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Abstract 

Coordinate systems and frames used to describe the Green Bank Telescope, and 
transformations relating them are reviewed. Effects of gravity loading elastic 
deformations on coordinate frames and fiducial reference point locations are dis¬ 
cussed. Laser rangefinder aiming corrections are calculated. Application of laser 
rangefinder metrology to telescope pointing determination is discussed. 



1. INTRODUCTION. 

This memo is intended to define certain control points, fiducial reference points, 
coordinate frames, and coordinate systems in those frames, which can be used 
to describe the geometry of the Green Bank Telescope. It is hoped that the 
memo will be a practical control document useful in defining and determining the 
dynamic location and orientation of laser ranging stations, receivers, and other 
objects mounted on the telescope feed arm. 

The GBT may be considered a structural assembly composed of linked sub¬ 
structures. Individual substructures have limited degrees of freedom to move with 
respect to one another, and may flex elastically and dynamically, under the influ¬ 
ence of weight loadings. To measure the dynamic geometry of the telescope by 
means of laser ranging we require mathematical local reference frames and local 
coordinates to describe the position and orientation in-the-large of each major 
substructure. We need to create physically measurable fiducial points on the sub¬ 
structures in order to allow measurements to be made of sufficient sample points 
to determine substructure location and orientation for the physical telescope. We 
also need to define structural and geometric frame control points to extend the 
geometric description of the ideal telescope to include change of shape of substruc¬ 
tures when the GBT finite element model is used to predict the altered geometry 
of the telescope caused by gravity-induced elastic deformation. 

The description of the telescope's geometry has several levels. These levels are: 
the reference optical telescope, the design telescope, the ideal tilted geometric 
telescope, the ideal tilted deformed telescope, the as-built telescope, and the as- 
measured telescope. We discuss these descriptions in the sections to follow. 



2. THE REFERENCE OPTICAL TELESCOPE. 

The reference optical telescope is just an optical design for a gregorian reflecting 
telescope with offset optics. Its first optical element is an off-axis surface patch 
on a paraboloid of revolution. This reflecting patch is designated as the "main 
reflecting surface" of the telescope. A near-parallel source beam of radiation is 
focused by this surface patch onto the focus point of the paraboloid, which is 
designated as the prime focus point of the telescope. The second optical element 
is an off-axis surface patch on an ellipsoid of revolution. This ellipsoidal patch is 
designated as the "subreflector surface" of the telescope. The physical structures 
embodying these surface elements are called the main reflector and secondary re¬ 
flector of the telescope. (Fig. 1). 

One of the two foci of the ellipsoid of revolution is located at the prime focus 
point, FQ. Radiation leaving the prime focus is reflected by the subreflector surface 
to the other ellipsoid focus, Fi, the gregorian focus of the telescope (also called 
the Ml focus). The line through the two foci is the major axis of the ellipsoid. 

The paraboloid and ellipsoid axe intersect at the prime focus point, which is 
a common focus of those two quadric surfaces. These axes intersect at an angle 
j3 (0 < p « 90° ). The plane passing though them defines the "tangential optical 
plane". Each surface patch is defined furthermore to be generated by the inter¬ 
section of a plane perpendicular to the tangential plane with its defining quadric; 
such a plane cuts off a surface patch which is symmetric with respect to the tan¬ 
gential optical plane. The tangential optical plane is then a plane of symmetry of 
each reflecting surface and bisects it, and is also a unique plane of symmetry of 
the telescope. Let Ii be the point in the tangential optical plane which defines the 
mid ray of the tangential fan of rays from the gregorian focus to the subreflector 
surface. 

The gregorian focal plane of the optical telescope passes through the focus Fi 



and is perpendicular to the ray IiFi. The rays I^Fj and Foh can be considered 
to define a (folded) optical axis of the telescope. 

In a physical embodiment of the telescope the gregorian focal plane will coin¬ 
cide with flat machined surfaces of flanges attached to the receiver room turret's 
platter structure. The platter axis will be aligned perpendicular to the flanges and 
the focal plane. The flanges mate to flanges on the individual receiver support 
mounts. The platter flange centers, ideally, lie on a 56 inch radius circle centered 
on the turret axis, offset 56 inches from the gregorian focus. The receivers are 
rotated as required to the gregorian focus. 

The turret platter is provided with eight receptacles on its perimeter, one for 
each receiver assembly. Each receptacle has three feed positioning slots ( for the 
cardinal feed position, and three degrees on either side of the cardinal position). 
An index pin and motorized actuator is mounted on the ceiling of the feed room 
diametrically opposite the active feed. The receiver feed is locked into position 
by driving the index pin radially inward towards the turret axis, and engaging a 
slot on the appropriate receptacle. 

The telescope's optical design is defined by the following parameters: 

1. The focal length, /p, of the paraboloid. 

2. The angle, /? , between the ellipsoid and paraboloid axes. 

3. The eccentricity, e , of the ellipsoid. 

4. The spacing, 2/e , between foci of the ellipsoid. 

5. The offset angle, a, from the ellipsoid major axis, of the mid ray of the 
tangential plane ray fan from the gregorian focus to the subreflector.. 

6. The half-angle, G# , of the tangential plane ray fan from the gregorian focus 
to the subreflector surface. 

7. The half-angle, B* , of the tangential plane ray fan from the prime focus to 
the intersection of the main reflector surface with the tangential plane. 

8. The offset angle, Go, from the paraboloid axis, of the mid ray of the tan¬ 
gential plane ray fan from the prime focus to the parabolic arc intersection 
of the main reflector surface. 



The reference optical design has been specified by Norrod and Srikanth in 
GBT Memo 155 [Nor-1]. The exact parameters of the optical telescope specified 
in this memo are: 

fp 6000 cm 

p 5.570° 
e 0.528 
2/e 1100 cm 
a 17.899° 
OH 14.99° 
9* 42.825° 

When referring to the optical telescope we use the following notation. Let: 

VQ denote the paraboloid vertex. 

FQ denote the prime focus point, the common focus of the ellipsoid and paraboloid. 

Fi denote the gregorian focus point, which is the other focus of the ellipsoid. 

ii   denote the intersection point of the tangential plane mid ray from the gre¬ 
gorian focus, with the subreflector surface. 

a  be the length of the major semi axis of the ellipsoid. 

b  be the length of the minor semi axis of the ellipsoid, 

ri be the length of the ray Fill. 

r2 be the length of the ray FQII . 

dsp be the perpendicular distance of point Ji to the paraboloid axis. 

hsp be the projected length of ray FQII along the paraboloid axis. 

dmp be the perpendicular distance of point-Fi to the paraboloid axis. 

hmp be the projected length of ray FQFI along the paraboloid axis. 

7   be the angle FQIIFI . 



The following geometric relations hold: 

(2.1) ~      /e a 

(2.2 ) 6 = ay/1 - e2 , 

(2.3 ) ri + rz = 2a . 

Applying the law of cosines to triangle FQFIII and using (2.3 ) one gets 

(2.4) 
fe(--e) 

ri = r2 = 2a — 7*1 . 
1 — e cos a 

Applying the law of sines to the same triangle one gets 

-i (-^){sma) (2.5 ) 7 = sin 

By simple trigonometry, 

(2.6) dnt = r2 sin(a + 7-/?) 

(2.7) dmp = 2fesm(P) 

hsp = r2 cos(a + 7 - ft)   . 

hmp = 2 fe cos(p)   . 

The unit outward normal vector to the ellipsoidal surface patch at Ii makes 
an angle (—) + a with the ellipsoid's major axis and makes an angle (—) + a — (3 

with the paraboloid's axis. 

The derived parameters of the reference optical design are: 



Derived Stated Value In        Computed From (2.1)-(2.7) 
Parameter GBT Document 

1041.6667 cm (410.1050") 

884.6296 cm  (348.2794") 

1509.9158 cm  (594.4550") 

573.41748 cm (225.7549") 

36.127028° 

429.1726 cm (168.9656") 

380.2874 cm (149.7194") 

35.962514° 

30.392514° 

106.7680 cm  (42.0346") 

1094.8062 cm  (431.0261") . 

The optical geometry of the subreflector is illustrated in Fig. 1. 

* RSI Contractor's Drawing 120730 . 
t GBT Memo 155 
t GBT Drawing C35102M081-Rev. B-Sheet 1. Design values on this drawing are 
optical design values, rounded to the nearest millimeter. 

a 410.106" (*) 

b 348.280" (*) 

n 1510 cm (J) 

r2 573 cm (f) 

7 

dSp 429.200 cm (}) 

hsp 380.300 cm ($) 

(i)+« 

(i) + «-0 

dmp 106.800 cm (}) 
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Figure 1 .    The Subreflector Ellipsoid Reference Geometry 



3. THE DESIGN TELESCOPE. 

At the next level, the "design level", geometric reference control for the telescope 
is described by a set of design drawings, "Foci Arrangement And Coordinate Sys¬ 
tems For The GBT", NRAO drawing C35102M081, [King-1]. 

