements under gravity loads wrt BFP (from [Kin95]) 

E 

(d) 

AF 
(in) 

rx 
(rad) 

Node 40700 Node 50005 

A9y 
(in) (in) 

ASy 
(in) 

Asz 
(in) 

A^ = 1.337 for E = 0 in Table 8 should be compared with Agz + AF = 0.183 + 1.153 = 1.336 in Table 7 
and Agy = 0.477 should be compared with 0.473. 

The results in Table 7 are ready to use in optical calculations, with one exception: node 50005 is the center 
of the off-axis ellipsoid, not its vertex. The optical prescription needs the displaced location of the ellipsoid 
vertex and the tilt of the ellipsoid axis. The tilt is 6sx and the trajectory of the ellipsoid vertex can be 
obtained by combining Asy, Asz and 8sx in a calculation analogous to the calculation of the trajectory of 
the first focal point, as discussed in Section 5.2, which uses code shown in Table 5. 

6    Availability 

The complete package of code for the BFP is available at the URL 

ftp://fits.cv.nrao.edu/pub/gbt_paraboloid.tax.gz 
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Table 9: Program which computes Table 7 

/* Program paraboloid_tab_Brt.c uses structural model function 
get_node_Hrt_bfpO to compute a table of trajectories of two nodes 
with respect to the BFP axis.    D.Wells, IRAD-CV, May95 */ 

tinclude <stdlib.h> 
tinclude <math.h> 
tinclude *'structural_model.h" 
tinclude "paraboloid.h" 

mainO 
{ 

const int svid = 50005, gfid = 40700; 
int svi, gfi; 
double el, vxyz[3], ri, fl, bfp_diyz[3], bfp_iyz[3]; 
char form[100]; 
struct node ..data svi_data, gfi.data; 

if ((svi = get_indei(svid)) == 0) exit(EIIT.FAILURE); 
if ((gfi = get.index(gfid)) == 0) exit(EXIT.FAILURE); 
for  (el = 0.0;   el < 90.1;  el += 5.0)  { 

gbt.paraboloid (el, vxyz, trx, ftfl, bfp_dxyz, bfp_xyz); 
if  (get_node_Hrt_bfp(svi, el,  ftsvi.data)) exit(EXIT_FAILURE); 
if  (get_node_wrt_bfp(gfi, el,  ftgfi_data))  exit(EIIT_FAILURE); 
printf ('7.2. Olft%5.31fk%8.61ffty.6.31ft%6.31ft7.8.51ft%6.31fft7.6.31fty.8.51f WWW 

el,   (fl - 60.0*39.37), rx,  gfi_data.at_elev.delta[1] , 
gfi_data.at_elev.delta[2], gfi_data.at_elev.tilt[Ol, 
svi_data.at_elev.delta[l], 
svi_data.at_elev.delta[2], svi_data.at_elev.tilt[0]); 

} 
exit(EIIT_SUCCESS); 
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This compressed "tar" file is about 120 kilobytes in length. Use "gunzip" to decompress it. In addition to 
the code, it contains a Makefile and several testcases for compiling and verifying the code. It also contains 
a copy of this GBT memo in Postscript. 
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of this C-code version of the tipping structure model and two examples of its application to 
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A    The BFP C-function 

This function is in file gbt_paraboloid.c: 

/* GBT ConiHianded_Paraboloid as function, of Elevation 
Computed Tue May 30 18:18:38 EDT 1995 
from least-squares fits to Model 95b 
Don Wells <dwellsfinrao.edu>, Dec94-May95 */ 

char BFP_SELECT[]=MtippingO rms"; 

#include "math.h" 
#include "structural_model.h" 
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#include "paraboloid.h" 

void gbt_paraboloid (double el, /* Elevation (degrees) */ 
double vxyz[], /* Vertex_Offset (inches)    */ 
double *rx, /* Tilt_about_X (radians) */ 
double *fl, /* Focal_Length (inches)    */ 
double dryz[], /* Focus_Offset (inches)    */ 
double xyzO[]) /* Rigging.Focus (inches)    */ 

