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Summary 

Subtraction of background noise is frequently done by fast movements, ON/OFF- 
source, of the telescope pointing. Time-consuming are either the resulting slowly 
damped oscillations of the dominant structural mode, or their avoidance by a slow 
deceleration.- It is shown that these oscillations can be prevented if the acceleration 
driving the telescope has the form A{t) = siRn(t), and for a duration measured in 
multiples of the oscillation wavelength. Four cases are calculated, with n = 0, 1, 
2, 3, (for telescopes of 100 meter diameter). Exact fast solutions are possible for 
zero structural damping and exact timing, for all four cases. Tolerable solutions (of 
^ 1 arcsec amplitude), of somewhat longer but still fast duration, are found only for 
cases n * 2, for any damping and with small timing deviations; and still somewhat 
longer durations will require no exact timing at all. The latter will also suppress any 
higher dynamic modes as well.- And a similar treatment, with similar results, is also 
given for a quick stop after a fast slew.- A method is suggested to measure the 
dominant mode of the beam oscillation directly on the telescope, at the half-power 
point of a strong radio source. 

1. General Remarks 

The paper deals with pointing oscillations from an immediate stop after a fast move. These 
are especially disturbing during ON-OFF observations, where not much time should get lost by 
slowly damped oscillations, or by slowly decelerated stops, it a&o matters for a quick stop 
after a fast slew. 

A fast move consists of two parts: first its acceleration, its speed then being counteracted 
by its deceleration. It should be possible to let the second part counteract not only the speed, 
but as well the oscillations done by the first part. Since both parts can be made anti-symmetric, 
this leaves only one free parameter to be adjusted: the du-aiiori, or strength of the force. 

All this is most important for large telescopes, which have slow eigenfrequencies and thus 
slow damping. Fig.1 shows the lowest frequency Fr and diameter D of 194 systems 
(received with thanks from Ralf White of Comsat-RSI).  I have also added my old equation 

Fr(D) = 1.0Hz(100m/D) (1) 

derived about 1965 as follows. The resonant frequency Fr of a mass M and a spring of 
stiffness K is in proportion to Fr - >/(K/M). And scaling a structure for different diameters 
D, we have K = (cross section)/length - D2/D = D, and M - 03, thus Fr - Vp/D3) = 1/D. 
And the constant (1.0 Hz) was obtained for an octahedron hanging between two tetrahedrons. 
The figure tells: You can do at lot worse than (1), but not much better. This means another 
"Natural Limit" for radio telescopes. 
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2, The Model 

We call: Y(t) ~ Telescope Drive Program (to be chosen) 
X(t) = Telescope Movement (resulting) 

and we use the simplified model of Fig.2, with K = spring constant, M = moved mass, and 
B = internal friction. B is the friction within the structure which causes the damping (not the 
external friction of gears and wheels). To obtain the resulting movement X(t) from the chosen 
drive Y(t), we must integrate the differential equation  (where '=d/dt): 

X" = - (B/M) (X* - Y') - (K/M) (X - Y), (2) 

The two system constants, B/M and K/M, could be obtained by structural dynamical 
analysis. But what we really want to know is the oscillation of the beam (not of the structure), 
and its dominant mode, for movements in azimuth and elevation. This should be obtained 
empirically, move the telescope beam fast to the half-power point of a strong radio source, and 
stop fast. Record the wiggling receiver output (not the encoders), which will show the dominant 
beam frequency, depending on the quotient K/M of (2) as 

Fr = (1/2*) v/fK/M), (3) 

and the damping, depending on the product KM as 

Qd = it BMK-M) = logarithmic damping decrement (4) 

where Qd is the quotient of one maximum, divided by its next maximum, for small damping. 
From the measured values (3) and (4) we then obtain the two constants of (2): 

B/M = 2 Qd Fr   and     K/M = (2it Fr)*. (5) 

The telescope movement must obey two limitations: for acceleration A = Y" <j Am, and 
velocity V = Y* s Vm. And we call G = the distance (goal) to be moved for ON/OFF 
observations. Many examples of Am, Vm, Fr, G have been calculated, but for the following 
we use, as a typical set for a large telescope of 100 m diameter, and for a large beam: 

Am as 0.2 deg/sec2,        Vm = 0.67 deg/sec (6) 
Fr m 1.0 Hz, G ^ 1.0 deg. 