These drawings describe the telescope as an assembly of individual rigid sub¬ 
assemblies: the alidade, feed arm together with the main reflector, prime focus 
receiver mount, subreflector. The alidade rests on a rigid horizontal plane, which 
represents the top of the alidade track.. The spatial relationship between the 
subassemblies is defined for an ideal configuration of the telescope, which we call 
the "design configuration". The design configuration describes the telescope as an 
ideal elevation-azimuth antenna at an elevation angle ELant = 90° and azimuth 
angle AZont = 0°. A prime focus point, FQ, and a secondary focus point, Fj, 
are defined for this ideal antenna. The ground and alidade track are represented 
together by a horizontal plane. The optical geometry of the optical telescope is 
embedded into the design telescope. An ideal main reflector surface, the "par¬ 
ent paraboloid", is defined for the configuration. This is just the main reflector 
paraboloid, as defined for the optical telescope, embedded into the design con¬ 
figuration. In like manner one defines the "parent ellipsoid" as the subreflector 
ellipsoid for the optical telescope, embedded into the design configuration. 

In the design configuration, six local coordinate frames have been defined, to¬ 
gether with a local Cartesian coordinate system associated with each frame. Here 
a frame is a set of three mutually perpendicular unit direction vectors based at a 
well-defined point fixed to one of the rigid subassemblies (or the ground, in one 
case) and is fixed in direction with respect to the geometry of this subassembly. 
That is, each frame is considered to be embedded in a fixed way into a rigid solid 
object. 

Locations of the design telescope origin points are indicated in Fig. 2. 



For the design configuration (ELant = 90o,AZant = 0°), the six frames are: 

• Rrame #1. 
The Base Frame. 
Origin Point - Bd 
Unit Frame Vectors: X}Y,Z 

Frame #2. 
The Alidade Frame. 
Origin Point - A^ 
Unit Frame Vectors: Xod, Fad, Zad 

Frame #3. 
The Elevation Frame. 
Origin Point - Ed 
Unit Frame Vectors: Xgd, Kd, Zed 

• Frame #4. 
The Reflector Frame. 
Origin Point - Rd (= VQ) 

Unit Frame Vectors: Xrd, Yrd, Zrd 

• Frame if5. 
The Prime Focus Frame. 
Origin Point - Pd (= ft) 
Unit Frame Vectors: Xpd, Ypd, Zpd 

• Frame #6. 
The Subreflector Frame. 
Origin Point - Sd (= ii) 
Unit Frame Vectors: XSd, Ysd, Zsd 
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The base frame must be related to the ground. We will introduce a new 
frame, the "ground frame", frame #0, after a control monument network has 
been installed and surveyed. Its unit vector XQ will point horizontally east, unit 
vector YQ will point horizontally north (astronomical), unit vector ZQ will point 
up along local gravity vertical. Its origin point, OQ , will be tied by the control 
survey to the West Virginia state grid. The base and ground frames are distinct. 
Effects of track waviness, alidade thermal expansion, structural distortion and 
tilt will be included in the appropriate telescope model by including them in the 
transformation matrices relating the alidade, base and ground frames. 

The base coordinate system is Cartesian, with X, Y, Z axes respectively along 
the X, Y, Z unit frame vectors. Its origin has coordinates: 

(3.1 )   X{Bd) = 0, Y(Bd) = 0, Z(Bd) = 0 . 

The azimuth axis of the design telescope is a line through the origin of the 
base coordinate system, pointing along the Z axis. This design telescope axis 
is considered to be embedded in the alidade structure, as the axis of the pintle 
bearing. For the design configuration, the unit alidade frame vectors are: 

(3.2 a )    Xad = —X , Yad = — Y , Zad = Z.     The alidade origin is: 

(3.2 b)    Ad = Bd , X(Ad) = 0, Y(Ad) = 0, Z(Ad) = 0 . 

The point of attachment Ed of the elevation frame, which is the origin of the 
elevation coordinate system of the design telescope, lies on the azimuth axis: 

(3.3 a) X(Ed) = 0, Y(Ed) = 0, Z{Ed) = he = 1900.000 inches. 

For the design configuration, the unit elevation frame vectors are: 

(3.3 b)     Xed = —X ,  Yed = —Y ,  Zgd = Z. 

The elevation axis of the design telescope passes through Ed and is directed 
along Xed . Length he is the design height from the top of the azimuth track to 
the elevation axis. 

13 



The attrachment point Rd of the reflector frame is the origin of the reflector 
coordinate system and is the vertex of the parent paraboloid of the design tele¬ 
scope. Its base system coordinates are 

(3.4 a)    XiRd) = 0 , Y(Rd) = dre, ^(i^) = (he + hre) , 

where dre = 5843.911cm, hre = 499.999 cm. For the design configuration, the 
unit reflector frame vectors are: 

(3.4 b)     Xrd = -X, Yrd = -Y,Zrd = Z. 

The equation of the parent paraboloid is: 

(3.4 c)     X?d + Yr
2

d = (4/p)(2rd) , where /„ = 6000cm. 

The design telescope's prime focus point, Pd , is the point of attachment of the 
prime focus frame, and origin of the prime focus coordinate system. It is the focal 
point of the parent paraboloid, and is also one of the focal points of the design 
ellipsoid surface of the secondary reflector (the parent ellipsoid). Its base system 
coordinates are: 

(3.5 a)     X(Pd) = 0 , Y(Pd) = dre, Z(Pd) = (he + hre + hrp) cm, 

where hrp = fp = 6000 cm. 

For the design configuration, the unit prime focus frame vectors are: 

(3.5 b)       Xpd = -Y(cos 45.5°) + £(sin45.50) , 
Ypd = +y(sin45.50) + Z(cos45.50) , 

Zpd = — X . 

The prime focus frame of the design telescope tilts exactly 45.5° to the axis of the 
parent paraboloid (Fig. 3). This frame is used to describe motions of the prime 
focus receiver mount. The frame is considered to be embedded in the prime focus 
receiver mount. The optical prime focus point, FQ , is coincident with the origin 
of the prime focus frame, Pd . We consider the optical prime focus to be distinct 
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from the origin of the prime focus frame; the latter point is considered to be a 
reference point embedded in the prime focus receiver mount and moves together 
with this mount. 

The gregorian focus of the parent ellipsoid is located at: 

(3.5 c)  X(Md) = 0, Y(Md) = (dre + dmP), Z(Md) = (he + /ire + /irp - /imp). 

Distances dmp = 106.800 cm and hmp = 1094.800 cm are called out on the 
reference drawing [King-l]. The distance between the two ellipsoid foci is 

\Pd Mi| = 2/ed = J hmp + ^mp • ^ one use(^ these values, which are the reference 
optical values rounded to the nearest millimeter, one would obtain a distance from 
the design ellipsoid's center to either focus as fe = 549.9985 cm, rather than the 
exact value of 550 cm specified by the reference optical design. The geometry of 
the gregorian ellipsoid surface as approved for manufacture is specified by RSI 
contractor's drawing 120730, sheet 3. 

In the March 1996 updated optical design, [Nor-l], the distance between focal 
points FQ and 1*1 is specified to be exactly 

|Fo F1\ = 2/e = yjhlp + d^ = 1100 cm. 

The angle a, with vertex Fi, between the segment IiFi and the major axis 
of the design ellipsoid (the line FQ FI ) is defined to be exactly 17.899°. 

Distances dmp and hmp should be: dmp = 1100sin/? cm and /i^p = 1100 cos(3 
cm, to locate the gregorian focus correctly relative to the parent paraboloid. These 
distances, computed previously for the reference optical telescope, are slightly dif¬ 
ferent than the values called out in [King-l]. For the design telescope we will use 
the derived values for the optical reference design in [Nor-l], rather than the ear¬ 
lier values called out in [King-l], which are the optical design values rounded to 
the nearest millimeter. 

The point of attachment Sd of the subreflector frame of the design telescope, 
which is the origin of the subreflector coordinate system, has base system coordi¬ 
nates: 
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(3.6a)   X(5d) = 0, Y(Sd) = {dre + d.p)1 Z(Sd) = (he + /ire + h^ + V)• 

Values dsp = 429.200 cm, /ip5 = 380.300 cm are called out in [King-l] . Again, 
here we will also use values implied by the reference optical telescope for the de¬ 
sign telescope 

For the design configuration, the unit subreflector frame vectors are: 

(3.6 b) Xsd = -Y(cos 36.7°) + Z(sm 36.7°) , 
ysd = +y(sin36.70) + Z(cos36.70) , 
Z3d = —X . 

In the design telescope, the subreflector frame tilts exactly 36.7° to the parent 
paraboloid's axis (Fig. 3). This frame's orientation is selected to describe motions 
of the subreflector. The frame is considered to be embedded in the subreflector 
mount structure. The Xsd direction is along the common nominal direction of 
the axes of Stewart platform actuators #4, #5. The Ysd direction is along the 
common nominal direction of the axes of actuators #1, #2, #3. Note that Ysd 

does not point along the normal to the subreflector surface at Sd ■ 

The gregorian focus point of the design telescope, Fi, happens to lie on the 
point of origin, Md, of the subreflector frame. We consider the optical prime focus 
point to be distinct from the origin of the subreflector frame; the latter point is 
considered to be embedded in the subreflector support structure and move to¬ 
gether with that structure. 