{ 
const double flO = (60.0 * 39.37); /* fl=60_m at rigging angle */ 

double *vy, *vz; 
double x = (el - 45.0) / 45.0; /* Elevation scaled to [-1,+1] 

for Chebyshev polynomial   */ 
double tO =   1.0; 
double tl =     x; 
double t2 = 2.0*x*x      -1.0; 
double t3 = 4.0*x*x*x    -'S.O+x; 
double t4 = 8.0*x*x*x*x   -8.0*x*x  +1.0; 
double t5 = 16.0*x*x*x*x*x -20.0*x*x*x +5.0*x; 

vxyz[03 =0.0; 
vy - ftvxyz[1]; 
vz = ftvxyz [2] ; 

*vy = 
+ 
+ 
+ 
+ 
+ 

/* 

*vz = 
+ 
+ 
+ 
+ 
+ 

/* 

*rx = 
+ 
+ 
+ 
+ 
+ 

/* 

*f 1 = 
+ 
+ 
+ 
+ 
+ 

/* 

1.5767) 
-2.8064) 
1.6245) 
0.0751) 

-0.0213) 
-0.0006) 
0.0003) 

0.01778) 
-1.18147) 
0.04579) 
0.03169) 
-0.00054) 
-0.00022) 
0.00026) 

to 
tl 
t2 
t3 
t4 
t5; 
sigma-of-fit for Chebyshev polynomial */ 

to 
tl 
t2 
t3 
t4 
t5; 
sigma-of-f it for Chebyshev polynomial */ 

0.0003644) 
-0.0000827) 
0.0003606) 
0.0000034) 
-0.0000048) 
-0.0000007) 
0.0000024) 

2362.3580) 
0.1293) 
0.1531) 

-0.0034) 
-0.0021) 
0.0002) 
0.0003) 

to 
tl 
t2 
t3 
t4 
t5; 
sigma-of-fit for Chebyshev polynomial */ 

to 
tl 
t2 
t3 
t4 
t5; 
sigma-of-fit for Chebyshev polynomial */ 



GBT Memo 131 GBT Best-Fitting-Paraboloid [BFP] in C Page 23 

xyzO[0]  = 0.0; 
xyzO[l]  = -2159.02; 
xyz0[2]  =       196.85 

+1900.0 
+ flO; 

/* offset vertex wrt El axis */ 
/* offset vertex wrt El axis */ 
/* offset El axis wrt alidade */ 
/* plus nominal focal length    */ 

dxyz[0]  = 0.0; 
dxyz[l] = *vy - *fl * sin(*rx); 
dxyz[2] = *vz + *fl * cos(*rx) - flO; 

B    The Prime Focus focus-tracking function 

This function is in file gbt_pf_focus_track.c: 

/* GBT Prime-Focus Focus-Tracking as function of Elevation 
Computed Tue May 30 18:19:35 EDT 1995 
from least-squares fits to Model 95b. 
Results bx.by.bz are in prime focus coordinate system. 
Don Wells <dwells«nrao.edu>, March 1995 */ 

#include "structural_model. h" 
#include "paraboloid.h" 

void gbt_pf_focus_track (double el, 
double *bx, 
double *by, 
double *bz) 

/* Elevation (degrees) */ 
/* Box_0ffset_X (inches) */ 
/* Box_0ffset_Y (inches) */ 
/* Box_0ffset_Z (inches) */ 

double x = (el - 45.0) / 45.0; /* Elevation scaled to [-1,+1] 
for Chebyshev polynomial */ 

double tO 
double tl 
double t2 
double t3 
double t4 
double t5 

1.0; 

x; 
0*x*x 
0*x*x*x 

= 8.0*x*x*x*x 

-1.0; 
-3.0*x; 
-8.0*x*x +1.0; 

= 16.0*x*x*x*x*x -20.0*x*x*x +5.0*x; 

*bx = 
+ 
+ 
+ 
+ 
+ 

/* 

*by 
+ 
+ 
+ 
+ 
+ 

/* 

0.933) 
3.959) 
0.837) 
-0.109) 
-0.011) 
0.002) 
0.000) 

-1.112) 
-2.726) 
-1.030) 
0.074) 
0.013) 
-0.002) 
0.000) 

to 
tl 
t2 
t3 
t4 
t5; 
sigma-of-fit for Chebyshev polynomial */ 

to 
tl 
t2 
t3 
t4 
t5; 
sigma-of-f it for Chebyshev polynomial */ 

*bz =   0.000;  /* no Z box-offset for symmetric model */ 
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C    Function to retrieve data for nodes wrt BFP 