We call Te = duration from start to end of a fast move, Nw =* Te Fr - number of oscillation 
waves within the duration, and Ve (arcsec/sec) = velocity at end, De (arcsec) = deviation 
from goal at end, Dmax (arcsec) = the maximum deviation thereafter, during the oscillations. 
If perfect we have Ve = De - Dmax - 0.  And as tolerable we specify Dmax s 1.0 arceec. 

For the application at the telescope, our method shall specify and use only the acceleration 
of the drive as a function of time, which means the driving voltage or current (not to be 
changed by any feed back from the decoders). But to calculate and to plot the predicted 
oscillations now, we must also know the two integrations of Y":    Y'ft)   and   Y(t)   for (2). 

After application of this method, the telescope will be at rest, but maybe not exactly at the 
desired poinliny. The drive is then immediately switched to the normal mod© (using decoders) 
to remove any small deviation. 



-3 - 

3. Choices for ON/OFF Acceleration   A - Y'^t) 

The fastest and easiest would be A = + const s Am. I his is possioie out n oemanas a 
rather accurate timing of Te. For a less demanding smoother A(t), we could use power series 
of t, but integrating twice (from A to Y) would increase the power by two. We prefer powers 
of sin(t), which are not increased by any integrations, and are more adequate anyway. 

We have calculated four examples,  DO - D3 ("D" for one Degree move).  Fig.a shows the 
accelerations used, Y"(i) = sin^l), for n ~ 0, 1, 2, 3, and the integrated drivee Y(t). Whereas 
the four accelerations of Fig.Sa show large essential differences, the four integrated drives 
Y(t) of Fig.3b look very similar.  But in spite of the latter, the resulting telescope movements 
X(t) will be very different again.- We normalize the time by using 

Z = 2ir t/Te. (7) 

The minimum of Te is given by the maximum allowed acceleration. And the proper choice 
of Te shall then minimize the final deviation Dmax.- The following table gives duration Te, 
acceleration Y"(t), and drive function Y(t). The deceleration is always anti-symmetric. 

Te i Y" - Range of Z 

DO) v/(4G/Am) =   4.47 sec     +4G/Te2 (G/2it2) Z2 

- 4G/Te2 (G/2n2) (2* - Z)* 

D1) v^nG/Am) = 5.61 sec    (2*G/Te2) $in(Z) (G/2rc) (Z -sin(Z)] 

D2) >/(8G/Am) - 6.35 sec      +(QG/Te2) sin2(Z) (G/2Tt2) [Z* - sin2(Z)] 

0... it 

n... 2K 

0.,.2TC 

0... v, 

- (8G/Te2) sin2(Z)     G - (G/2it')[(2ji-Z)2 - Sin2(2K~Z)]   n ... 2K 

D3) /(37tG/Am) = 6.87 sec    (3jcGyTe2) sin3(Z)      (G/2ic) (Z - sin(Z) - (1/6)$in3(Z)]      0... 2n 

Exact solutions (Dmax = 0) exist, with zero damping only, for all integer values of Nw 
« Te Fr, with models D1 and D3; and for all even values of Nw with models DO and D2. This 
is shown in Fig.4 for DO, where Te - 6.0 sec is the fastest even case. Similar pictures were 
obtained for D1 with Te = 6.0 sec, for D2 with Te = 8.0 sec, and for D3 with Te « 7.0 sec- 
Regarding the cimilaritios of the dnvos Y(t) in Fig.3b, the exact solutions are very different. 

Tolerable timed fast solutions exist, even with rather large damping, Qd = 0.10 (steel 
structures have nunnally about Qd — 0.05), for D2 and D3 only.- Also inaccurat© timing, Te 
± 0.2 sec, is tolerabel only for D2 (with Dmax ■ 0.14 arcsec), and D3 (Dmax » 0.41 arcsec). 

Without special timing (with small or large damping), Umax is xoieraoel Tor oz wiih <n ty Te 
* Ta = 7.6 sec; and for D3 with any Te * Ta = 6.9 sec, see Fig.5. It means that above these 
durations Ta, all higher dynamical oscillations will be automatically suppressed as well. 