Besides the six local reference frames defined by drawings C35102M081, other 
local reference frames may be useful for describing the GBT. Frames associated 
with the gregorian design ellipsoid, feed turret platter, individual receivers, and 
receiver room will be defined. 

The additional reference frames are: 

• Frame #7. 
The Gregorian Ellipsoid Frame. 
Origin Point - CEd    ^Midpoint of ray FQFI). 

Unit Frame Vectors: Xcd, YCd, Zcd 
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The point of attachment, CEd , of the gregorian ellipsoid frame is the center of 
the parent ellipsoid, which is the midpoint of the line segment between foci Md and 
Pd. The frame vector Xgd is directed from the ellipsoid center CEd, along the 
ellipsoid major axis towards Pd , the common focus point of the ellipsoid and the 

parent paraboloid. The angle f3 = tan~1(--^)   = 5.57° . For the design config- 

uration the unit gregorian ellipsoid frame vectors and the origin are then given by: 

(3.7) 

Xcd = -Y(smP) + Z(cosp)  ,  X(CEd)=0J 

YcdEE+Y{cosP) + Z{smp)  ,  Y(CEd) = (dre + (dmp/2)), 

Zed EE -X ,     Z(CEd) = (he + hre + hrp- (W2))   • 

Frame #8. 
The Turret Frame. 
Origin Point - Td 

Unit Frame Vectors: Xm, Ytd, Ztd . 

(3.8.1) 

Xta = -Y(cos(a - p)) + Z(sm(a - p)) , 
Yu = +Ylsm(a - P)) + ^(costc* - /?)) , 
Z^ = -X ,    where a = 17.899° , P = 5.570° . 

The turret frame is embedded in the platter. The origin, Td, is intersection 
point of the platter's flange plane with the turret axis. The YM axis is defined to 
coincide with the platter axis, outwards from the platter. In the design telescope, 
the Ytd axis points coincidentally along the central optical ray MdSd. The X^ 
axis is perpendicular to the Y^ axis, and lies in the plane of the receiver flanges. 
It points in a radially outward direction to the receiver circle. It would be conve¬ 
nient if it also were in the telescope's plane of symmetry and pointed towards the 
main reflector when the index pin in the feed room ceiling was engaged, so the 
phase center of one of the receivers (which we arbitrarily choose to be the L-band 
receiver, Nl), the origin point Td , and the center of the engaged index pin slot 
were all co-linear. [The receiver flange on the platter could have locating pins, 
set precisely so that the midpoint between the hole centers on the mating feed 
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horn mount flange surface was the phase center of the inserted L-band receiver. 
To accomplish this one would need a survey of the receiver house and platter, to 
determine locating pin hole centers on the platter flanges.] 

The gregorian focus Md and the turret origin point Td each He in the plane of 
symmetry of the telescope and the gregorian focus plane. They are separated by 
a distance dmt — 56 inches (142.240 cm), which is the radius of the receiver circle 
on the turret. Considering the locations of these points as described by position 
vectors, with respect to an arbitrary origin, we have, for the design telescope: 

(3.8.2) 

Md= T d 4- (dmt) ' (Xtd) ,  which gives 

X(Td) = 0 ,    Y(Td) = dre + dmp + (dmt) cos(a - P) , 

Z(Td) = he + hre + hrP — hmp — (dmt) cos(a — P) . 

Frame #9. 
The Receiver House Frame. 
Origin Point - Hd 

Unit Frame Vectors: Xhd, Yhd, Zhd 

This is a frame embedded in the receiver house structure, used to describe 
the location and orientation of the feed room. To physically realize this frame 
and make use of it, the receiver house and the rotating turret platter should each 
be provided with fiducial marker survey targets. During initial alignment of the 
GBT, the receiver house should be positioned so that the turret axis becomes par¬ 
allel to the desired central optical ray from subreflector to gregorian focus, and 
displaced from it by distance dmt • The center of each receiver's locating flange, 
when rotated to the active position, should lie on the symmetry plane of the tele¬ 
scope. To achieve the latter requirement, the plane in the receiver house defined 
by the platter axis together with the center point of the index pin mounted on the 
ceiling of the feed room should coincide with the symmetry plane of the telescope. 

The unit frame vector Yhd should lie parallel to the turret axis. The plane 
defined by frame vectors Xhd. and Xhd should be parallel to the plane defined by 
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the center of the index pin and turret axis. The origin point Hd should be a point 
in the feed room at the center of a survey target in a survey target bushing affixed 
rigidly to the house structure. That is, lld and other fiducial markers tied to the 
house structure, both inside and outside, should generate a local survey control 
net to tie the platter, receiver locating flanges, receiver house structure to one 
another and to the outside world. 

• Frames #10.1 to 10.8. 
Receiver Flange Frames. 
Origin Points - iV, 
Unit Frame Vectors: Xni, Yni, Zni (i = 1, ... ,8). 

These are frames embedded in the mount flanges for the individual receivers 
and their feed horns. The flange for each receiver module should be provided with 
two pin holes which insert into locating pins on the mating turret platter flange, 
to position the receiver flange with respect to the turret. Ideally, the pins on the 
platter flange should be oriented so that each feed horn's phase center could be 
brought to lie on the 56" radius receiver circle, diametrically opposite the index 
pin on the feed room ceiling, when the turret and intermediate feed horn rotator 
flange (if one is used) are rotated to the feed horn's active receiving position. 

The local coordinate axis Yni is defined to be perpendicular to the receiver 
flange surface. The axis Xni is defined to lie in the plane of the flange and to 
point along the line of the two alignment pin footprint points on the flange. 

Feed horns should be aligned on their mount flange so each feed horn's elec¬ 
tromagnetic axis is perpendicular to the flange, unless a squint offset is explicitly 
required. If possible, it would be advantageous to center a feed horn's phase center 
midway between the locating pins, in the plane of the mating flange surfaces, for 
flanges containing a single feed horn. For flanges containing multiple feed horns 
one might either want the individual feed horn phase centers to be rotatable, by a 
flange rotator, onto the 56" radius receiver circle, or one might want the centroid 
of the feed horn group to lie on this circle. 

One or more feed horns mount on each of the eight receiver mount structures. 
Feed horn offsets with respect to the receiver flange center and surface normal 
direction should be determined before the receivers are mounted on the receiver 
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house turret. For each of the horns mounted on a common flange one should 
measure its phase center location, the direction of the unit outward vector along 

the horn's electrical axis, and the direction of the unit E field vector of the horn 
(if defined) with respect to the local flange frame coordinate system. (This could 
be done by antenna range measurements or local surveying of the receiver). Com¬ 
ponents of those two unit vectors in the local flange frame, and also local distance 
offset coordinates of the phase center from the flange frame origin point, should 
be entered into a data base for the horn. The databased information would then 
be available to provide pointing offset information for each horn, with respect to 
the gregorian focus optics of the telescope. 

In the case where multiple feed horns mount on a common flange and that 
flange is placed on an intermediate rotator flange (so the feed horn array on the 
flange can rotate about the Yni axis), it is suggested that receiving pin holes be 
placed in the intermediate rotator flange and locating pins be provided for the feed 
horn array flange. The rotator flange would be pinned to the platter flange and 
the feed horn array flange would be pinned to the rotator flange. Pins would be 
located so that, on installation, when the platter is rotated to the active receiver 
position, the local frame Xni axis coincides with the Xtg axis of the turret frame 
(when the reference rotation angle of the intermediate rotator flange is at zero). 
It is suggested that the origin point of the feed horn array flange be fiducialized 
by insertion of a survey target bushing, and that this point be surveyed relative 
to the platter's local coordinate system and receiver house local frame. 

This completes our description of the design model. In the next section we 
extend it to provide for rotations of the antenna tipping structure about the az¬ 
imuth and elevation axes of the telescope. 
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4. THE TILTED GEOMETRIC TELESCOPE. 

At the next level of description, "the ideal tilted geometric telescope", the earth 
and alidade track are still represented together by a horizontal plane. The ali¬ 
dade structure of the telescope is still assumed to be rigid. It may now rotate in 
azimuth about the fixed Z axis, together with the embedded alidade frame and 
elevation axis. The feed arm and main reflector (together), prime focus receiver 
mount, and subreflector structure, together with their embedded frames, can now 
also rotate as a rigid unit in elevation, about the new elevation axis. 

The reference optical design is still embedded in the tilted geometric telescope. 

Local coordinate frames can move by individual congruence transformations, 
that is rotations combined with translations but without deformation. The frame 
attachment points (which remain origins of local Cartesian coordinate systems) 
and the unit frame vectors are now described as functions of the antenna elevation 
angle ELant > and antenna azimuth angle AZant which is the counterclockwise ali¬ 
dade rotation angle, about the design azimuth axis, from the design configuration. 