This function is in file get_node_wrt_bfp.c: 

/* Function get_node_wrt_bfp() is similar to function get_node(). The 
difference is that, rather than delivering a struct node_data in 

the 'elevation' coordinate system (plus 1900 inches in Z) , it 

delivers the struct with_respect_to the axis of the best fitting 

paraboloid for the requested elevation. The node is computed in the 

elevation system, and then is transformed to be relative to the BFP 
vertex, and then is rotated by the BFP rotation. The BFP focal 

length is subtracted from the new Z so that the coordinates will be 

relative to the prime focal point of the BFP at the elevation. This 

version of the node_data struct facilitates optical calculations: 

gbt .paraboloid () gives the focal length of the primary paraboloid, 

while wrt_bfp->gridn plus wrt_bfp->at_elev.delta[] gives the 

position of the Gregorian feedhorn (or prime focus box or 

subreflector 'vertex') relative to the focal point of the primary 

paraboloid. The tilts relative to the BFP axis for these nodes are 

returned in wrt_bfp->at_elev.tilt[]. D.Wells, NRAO-CV, May95. */ 

tinclude "math.h" 

tinclude "structural_model.h" 

#include "paraboloid.h" 

int get_node_wrt_bfp(int i_node, /* tipping.modelD index */ 
double elev, /* elevation (deg)  */ 
struct node_data *wrt_bfp) /* results returned here */ 

{ 

const double refl_orig[3] = {0.0, -2159.02, +2096.85}; /*reflector origin*/ 
const double flO = (60.0 * 39.37); 

int i, j; 

double refl[3], wrt_untilted[3], ctilt, stilt, rotate[3][3], wrt_tilted[3]; 
double vxyz[3], rx,  fl, bfp_dxyz[3], bfp_xyz[3]; 
struct node_data tipping_node; 

gbt.paraboloid (elev, vxyz, ftrx, ftfl, bfp_dxyz, bfp_xyz); 
if   (get_node_data(i_node, elev, fttipping_node)) return(13); 
wrt_bfp->node_id     = tipping_node.node_id; 
wrt_bfp->elevation = tipping_node. elevation; 
for  (i = 0;   i < 3;   i++)  { 

refl[i] = 
(     (double)tipping_node.grid[i] 
- refl_orig[i]  ) ; 

wrt_untilted[i]  = 
(    refl[i] 
+  (double)tipping_node.at_elev.delta[i] 
- vxyz[i]  ); 

} 
ctilt = cos(-rx); stilt = sin(-rx); 
rotate [0] [0] = 1.0; rotate [0] [1] =0.0;        rotate [0] [2] = 0.0; 
rotated] [0]  = 0.0;  rotate[1] [1]  = ctilt;     rotated] [2] = -stilt; 
rotate[2] [0] = 0.0; rotate[2] [1] = stilt;    rotate[2] [2] = ctilt; 
for  (i = 0;   i < 3;   i++) for  (j = 0,  wrt_tilted[i] = 0.0;  j  < 3;  j++) 

wrt_tilted[i]  += wrt_imtilted[j]  * rotated] [j] ; 
for  (i = 0;   i < 3;   i++)  { 
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wrt_bfp->grid[i] = tipping_node.grid[i] ; 
wrt_bfp->at_elev.delta[i] = wrt_tilted[i]  - refl[i]; 
wrt_bfp->at_elev.tilt[i]    = tipping_node.at_elev.tilt[i]; 

} 
wrt_bfp->grid[2] -= flO; /* new origin is at prime_focal_point */ 
wrt_bfp->at_elev.delta[2] -=  (fl - f 10); 
wrt_bfp->at_elev.tilt[0]    -= rx; /* new coor system is tilted */ 
retum(O) ; 

D    The "include" file 

The text reproduced below is the file paraboloid.h, which contains the ANSI-C prototypes for the BFP 
and PF-focus-tracking functions: 