If ein inorcaso of the decoloration limit, from Am = n ?0 deg/sec2 to Am = 0.28. is technically 
possible, then the shortest exact solution Te (and the important limit I a) are: i.u ( > 20) sec 
for DO;  5.0 (9.6) sec for D1;  6.0 (7.5) sec for D2;  and 6.0 (5.9) sec for D3. 
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4. Quick Stop after Fast Long Slew 

This case was handled in the same way as the ON/OFF deceleration, now called SO to S3. 
Exact solutions exist, with zero damping, for all integer values of Wn = Te Fr, with models 
SO (below Am with Wn = 3, 4,..) and with model S2 (with Wn » 5, 6,..); and for all Wn which 
are Vg of odd integers, with model S1 (Wn = 5.5, 6.5, ..) and model D3 (Wn = 7.5, 8.5,..). The 
shortest exact solution is shown in Fig.6 with SO, with a slew speed of 0.6 deg/sec. The stop 
duration is only Te = 3.0 sec, and the distance moved, between deceleration start and goal, 
is G = 0.90 degree.  But SO is rather sensitive to timing. 

Tolerable timed solutions exist, with small or largo damping, again only for S2 and S3; anri 

timing deviation, Te ± 0.2 sec, is tolerable only for S2 (Dmax = 0.66 arcsec), and for S3 (Dmax 
= 0.03 arcsec). 

The best seems to be S2, which is tolerable without special timing, for all Te ^ Ta = 6 
sec.  See Fig.7 as an example.  Again, all higher modes are suppressed as well. 

So far, all numerical results hold for values (6). In other cases, limits for Te and 
accelerations Y"(t) can be obtained from the previous table 

Conclusion; 

Fast and good solutions, for ON/OFF observations, as well as for stopping a slew, can be 
obtained if the telescope is driven as a function of time (no feed back from decoders), with the 
drive power going with sin2(t) or sin3(t). Timed exact solutions remove the slowest oscillation, 
tolerable deviations suppress it sufficiently. Many telescopes have a dominant slowest mode, 
while the higher modes are faster damped. For a given telescope, its dominant mode of the 
beam oscillation should b© obtained empirically. 

For all cases without special timing (whose duration is only slightly longer), all higher 
oscillation modes will be automatically suppressed as well. 
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Fia.1    Lowest dynamical mode and telescope diameter, for 194 systems. 
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K =* spring constant 

M = moved mass 

B — internal friction 

Fig. 2.  Simplified model for the telescope drive Y(t), 
and its resulting movement X(t). 
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Fig. 3.        Four drive functions,  from  DO ( )  to  D3 ( ). 

a) The accelerations used:   Y"(t) «= sinn(t),  from   n = 0 to n = 3. 

b) The integrated drive functions:  Y(t). 
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1    O5cil-D0 85-25'1996 
Mw = 6  Fr = 1 Hz  Q4 = 8  G = 1 deg    [ 
Tc = 6 sec flmax = 0.111 deg/sec* B/M = 0.000 K/M = 39.18 
Umax = .33 deg/sec Uc = 0 arcsec/sec De « 0 Dmax = 0 arcsec 
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Fig. 4,   ON/OFF  Drive DO;  fastest exact solution,  for values (6), 
It would be only Te = 4.0 sec,  if A = 0.250 were permitted . 

Osc iI-D3 05-25-1996 
Hu = 6.9  Fr = 1 Hz  Qd = .05  G = 1 deg 
Tc = 6.9 sec Amax « 0.193 deg/sec2 B/H = 0.100 K/M « 39.13 
Umax = .29 deg/sec Uc = 1.13 orcsec/scc De « .17  Dmax -  .24 arcsec 
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Fig. 5.   ON/OFF Drive D3;  all solutions are tolerable for any larger Nw. 
If A = 0.280  then  Te = 5.9 sec only. 
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Osc i1-S0    05-25-1996 
Mu = 3 Fr = 1 Hz      Qd = 0      Te ~ 3.811 sec   • 
G = 0.90 deg    flmax * U.iiUU <ieg/sec*       B/n = 0J080    Kz-n = 39.^18 
Umax =   .6 deg/sec    Uc =   .01 arcscc/sec    De = 0      Dmax = 0 arcsec 

Fig. 6.   Drive SO, stop after slew;  fastest exact solution   for values (6). 

Oscil-SZ    05-25-1996 
Nu * 6        Fr = t Hz      Qd =  .05      Te = 6.00 set 
G - 1.80 deg    Awax *= 0.200 deg/sec»       B/M « 0.100    K/M « 39.48 
Umax =   .6      Oe --.01 arcsec/scc    De =-.07      Dmax =   .07 arcsec 
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Fig. 7.    Drive S2, stop after slew;  all solutions are tofprable for any larger Nw, 