Descriptions of the coordinate system origins and unit coordinate frame vec¬ 
tors as functions of ELant and AZant for the ideal tilted geometric telescope are 
given in the following paragraphs. We denote coordinate frames and frame origin 
points with the subscript ugn instead of "d" to indicate that we now refer to the 
tilted geometric telescope, rather than the design telescope. The alidade can ro¬ 
tate in azimuth and the tilt structure can rotate in elevation. 

At this level of description we do yet not include the possibility that the 
alidade structure has any motions other than rotation about the design telescope's 
azimuth axis, the Z axis. Additional translation and rotation of the ideal tilted 
geometric telescope due, for example, to a wavy azimuth track is not yet allowed. 
Non-perpendicularity of the azimuth and elevation axes is not yet allowed. 
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Corresponding Local Frame Origins: 

Design Telescope   Geometric Telescope 

General Configuration: 

ELant    is antenna elevation 

AZant    is antenna azimuth 

Pg is the prime focus point 

••g is the gregorian focus point 

■^ag 
ftlant 

Figure A. Geometric Telescope Reference Points 
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Coordinate transformations defining the first six frames are given in [King 
1]. We present them here, together with additional transformations relating each 
frame to the base frame, and also provide transformations for the frames #7 
to #10. The unit frame vectors transform in the same manner as the local co¬ 
ordinates. A correction is required for the rotation matrix [R23], and is given in 
Appendix I.. 

The reference geometry for the ideal tilted geometric telescope is shown in 
Figure 4. 

Reference Frames For The Geometric Telescope. 

We discuss the frame transformations between the alidade and base frames in 
some detail. Transformations between other frames follow in a similar manner. 
We do not reproduce computations in detail for those frames, but list the results 
in Appendix 1. 

For the geometric tilted telescope, alidade and base frames are related by: 

(4.1.1) 
" X ' Xag 

Y = [R12] y 1 ag [Rn] = 
" -1 0      0 " " CA -SA   0 1 

0 -1   0 SA    CA     0 
0 0       1 0       0          1 

" -CA   SA      0 " 
= -SA    -CA   0 

where CA= cos (AZant) >   SA= sm(AZant)   and AZant is the counter-clockwise 
alidade azimuth rotation angle from the reference direction "South". 

The above equation gives the transformation of coordinates for a point in 
space. That is, given a point Q then 

(4.1.2) 
X(Q) 

Y(Q) 
Z(Q) 

= [Rn] 
Xa9(Q) 

L 2,(<3) J 
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gives the base frame coordinates of Q as a linear transformation of the alidade 
frame coordinates of Q . 

We can also consider point Q to be described as a position vector, Q , from 
the origin of the base frame (considered a fixed point) to the point Q . Then 

(4.1.3)       ^ = X(Q) • X + Y(Q) • Y + Z(Q) • Z . 

The alidade frame of the geometric telescope co-rotates with the alidade struc¬ 
ture, and is considered to be embedded in it. Unit frame vectors of the alidade 
structure and unit base frame vectors are related by linear transformations: 

(4.1.4) 
" X ' Xag Xag ' X ' 

Y = [#12] lag > Yag = [-R21] Y , where 

(4.1.5)        [Rn] = [R12]-* = [R12F
r = 

-CA   -SA    0 
SA     -CA   0 

0 0 1 

With respect to the geometric alidade frame: 

(4.1.6)        Q =Xa9(Q)-Xag + Ya9(Q)-Yag + Zas(Q)-Zag,  and 

(4.1.7) YaS(Q) 
L Za9(Q) 

r x®) ] 
= [R21] Y(Q) 

For the geometric telescope, the base frame coordinates of the alidade frame's 
origin point are 

(4.1.8)       X(A9) = 0, y(4,) = 0, Z(Ag) = 0 . 
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The unit geometric alidade frame vectors, in terms of unit base frame vectors, 
are: 

Jfw = (-CA)(X) + (-SA)(Y) 
(4.1.9 ) Kos = (SA)(X) + (-CA)(Y) 

Z<v = (Z)   . 

Geometric afidade frame coordinates of an arbitrary point in space are given 
in terms of its base frame coordinates by: 

*„ = (-CA)(X) + (-SA)(Y) 
(4.1.10) Y^ = (SA)(X) + (-CA)(Y) 

Za, = (Z)   . 

Base frame coordinates of an arbitrary point in space are given in terms of its 
geometric alidade frame coordinates by: 

X   =   (-CA)(Xag)   +   (SA)(Yag) 
(4.1.11) Y = (-SA)(Xag) + (-CA)(Yag) 

Z=(Za9)      . 

For each coordinate frame we will supply: the base system coordinates of the 
frame's origin point; components of each unit frame vector, in terms of the base 
frame unit vectors; base system coordinates of an arbitrary point, in terms of the 
local frame coordinates of the point; inversely, the local frame coordinates of an 
arbitrary point in terms of the base system coordinates of that point. For selected 
pairs of frames we will provide the corresponding transformations between these 
frames. For example it will be useful to possess transformations between the re¬ 
flector frame and the frames belonging to structures on the feed arm. The general 
scheme to generate the desired information is the following. 

Let i, j, k be coordinate frames among the frames #1 through #8 classified 
earlier. Let the basis vectors of frame i be Xi, Yi, Zi. Let the coordinates of an 
arbitrary point in space be: Xi, Yi, Zi with respect to the coordinate system of 
that frame. We write these triples as 3 X 1 column matrices: 
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' Xi " Xi 

(4.1.12)    [X*] = Yi ,    {Xi} = Yi 

For other frames, we write corresponding expressions for point coordinates and 
frame vectors similarly as column matrices. 

Linear transformations relate the corresponding quantities in the different 
frames: 

(4.1.13a)     [ X,] ■= [«*][ X,] + PiJ    ,    {%} = {R^X} . 

(4.1.13b)     [ X,] = [Rkj}[ X,-] + ply]    ,    {Xi} = [iiy]{x;}1 

where terms [Rpq] are 3x3 rotation matrices and [Tpq] are 3x1 column ma¬ 
trices representing translations. 

Inverse transformations exist: 

(4.1.13c)    lXi} = {Rij}[Xj] + [Tij]     ,    {%} = {RiMXi} • 

(4.1.13d)    [ X,] = [Rjk][ Xk] + p>]    ,    {%} = [Rjk}{ Xk} ,  where 

(4.1.14) [Rn) = [Rji]-1 = IRiif'     and     py = [%](-!)pjj . 

From (4.1.12) one obtains linear transformations relating frames k and i: 

(4.1.15) [Xfc] = [JRfc<][Xi] + [TJW]    ,    {Xfc} = [^]{X;}) 

from the relations 

(4.1.16) [Rki) = lRkj][Rii] ,    [Ui] = Ply] + lRkJmi} ■ 

The transformation matrices and the numerical parameter values defining their 
elements are given explicitly in Appendix I. 
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5. THE TILTED DEFORMED TELESCOPE. 

The ideal tilted deformed telescope model to be described in this section is that 
described in GBT Memo 124, "The GBT Tipping-Structure Model in C", by Don 
Wells and Lee King [Wells-1]. Their model will be developed here in detail to find 
locations of fiducial reference marker points embedded in the tipping structure or 
in other structures above the telescope alidade, when elastic deformations of the 
tipping structure due to gravity loading of this structure are incorporated into 
telescope modeling. It will also be used to describe the gravitationally-caused 
shift in orientation of laser ranging platforms joined to the telescope feed arm. 
Effects of weight loading on the geometry of the alidade structure are not consid¬ 
ered in [Wells-1]. The alidade geometry is still assumed to be that of the ideal 
tilted geometric telescope. 

In the model of Wells and King, the telescope's tipping structure is described 
by a list of nodal points and structural members joining subsets of the nodal 
points. A nodal point is described by an index number and "undisplaced" Carte¬ 
sian position coordinates Xgrid, Ygrid, Zgrid with respect to a local coordinate frame 
for the tipping structure. 

This local frame is the elevation frame of the ideal tilted geometric telescope. 
The origin point of this frame is Eg , which is a fixed point in this model. The unit 

basis vectors are Xeg , Y^ > Zeg • When referred to the base frame of the telescope, 
these basis vectors are functions of antenna elevation ELant and azimuth AZant • 
The origin point and unit frame vectors are, explicitly, as functions of ELant and 
AZant'. 

(5.1) 
X(Eg)     ■ ' 0 
ym = [Tn] = 0 
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(5.2) 
Xeg ' X ' 

where 

(5.3)    [l?3i] = 

- cos AZant 

sin AZant' sin ELant 

Sin AZant ' COS ELant 

- sin AZant 0 
- cos AZant • sin ELant    - cos ELont 

— COS AZant ' COS ELant      sin l£Lant . 

Elastic deformations to be included in the deformed telescope model are com¬ 
putational results of a finite element analysis of the tipping structure. In the 
finite element analysis the cross sectional area, moment of inertia, elastic coeffi¬ 
cients, and weight loading are input data provided for each structural member. 
Our discussion will presume that the telescope tipping structure nodes at a refer¬ 
ence antenna elevation ELant = ELgarf-Hg (nominally 43.8° , the "surface rigging 
angle") are "undisturbed". Local elevation frame coordinates of each structural 
node will be assumed to be those belonging to that node in the geometric telescope 
model, for this elevation. Given initial structural data and weight loading for the 
tipping structure, and assuming that appropriate balancing forces and moments 
are added to hold the tipping structure in equilibrium with the elevation shaft 
at elevation angle ELant, the axial twist, transverse flexures, forces and moments 
can be calculated for the structural members. Displacement increments and "node 
rotation vectors" are calculated for each node point. 