/* Include for the best-fitting-paraboloid functions 
D.Wells, NRAO-CV, Dec94-May95 */ 

void gbt.paraboloid (double el, /* Elevation (degrees) */ 
double vxyz[], /* Vertex_Offset (inches)    */ 
double *rx, /* Tilt_about_X (radians) */ 
double *fl, /* Focal_Length (inches)    */ 
double dxyz[], /* Focus_Offset (inches)    */ 
double xyzO[]) /* Rigging.Focus (inches)    */ 

void gbt_pf_focus_track (double    el, /* Elevation        (degrees) */ 
double *bx, /* Box_Offset_X (inches) */ 
double *by, /* Box_Offset_Y (inches) */ 
double *bz) /* Box_Offset_Z (inches) */ 

/* The  'node_data' reference below means that structural_model.h 
should be included before this include: */ 

int get_node_wrt_bfp(int i, /* tipping.modelQ index */ 
double elev, /* elevation (deg)  */ 
struct node_data *wrt_bfp) /* results returned here */ 

E    The Gaussfit "program" for fitting conic sections 

In this section, we reproduce the source code file model.gf, which GaussFit [JFMM88] uses to fit conic 
sections to data. The equations of condition for the regression are the argument of the export () function 
call in the program. The equation is based on the common vertex equation of the conic sections [GKHK75, 
p.315], for the case of the axis of the conic along the Z-axis: 

x2 + y2 = 2pz-(l-e2)z2, (3) 
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where e is the numerical eccentricity and p is the "semiparameter"6 of the conic. For a paraboloid, we have 
£ = 1 and p = 2F, and so Eq.(3) reduces to 

x2 + y2 

4F (4) 

where F is the focal length (60 meters for the GBT primary mirror). The substitution 2p = 4F has been 
made in the model. gf shown below, as a convenience for the BFP analysis. 

The numerical eccentricity variable is still present to enable the code to fit ellipsoids.7 For an ellipsoid, we 
have p = b2/a, where a is the semi-major axis and b is the semi-minor axis, so that the model.gf code shown 
here is able to solve for an "F" which is 62/2a. We have a2 — e2 = b2 and e = e/a; it follows that model.gf 
will solve for an ellipsoid size parameter 

b2        .1 

2a "e(2£ ;). (5) 

where e is the "linear eccentricity" (one-half the desired inter-focal distance) and e is the "numerical 
eccentricity". The nominal values, for the GBT are e = 5.5 meters (11 meters between the foci) and 
e = 0.528). If the declaration "constant eps;" is changed to "parameter eps;", model.gf will be able to 
fit for the numerical eccentricity as well as the ellipsoid size parameter. 

/* GaussFit program to fit paraboloids to the distorted GBT surface */ 
/* Don Wells,  NRAO-CV, 08-December-1994,3/16/95 */ 

observation x; 
observation y; 
observation z; 

parameter vy; 
parameter vz; 
parameter rx; 
parameter fl; 
constant eps; 

mainO 
{ 

variable xO, yO 

xO = 0.0; 
yO = vy; 
zO = vz; 
srx = sin(rx); 

/* + = away from plane of symmetry */ 
/* + = away from feed arm */ 
/* + = up, height of surface */ 

/* vertex position */ 

/* paraboloid tilt about x-axis (radians) */ 
/* focal length */ 
/* eccentricity */ 

/* COMPUTE PREDICTED VALUES */ 
while  (import()) { 

xp = x - xO; 
yp = y - yO; 
zp = z - zO; 
/* positive rx is right -hand-rule about +X: */ 
xpp = xp ; 
ypp = +crx * jp    +srx * zp; 
zpp = -srx * yp +crx * zp; 

6 "The parameter 2p of a parabola y2 = 2px in the vertex position is defined as the length of the chord of the parabola 
perpendicular to the axis through the focus; it measures the width, so to speak, of the parabola at the focus. This definition 
can be carried over to the other conies: The parameter of a conic is defined as the length of the chord perpendicular to the 
principal axis through a focus."  [GKHK75, p.314] 

7The original version [Sch92] of f itref 1 is also able to fit ellipsoids. 
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/* Common vertex equation of the conies  (VNR, p.315):  */ 
export(  (xpp"2 + ypp"2) 

-   (((4.0 * fl)   -   (1.0 - eps"2)  * zpp)  * zpp)   ); 