A structural model of the connecting joints for the structural members is 
included in the finite element analysis. Two or more structural columns may 
connect to one another by hinge or fully welded joints. The connecting joint 
member, which is a massive body, will generally be moment-resisting in one or 
more directions. Under force loading, the centroid of the joint member will be 
displaced, the joint member can rotate and may undergo strain deformation of 
shape. Appropriate assumptions are made in the finite element analysis to allow 
computation of the (small amplitude) connecting joint's rotation vector. 

In generating a model of the elastically deformed telescope we formally assume 
that mount brackets for retroreflector fiducial reference targets and laser ranging 
platforms are rigidly attached locally to connecting joint members on the tipping 
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structure. Displacement of a fiducial reference point embedded in a retroreflector 
prism, caused by a change of gravity loading on the tipping structure, will be 
assumed to be the vector sum of the displacement of the nearby structure node 
point (near which its mount bracket is attached) and the fiducial point displace¬ 
ment generated by the rotation of the line segment between fiducial point and 
nearby node point. That is, the line segment from fiducial point to node point is 
assumed to be attached rigidly to the joint member; when the connecting joint 
member rotates, this rotation causes a displacement of the fiducial point. The 
displacement of the scan point of a laser rangefinder scanning mirror is calculated 
in the same manner. Internal coordinate frame unit vectors embedded in the 
laser rangefinder platform are rotated by the same (small) rotation vector as the 
connecting joint member. 

Given a structural node, Vti, the gravitational deformation of the tipping 
structure produces a translation, [A^Lont)]^., of the node position. This trans¬ 
lation is a function of antenna elevation angle ELant, and has the following form 
[Wells-1], [Par-2]: 

(5.4) [&(ELant)}mi = 

or, abbreviated, 

Ax(ELant) 
Ay(ELant) 
&z(ELant) Wi 

tfs.-z ax,V 
Vy^z ay,y 

Sin ELant — sin ELsurf_rig 
COS ELant — COS ELgurf^ig 

(5.5)     [AiEL^)]^ = [A]m( = [a] sin ELant — sin ELSUTf_rig 
COS ELant — COS ELSUrf_rig 

where [(j]m. is a structural matrix associated with node 0^ and is computed 
numerically by the finite element analysis code. The detailed procedure for ob¬ 
taining node matrices is discussed in [Wells-1]. Numerical examples are given 
there. Here we have used the abbreviations: x -O- Xeg , y ^ Yeg , z &■ Zeg . That 
is, the x, y, z components of the translation matrix [A]^. are along the Xeg , Ye eg J 

Zeg axes respectively. The unit basis vectors pointing along these axes are given 
by (5.2) and (5.3) as functions of tipping structure azimuth and elevation. 

The result (5.5) is obtained by resolving vertical gravity loading forces into 
components along the Xeg , Yeg , Zeg directions. The initial condition is used 
that: nominal grid coordinates correctly describe all node locations when the tip¬ 
ping structure is at the elevation EL^rf-rig • 
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Wells and King [Wells-1] discuss the use of (5.5) in initially setting the sur¬ 
face panels which form the main reflector of the telescope. Initial panel adjust¬ 
ments will be performed when the tipping structure is set to an elevation an¬ 
gle, ELiirdbath (^65.8°), suitable for construction workers to perform installation 
tasks. Another elevation, the "surface rigging" elevation, EL^rf-rig, is the de¬ 
sired elevation at which the tipping structure should closest approximate the ideal 
tilted geometric telescope. When the main reflector panel positions are initially 
set, with the telescope in birdbath position, the panels will be given additional 
translations to compensate for the deformations calculated by (5.5). By intro¬ 
ducing positional compensation in that way the telescope can be tilted to the 
surface rigging elevation angle, for photogrammetric and astronomical measure¬ 
ments of its initial surface, and have a main reflector surface compensated for the 
condition that the panels were set with the telescope at a "wrong" elevation angle. 

When the tipping structure elevation is other than the surface rigging eleva¬ 
tion, there is also a node rotation: [Rot(ELant)\<yi • This may be written as a 
vector 

(5.6)      [Rot(ELant)]^ = txXeg + tyYeg + tzZeg =   t^ , 

where the local elevation system rotation vector components tx , ty , ty for that 
node are functions of the antenna elevation angle ELant • The behavior of these 
components versus elevation angle is similar to that of the displacement compo¬ 
nents. In place of (5.4) one has: 

(5.7) [Ro^ELant)]^ = 

or, abbreviated, 

tx(ELant) Tx,—z      Tx,y 

ty(ELant) = Ty-z     Ty,y 
sin ELant — sin EL^rf^ig 
COS ELant — COS EL^rf-rig 

sin ELnnt — sin EL surf-rig 

COS ELant - COS ELsurf_rig 
(5.8)      t^ = [Rot]^ = {T)mi 

where [T]^. is a structural matrix of node rotation constants associated with node 
Vli and is computed numerically by the finite element analysis code. The unit ge¬ 
ometric elevation frame basis vectors appearing in (5.6) are defined by equations 
(5.2) and (5.3). 
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The finite analysis output data base for each node is a row of 16 entries: the 
node identification number, three undisturbed position coordinates for the node, 
six element entries for the displacement matrix [a], and six element entries for the 
rotation matrix [r]. 

Structural node points are not per se accessible to measurement. They gen¬ 
erally lie somewhere within connecting joints of structural members and are not 
directly visible. To locate them one uses "fiducial reference marker points" which 
are directly accessible for optical measurement of location. In the present con¬ 
text, a fiducial reference marker point, or "fiducial point" abbreviated, is the 
center point of a surveyor's target or the optical center of a retroreflector prism 
which can be located by optical instruments such as theodolites or laser ranging 
stations, and which is rigidly affixed to the structure near a nodal point. If the 
positions of three or more fiducial points attached near a given structural node 
can be measured optically (for example, by laser ranging from several stations), 
the position of the node point can be determined, provided that the local rigid 
3-dimensional positioning of the fiducials around the node was determined when 
the fiducial targets were mounted on the structure. When the telescope is moved 
in elevation, the displacements of the fiducial points associated with a structural 
node point will not be exactly that of the node point. Rotation of the node joint 
produces an additional displacement of a nearby fiducial point which is small, 
but not negligible. In the next paragraph we discuss the relationship between the 
displacement of a node and that of a nearby fiducial point. 

We assume that a surveyor's target structure containing an intrinsically em¬ 
bedded fiducial point, fo , has been rigidly attached to the tipping structure near 
structural node point Vdi. We assume also that the local undisturbed displace¬ 
ment vector from the node to the fiducial point has been defined in some manner, 
which we do not specify explicitly. We are given 

(5.9) 
XegiBi) 

.   Zeg\Si) 

Yegm+Vi 
L ^(sy + Ci J 

Xeg^) 
Yeg^) + [A] 

Here, X^i^di)^ ^(0^), and Zeg(yii) are the undisturbed elevation system coordi¬ 
nates of the node point, that is the geometric telescope elevation coordinates of 0^ 
at the rigging angle ELSUrf_rig] Xegfa), Yeg($i), and Zeg($i) are the undisturbed 
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elevation system coordinates of the fiducial point. The undisturbed displacement 
vector of the fiducial point Si from the nodal point 9^ is 

(5.10)     [A] = 

When the tipping structure rotates in elevation from the rigging angle ELgurfj-ig 
to the general elevation angle ELant, node point 9^ moves to a position whose 
coordinates relative to the geometric elevation system frame are: 

' r ' ii' 
V = Vi 

(5.11) 
XepU) 
YepU) 

Xeg^) 
YegQlti) 

L ZegW J 
+ [A]^ • 

The associated fiducial point moves to the position whose coordinates are: 

(5.12) 
Xe($i) 
Ye(&) 
Ze&i) 

Xeg^) 
Yegm 

[  ZegPk) 
+ [Aj^ + ^t^)]^]. 

The last term is the perturbed displacement vector between node and fiducial 
point.   The displacement vector between node and fiducial point is rotated by 
t^. due to the rigid body rotation of the connection joint member at the node. 

The new position of the fiducial point is then: 

"  Xe(di)   ' Xeg($i) 
Yefa) = YeM) + (5.13) 

Defining 

(5.14) 

(5.15) 

The term [6Rot( tm.)] [Di] vanishes in the special case 

[A]BI<+{[Art(t,|)][A]-[A]}. 

[Rat( *«,)] [Di] - [Di] = [SRot( t„t)] [Di] , we get 

+ [A]„i+[6Rot(tmi)]{Di] 
' Xefc)  ' Xegitfi) 

Ye&i) = Yeg&i) 

J*i 
= 0. 

With respect to the local elevation frame the gravity-load-induced displace- 
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ment of the fiducial point is the same as that of the associated node except for 
the additional differential rotation term (5.14). To evaluate this term let us write 
the displacement vector [Di] in vector notation: 

(5.16) [Di] = tiXeg + ViYeg + QZeg =   Di . 

The term .Ro£( t^.) [£)*] is a clockwise rotation of the vector Dt- by an an¬ 

gle   t^.   radians about an axis pointing in the direction of t^.. Calling 

(5.17) f = |tWj| = v^lT^+tf = «(9li)1 

it may be shown1 that 

(5.18) [Rot{ t^)] [A] = (cost)( D.H^^ ( t% • D4) ( tOTj)+(^) ( ^ x  D.) 

For 0 < t « 1 radian, expanding (5.18) to order 3 in i, 

(5.19) [6Rot{ tmi)] [A] = ( t,4 x  D/) (l - ^+( t.€) ( 
twi

2 
Di)-( D* .)(?' 

6 (*yCi " tzfli) + (1) (**& + ^ + *»Ci) - (&) {^ 

(tzti - txQ + (|) (^ + tylH + txCi) - fe) (1 

fe^ - iyfi) + (|) (*«& + ^y^/i + t^i) " (Ci) (|- 

For a retroreflector's fiducial point, located within a few meters of its associ¬ 
ated node, the joint rotation term above is sufficiently well approximated by the 
first order term t^,. X D*. Equation (5.19) can also be employed in the case 
where D* represents not the displacement of a fiducial point from a structural 
node, but instead is a local unit frame vector of a feed arm laser station. In the 
latter situation, one may want to include terms above first order. 

1H. Goldstein, Classical Mechanics, Addison-Wesley, 2,nd Edition 1980, pp 164-165. 
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Local Elevation Frames At The Structural Nodes. 

The geometric elevation frame of the tipping structure is a globally defined 
frame: 

{X^(AZant, ELant) , Y^AZant, ELant) , Zeg(AZant, ELant)', Eg} 

consisting of three mutually perpendicular unit basis vectors attached to origin 
point Eg . These vectors, which we abbreviate as Xeg , Yeg , Zeg respectively, are 
functions of tipping structure angles AZant and ELant, and are given explicitly 
by (5.2) and (5.3). They are the geometric elevation frame basis vectors defined 
by the ideal geometric telescope model, which assumes that the feed arm and 
main reflector are both rigid and rigidly attached to one another. The vectors 
are defined for the global tipping structure geometry and do not relate to local 
embedding at any particular structural node. 

To calculate aiming of laser beams of feed arm laser rangefinders, one requires 
a local model of elastic telescope deformations. The finite element model of the 
tipping structure generates deformation displacements [A]^. of structural node 
points OTj and deformation rotations t^ of their associated connection joints, as 
functions of ELant and a reference rigging elevation angle. Laser rangefinders 
rest on support platforms which provide local rigid reference frames for aiming 
the scanning beams. A laser beam is aimed by calling out two mirror scan an¬ 
gles defined with respect to a local platform frame. These are the scan-azimuth 
angle, AT, to a distant target point T and the scan-elevation angle, ET, to T . 
Differential elastic displacements and node rotations near the target point and 
laser platform change the scan-azimuth and scan-elevation angles needed to aim 
the laser beam from a scan mirror's scan fiducial point S to target point T. (The 
scan fiducial point is the intersection point of the scan rotor axes). To calculate 
scan angle corrections it is useful to define local elevation frames at structure 
nodes adjacent to laser rangefinder platforms and to main reflector nodes adja¬ 
cent to surface retroreflector prism targets. 

Given a generic structural node point 9^ let us try to define a "local elevation 
frame" at 9ti : 
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{Xe(AZant, ELant, ** ) , Ye(AZant, EL] ^ ) , Ze(AZont, ELant] Wi ))%} • 

This consists of a right-hand triple of mutually perpendicular unit basis vec¬ 
tors: Xe(AZant, ELant), Ye(AZant, ELant), Ze(AZanU ELant) and a point of frame 
attachment, 91*. To complete the frame definition we specify its basis vectors as 
functions of AZant and ELant • 

We want the frame to be rigidly embedded in the structure, at point tftf, and to 
co-move with the structure joint at 9^. If this is to be accomplished when the de¬ 
formation of the structure is provided by the finite element model we must choose: 

(5.20.1) Xe(AZant, ELant\ Wi) = [R0t( t^Xeg = X^ + [SRot( t^Xeg , 

(5.20.2) Ye(AZant, ELant', Sty = [Rot( t^fifq = Yeg + [6Rot( t^)\Yeg , 

(5.20.3) Ze(AZant, ELant', %) = [Rot( tW4)]^ = Z^ + [6Rot( t^Zeg . 

The rotation operator [6Rot( tw,)] is given for an arbitrary vector by (5.19). The 
components of t^. are supplied as functions of ELant, at node 9^, by (5.8). The 
constant structure matrix [r]«yti supplied by the current finite element structural 
model. Let us use the abbreviations: 

(5.21.1) Xe(AZant , ELant J ^ ) = X^ ) , 

(5.21.2) Ye(AZant , ELant J ^i ) = Ye{VU ) , 

(5.21.1)        Ze(AZant , ELant J *■ ) = ^(^ ) • 

From (5.19), we get, a functions of the components of t^.: 

(5.22.1) Xe(<ni) = X^l-^+^+Y^t^-f-^+Z^-t^-f+hl) , 

(5.22.2) ?.(«*) =Yeg(l-
t^)+Ze9(tx+

tf-t-^-)+Xeg(-U+t-f + t-^) , 

(5.22.3) Z.(«Wi) = Zeg(l-^+tl)+Xeg(tv+
tf-tf)+Ye9(-tx+

t-f+t-^-). 
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In the next sections we use this result to compute laser rangefinder aiming cor¬ 
rections. 

Laser Rangefinder Platform And Scan Geometry. 

We will define a local frame for a laser rangefinder platform joined rigidly to 
the GBT feed arm near structural node point OTJ: 

{Xe(AZant , ELant', £) , Ye(AZant , ELant', £ ) , Ze(AZant , ELant ',£)',  £} • 

This consists of mutually perpendicular unit basis vectors:^, ye, Ze embedded 
rigidly in the platform at platform fiducial point £ . 

We first assume that a reference orientation of the platform with respect to 
the geometric elevation frame of the tipping structure is specified, at the surface 
rigging elevation angle. This specification is provided by a linear transformation: 

(5.23.1) 
Xe(AZant , EL surf-rig', £ ) 

Ye( AZant j EL surf _rig', £ ) 

Ze(AZant , ELsurf^ig] £ ) 

AnXeg(AZant, ELsurf^rig) + Ai2Yeg(AZant, ELSUrf_rig) + A^Zeg(AZant, ELsurf_rig) 

A2lXeg(AZant, ELsilrf_rig) + A22Yeg(AZant, ELsurf_rig) + A23Zeg(AZant, ELgurf^ig) 

AsiXeg(AZant, ELgurf^ig) + As2Yeg(AZant, ELSUrf_rig) + AzzZeg(AZant, ELgurf-rig) 

We abbreviate the quantities in the above equation as: 

(5.23.2)     Xfl(£) = [A]gTiX5. 

Coefficients in the matrix [A]^ are the projections of the platform frame ba¬ 
sis vectors onto the geometric elevation frame basis vectors, at the surface rigging 
elevation angle and arbitrary telescope azimuth angle. That is, the matrix ele¬ 
ments are direction cosines, 
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(5.24)    [Afo, 
•A-eg ' ■A-eg     -^-eg '   *eg     -^-eg '  ^eg 

Yeg ' -A-eg       Yeg '  leg       ^eg ' ^eg 

&eg ' -A-eg      ^eg '  ■* eg      ^eg '  ^eg J (ELsurf_rig) 

Provisional feed arm scan point locations and platform orientation matrices [A]^ 
have been computed for feed arm laser rangefinders, by F.R. Schwab. His sug¬ 
gested locations and orientations are presented in a limited distribution memo: 
"Laser Rangefinder Locations and Orientations" (March 6, 1996). Rangefinders 
set at the locations and orientations given in that memo have adequate scan cov¬ 
erage of the GBT main reflector, at small enough beam incidence angles to the 
surface retroreflectors to insure adequate reflected optical return. The coordinate 
frame used in that memo is not a standard GBT coordinate frame. The given 
matrix elements and coordinates require a (simple) transcription to the standard 
geometric elevation frame. 

Each feed arm rangefinder mounts rigidly near an adjoining feed arm struc¬ 
tural node. The node point and rangefinder fiducial reference points are assigned 
reference geometric frame coordinates when the telescope is at the surface rigging 
elevation. The assigned reference coordinates might initially be calculated ideal 
location coordinates, to be replaced later by measured values at the surface rig¬ 
ging elevation or at another elevation with finite element mode corrections. When 
ELant = ELsurf.rig the local elevation frame coordinates of node and rangefinder 
fiducial points are defined to coincide with the reference coordinates of these points 
in the geometric elevation frame. In turn, the reference coordinates of these points 
are included in a database file listing for distinguished telescope points. There is, 
however, a problem associated with the assignment of reference points to the feed 
arm structural node and rangefinder fiducial points. We discuss this problem and 
suggest a solution in the next paragraphs. 