F     The surface-data generator 

This program is file get_surface.c: 

/* get_surface.c   compute actuator coors as fn of Elevation 
D.Wells, NRAO-CV, Dec94-Mar95 */ 

#include <stdlib.h> 
tinclude <math.h> 
♦include "structural_model.h" 
#define MAX.SURF 2300 
main() { 

int 
num_nodes, i, j, pass, node_count, full_flag, id, aid, num_surf, 
first = 1, dif f ..count, surf .index [MAX.SURF] , surf _id[MAX_SURF] ; 

const double 
surface_rig_angle = 44.0, /* degrees */ 
fl = (60.0 * 39.37), /* 60m in inches */ 
translate_to_vertexD = {0.0, 2159.020, -2096.85}, 
tolerance = 4.0; /* inches */ 

double 
elev, /* degrees */ xyz[3], rad2, zp, diff; 

char line [100], name [20]; 
struct node_data surf_node; 
FILE *f2; 

/* make a list of the surface (actuator) nodes: */ 
if ((num.nodes = get_index(0)) == 0) exit(EXIT.FAILURE); 
for  (1=1, num_surf =0;  1 <= num_nodes; i++)  { 

if  (get_node_data(i, elev, ftsurf.node)) exit(EXIT.FAILURE); 
id = surf_node.node_id; 
aid = id > 0 ? id :  -id; 
if  ((aid >=    700001) ftft  (aid <=    768012)) { 

surf.indexDrum.surf] = i; 
surf_id[num_surf] = id; 
if  ((num.surf++) > MAX_SURF) exit(EXIT.FAILURE); 

} 
> 
f2 = fopen("surf_diffs.out", "w"); /* for unusual actuator Z-coors */ 
if (gets(line) == NULL) { printf ("EOF?! ?\nM); exit (EXIT.FAILURE) ; } 
sscanf(line, "•/.d", &f ull_f lag) ; 
while (gets(line) != NULL) { 

sscanf (line, "7.1f", ftelev); if (elev > 90.0) break; 
strcpy(name, "half"); if (full_flag) strcpy(name, "full"); 
printf ("tipping7,ld %s tipping.model at el_angle wrt surf ace.rig.angleXn", 

full_flag, name); 
for (pass = 1, node_count = 0, diff_count = 0; 

pass <= 2; pass++) { 
for (i = 0; i < num_surf; i++) { 

if (get_node_data(surf.index[i] , elev, ftsurf.node)) exit(EXIT_FAILURE) 
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if   ((id = surf.node.node.id)   != surf_id[i]) exit(EXIT.FAILURE); 
if   (full_flag  II   (!full_flag &ft  (id > 0)))   { 

if   (pass == 1)   { 
node_count++;  /* how many in dataset? */ 

} else { /* pass ==2:   */ 
for (j = 0;  j  < 3;  j++) xyz[j]  = (double)surf_node.grid[j] 

+ trcinslate_to_vertex[j] ; 
rad2 =  (xyz [0] *xyz [0] + xyz[l]*xyz[l]) ; 
zp = rad2 /  (4.0 * f1); 
/* check difference btw grid coors and paraboloid: */ 
if  (first ftft fabs(diff = xyz[2]  - zp)  > tolerance) { 

diff_count++; 
fprintf(f2, 

"n=7.3d:  id=7.7d, r=7.6.11f, d=7.5.21f (=7.7.21f-7.7.21f)\n", 
diff_coimt, id,  sqrt(rad2), diff, zp, xyz[2]); 

} 
/* The GBT surface will be adjusted to 60m paraboloid 

at surface_rig_angle, so we overwrite xyz[2]: */ 
xyz[2] = zp; 
printf  ( "7.8d7.8.21f7.8.21f7.8.21f7.8.21f", 

id,  1.0, xyz[0], xyz[l], xyz[2]); 
printf ("7.8.5^7.8.5^7.8.51^", surf_node.at_elev.delta[0] , 

surf_node.at_elev.delta[1], 
surf_node.at_elev.delta[2]); 

} 

} 
} 
if (pass == 1) printf ("7.6d7.8.2f\n", node.count, elev); 

} 
first = 0; 

} 
fclose(f2); exit(EXIT_SUCCESS); 

} 