Initial joining of the upper feed arm to the telescope and measurement of its 
fiducial reference points will not necessarily be made at surface rigging elevation. 
It is possible that these operations will occur when the tipping structure is near 
the feed arm access elevation, ELarm-access — 77.7°, with upper feed arm verti¬ 
cal. (At that time surface panels may or not be installed. Weight loading on 
the telescope may or may not be at its final distribution). For initial feed arm 
alignment and adjustment, it may be preferable to reference undisturbed coor- 
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dinates of feed arm nodes and fiducials to another access angle, ELaccess, (for 
example either feed arm access elevation ELarm-access or surface access elevation 
ELbirdbath) rather than ELsurf-rig • Node deformations and node joint rotations 
would reference to ELaccess which would replace ELgurfjrig in (5.4)-(5.8). This is 
discussed in [Wells-1]. 

When using gravity structural deformation corrections to correct rangefinder 
aiming, it is desirable to have a common reference coordinate data base for aU 
tipping structure nodes and fiducial reference points. Separate data bases and 
data handling procedures for feed arm and main reflector nodes and fiducials are 
undesirable, and present opportunity for ambiguity. 

The view is expressed here that all elevation frame node and fiducial point 
undisturbed coordinates should refer to values when the tipping structure is at 
elevation angle ELgurf^ig . This differs from the viewpoint presented in [Wells-1], 
which presumes that undisturbed coordinates of feed arm nodes be defined at a 
different tipping structure elevation angle. 

The two viewpoints can be reconciled if one databases initial reference coordi¬ 
nates required by [Wells-1] under another nomenclature, for example "installation 
coordinates" and computes the geometric elevation "undisturbed coordinates" 
at ELSUrf_rig using transformations (5.5) and (5.8) but making the replacements 
EL surf-rig ELr, ELant —► ELsurf^ig in those equations. 

One can now compute platform basis vectors explicitly, for the gravity-loaded 
tipping structure. One first computes basis vectors: Xei^li), YeiWi), Ze(yii) of 
the local elevation frame at 0^ defined by (5.21), using equations (5.22). Because 
the local elevation frame at ^Tj and the platform frame at ii are rigidly joined to 
each other, the same linear transformation matrix [A]^. that relates their basis 
vectors at surface rigging elevation (cf. (5.23)) also relates their basis vectors at 
arbitrary elevation and azimuth. One then computes platform basis vectors for the 
gravity-loaded structure: Xe(AZont,£Lant; £), Ye(AZant, ELant, £), Ze(AZant, ELant, £), 
using the same linear transformation: 

(5.25) 
Xe(AZant, ELant', £ ) 
Ye(AZant, ELant] £ ) 
Ze(AZanty ELant] £) 

= Mar, 

Xe(mi) 

Yepli) 

ZeiWi) 
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Rangefinder Scan Angle Corrections. 

We now discuss the correction of laser rangefinder scan angles for gravity- 
loading changes when the telescope tilts in elevation. 

Assume that a rangefinder platform is rigidly attached to the feed arm near 
structure node point 91*. Let £ be the origin point of the rangefinder's platform 
frame, and S be the rangefinder's scan center point. As before, we let X, Y, Z 
be unit basis vectors for the platform frame. (Cf. Figure 8). 

Given a laser target fiducial point, T, on the tipping structure, which is to 
be scanned by the rangefinder's laser beam, we let XT , yr, ZT be the platform 
frame coordinates of T. Typically T would be the optical center of a cube comer 
retroreflector prism on a surface panel of the telescope's main reflector. 

Introduce local spherical polar coordinates in the laser platform frame, so that 

(5.26) 
XT 

VT 

ZT 

JR(sin$)(cose) 
.R(sin$)(sine) 
R(cos $) 

Inversely, 

(5.27.1) 

(5.27.2) 

(5.27.3) 

$ = cos"1^) ,     0 < $ < TT , 
R 

e = (atan2)(^),     -- < $ < — v     2Air'      2-       2 

fl=#r)2 + (yT)2 + (2T)2. 

Assuming that the rangefinder scan axes are properly zeroed, intersect, are 
mutually perpendicular, and the scan-azimuth axis is aligned along the platform 
basis vector Z, the rangefinder rotor angles required to aim the laser beam from 
scan center point S to target point T are: 

(5.28.1) 
TT 

AT = G — — ,   — TT < AT < TT , the scan-azimuth angle, and 

(5.28.2)     ET = (-!)(-) ,   ~ < ET < 0 , the scan-elevation angle. 
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The rangefinder platform frame coordinates of T are then: 

(5.29) 
XT 

VT 

ZT 

I?(sin2^r)(sini4r) 
(-l^sin 2J5r)(cos AT) 

R(COS2ET) 

When the telescope's tipping structure is in general position, specified by an¬ 
gles ELant and AZant, the "undisturbed" geometric elevation coordinates of the 
points (Xlj, £, S are the elevation coordinates of these points which would be 
attained in the absence of gravity load deformation of the telescope. The dis¬ 
placement vectors of these points from the geometric elevation frame origin point, 
Eg , are: 

(5.30) X^ (Vti ) = X^ (ELsurf.rig ] ^k) Xeg (AZant, ELant) 
-\-Yeg(ELSUrf_rig', ^i) Yeg(AZant, ELant) 
+Zeg(EL^rf-rig] ^i) Aeg(AZant, ELant) , 

(5.31) X^(£) =   Xeg^fli) + £(£) Xeg(AZant, ELant) 

+!/(£) Yeg(AZant, ELant) + C(£) Zeg(AZant, ELant) , 

(5.32) Xeg(S) =   Xegm + (( S) Xeg(AZant, ELant) 
+1l(S) Yeg(AZanU ELant) + Q{S) Zeg(AZanti ELant) • 

Here we have written 

(5.33) Xep(£) =   Xegpk) +   r>eg(£)  , 

(5.34) Xeg(S) =  Xeg^) + T)eg(S) , where 

(5.35) Deg(£) = £(£)Xeg(AZant,ELant)+r}(£)Yeg(AZant,ELanJ+CW Zeg(AZant,EL^t), 

(5.36) T>eg(S) = ((S) Xeg(AZant, ELant)+r).(S)Yeg(AZant, ELant)H(S) Zeg(AZant, ELant)- 

Coefficients of the basis vectors in (5.30)-(5.33) are reference coordinates, and 
are listed in elevation frame reference data base for these points. Note that we 
express the displacements of the laser frame origin and the laser scan center points 
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as the sum of a displacement from Eg to the adjacent structural node point plus 
a displacement from the node point to the point in question. 

The displacement of the main reflector target point T from its associated struc¬ 
tural node point, VIT , depends on the extension of the surface actuator driving 
the motion of T. It is possible to describe the position of this target point as fol¬ 
lows. Displacements of T vary linearly with the extension of the nearby actuator 
from a home position of the actuator. Let IT be the actuator extension from its 
home position. We may write 

(5.37) Xe,(T) = Xegptr) + T)%{T) + h D^(T) = X^) + D^T, h). 

Resolving (5.37) into component vectors we have 

(5.38) Xep(r) =   XegiWr) + (^(T) + h6(T)) Xeg(AZant, ELant) 

+(rio(T) + ITVI(T)) Y^AZant, ELant) 

+ (Co(r) + W Cl(T)) Zeg(AZant, ELant) • 

We are now able to express the displacement vector from rangefinder scan 
point S to main reflector surface target point T, for the general case of an elasti¬ 
cally deformed tipping structure at elevation ELant and azimuth AZant • 

Let Y)sT(ELant, AZant) be the displacement vector from scan point S to sur¬ 
face target point T, when the tipping structure is at elevation ELant and azimuth 
AZant • Collecting our earlier results we find: 

(5.39) T>ST(ELant, AZant) = Xes(T) - Xeg(S) + [A]aiT - [A]TO 

+ [6Rot( UT)] De5(T, h) - [6Rot{ t**)] D^S) . 

The node joint rotations   tgtT and   ttyn are obtained by postmultiplying the con¬ 
stant finite element analysis matrices [r]^   and [r]^. by the 2x1 column matrix 

sin ELant — sin ELsurf_rig 
COS ELant — COS ELSUrf_rig 
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Gravity-load node displacements [A]^ and [A]^ are obtained by postmultiply¬ 
ing the constant finite element analysis matrices [<T]m and [<T]ini by the same 2x1 
column matrix . Differential rotation operators [6Rot( t^T)] and [6Rot( tyti)] are 
computed using (5.19). 

Having calculated DlSrr(JSLant, AZant), the displacement vector from rangefinder 
scan point S to surface retroreflector fiducial point T, one finds the rangefinder 
platform, frame coordinates of T by projecting this vector onto the platform frame 
basis vectors: 

(5.40) Xr =   T>sT(ELant, AZant) ' Xe(AZant, ELant', £ )  , 

(5.41) ffr =   r>ST(ELant, AZant) ' Ye(AZanU ELant] £)  , 

(5.42) ZT =   Ds^ELant, AZant) ' Ze(AZant, ELant] £) . 

Scan-elevation angle ET and scan-azimuth angle AT, corrected for gravity loading 
of the tipping structure, are then obtained from 5>r,yr, Zr by transforming to 
platform spherical coordinates and converting polar angles to scan angles, using 
(5.26) and (5.27). 

The computations presented in the preceding sections are intrinsically com¬ 
plicated. The telescope's tipping structure can rotate in azimuth and elevation. 
Structural joints near the feed arm laser platforms are both displaced and ro¬ 
tated due to gravity weight-loading of the tipping structure, which is presumed 
to deform elastically according to whatever finite element model is employed. 
Rangefinder platforms co-rotate with their nearby feed arm structure joints, and 
have additional displacements because they are somewhat distant from those 
joints. Each main reflector retroprism is displaced from its nearby structural 
joint by a piston actuator, which is presumed to have the capability of linear dis¬ 
placement in a fixed direction relative to the nearby structural joint. Structural 
joint displacements and rotations at nodes near the main reflector retroprisms are 
different from those of the feed arm rangefinder platforms. All of these consider¬ 
ations enter into the computations of feed arm rangefinder scan point positions 
and scan aiming angles. 

The computations outlined in this chapter present a model of a telescope whose 
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tipping structure is elastically deformed by gravity loading. One can compute ideal 
locations of fiducial reference points on the feed arm and main reflector structures 
and the positions and orientations of laser rangefinder platforms as functions of 
ideal telescope elevation and azimuth angles. These computations can in principle 
be converted into object-oriented computer codes. But the model is incomplete, as 
an ideal model of an elastically deformed telescope. Departures of the telescope's 
alidade structure from the extremely oversimplified rigid alidade model used here 
will be significant. Some of them can be modelled theoretically, to provide useful 
extensions to the ideal elastic deformation model presented in this chapter. 

In the next chapter we discuss extensions of the ideal elastically deformed tele¬ 
scope which take into account the fact that the alidade structure is much more 
than a rigid vertical rotation shaft. In some sense we will try to correct the model 
thus far, to include effects of alidade elastic deformation, misalignment and offset 
of the elevation and azimuth shafts, unevenness of the alidade track. 
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6. ALIDADE STRUCTURE CORRECTIONS. 

The GBT telescope structure was modeled previously as an ideal geometric tele¬ 
scope elastically deformed by gravity-load forces. This model of the telescope 
does not include: elastic deformation of the alidade structure, offset between the 
azimuth and elevation axes, non-verticafity of the azimuth axis caused by an im¬ 
perfectly level azimuth track or truck wheels, lack of perpendicularity of azimuth 
and elevation shafts. At present, there is no elastic model of the alidade structure 
which corresponds to the elastic model of the tipping structure. Additional fea¬ 
tures must be incorporated into our present model of the gravity-loaded telescope 
to include these and other departures of the alidade structure and azimuth track 
from the ideal. 

It is worthwhile retaining the earlier formalism which allows positions of struc¬ 
tural node and fiducial points to be computed in terms of coordinate transforms 
among the previously defined coordinate frames. The question then presents itself: 
how does one include alidade structure imperfections in the formalism, without 
requiring complete revision and redefinition? 

Here, to include alidade structure modifications, we introduce a "ground" co¬ 
ordinate frame, frame #0. We provide frame origin shifts and translations and 
rotations between the ground frame and the base frame, frame ^1, and the az¬ 
imuth and elevation frames, frames #2 and #3, to include alidade deviations from 
the trivial alidade structure design model. The ground frame lies coincident with 
the base frame initially. Transformations between ground frame and the other 
frames are then modified to include alidade structure departures from the ideal. 
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Elevation Shaft Offset 

In the ideal geometric telescope model, the azimuth shaft and axis are vertical 
and the elevation axis and shaft are horizontal. The two axes intersect at point 
Eg. Let us suppose that the physical telescope is constructed so that the two 
shaft rotation axes remain perpendicular but are skew, separated by a distance 
d0ff. That is, the elevation bearings, elevation shaft, and the attached tipping 
structure are horizontally translated by a displacement vector d0ff Yag. The ge¬ 
ometric elevation frame and base point Eg are translated by this displacement. 
Relative to the ground frame, 

(6.1)      Eg—> Eg+d0ffYc ag 

For the ideal geometric telescope without this shaft offset, if J7 is a fiducial 
point embedded in the tipping structure, the ground frame coordinates of J7 are 
related to elevation frame coordinates of J7 by the transformation: 

(6.3) 

where 

XoiJO 
YG(F) = [flg?] 

ideal 

Xeg(T) 
Yeg(F) 

L  Z^)   J 
+ T(0) 

103 

4V) 
Y^(T) 
4V) 

(o) 
-CA     SA.SE      SA.CE 
-SA    -CASE   -CA.CE 
0 -CE SE 

,   [To3](0) = 

0 
0 
K 

, and 

CA = cos AZant, SA = sin AZant, CE = cos ELant, SE = sin EL ant 

The transformation (6.3) is just that between elevation frame coordinates and 
base frame coordinates, which initially are the same as ground frame coordinates. 
That is, [R$] = [R13\ and [T^] = PU 

When the elevation bearings, shaft and tipping structure are offset, the eleva¬ 
tion frame coordinates of fiducial point J7 do not change, since J7 is embedded 
in the tipping structure. That is, 
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Xeg^)—tX^J7) 

(6.3) Yeg^)   -+  Yeg^) . 

Zeg(F) —♦ Zeg^) 

But the ground frame coordinates of J7 are displaced (Cf. Figure 9): 

(6.5) 

& if) 

-> Xa(r) + doff ■ SA = XSH^) 
*Ya{kr)-d.trcAsY^\r) 
* Za{T) = Z%\T) 

After the offset by d0ff Yag (which is a horizontal displacement moving the verti¬ 
cal feed arm closer to the pintle bearing when d0// is positive) the equation (6.2) 
must be replaced by 

(6.5) 

(6.6) 

Xe(T) 

ZG{F) J 

Y$\r) 

B®] 
ofiset-shaft 

= [B®] 

X^F) 
Y^r) 
Zegi?)   J 

+ [Iff] + 

X«{F) 
Yeg(F) 

Zeg(F)   J 
+ [7J 

(1) 
03 where 

loff 
-d off 

-SA 
CA or 

(6.7)      [T( 
(i) 

03 

d0f f • SA loff 
-d off CA 

It is convenient to rewrite (6.5) in the condensed notation: 

(6.8)    [ X%\T) - T«] =  [Bg>] [ X^T)] . 

Equation (6.6) provides equations to convert elevation coordinates to ground 
frame coordinates when offset is introduced between the elevation and azimuth 
shafts. These equations will be extended to a more general situation where addi¬ 
tional rotations and translations appear between the ground and elevation frames, 
caused by additional departures of physical telescope from the ideal. 
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Non-Perpendicularity Of The Elevation And Azimuth Shafts 

After the telescope's elevation and aximuth axes have been offset by distance 
d0ff, the Yag axis still passes through the offset elevation frame origin point Eg. 
If the elevation shaft, elevation bearings, and the entire tipping structure were 
rotated by a small angle, $x> about the Yag axis, this would introduce a depar¬ 
ture from perpendicularity of amount I9_L between the elevation and azimuth axes. 

The azimuth and elevation axes of the telescope are no longer considered to 
be exactly perpendicular. This non-orthogonality is the collimation error. The 
angle between the azimuth axis (direction of Zag) and the observer's left end of 

the elevation axis (direction of Xeg) is now 90° 4- i9j_. This shaft misahgnment is 
expected to be small, and constant with time. 

To model this effect, a rotation of the elevation shaft and tipping structure by 
tf^ about the Yag axis, we can instead rotate the ground frame rigidly by — #x 

about the Yag axis. The point Eg and the basis vectors Xeg, Yeg, Zeg would remain 
fixed. The reflector, prime focus, subreflector and alidade frames and their origin 
points would also remain fixed. But the ground frame's origin point OQ and 

basis vectors XQ , YQ  , ZQ   would be rotated by — tfj.Y'ag • 

In terms of the geometric elevation frame's basis vectors the initial unrotated 
ground frame has basis vectors 

X^ =    (-CA)Xeg + (SA • SE)Yeg +   (SA ■ CE)Zeg 
(6.9)     f W =    (-SA)Xeg + (-CA ■ SE)Yeg + (-CA • CE)Zeg 

Zf = (-CE)Yeg+ (SE) Zeg   , 

which can also be written as 

(6.10)        Xf = M -r^eg > 

where jRos    is the matrix of coefficients in (6.9). 

We wish to find the rotated ground frame basis vectors and origin point af¬ 
ter the rotation — '&±Yag.  As a first step, we compute the displacement vector 

Xej, (OQ ) of the origin point O^r   of the unrotated ground frame from the offset 
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origin point Eg of the geometric elevation frame. To accomplish this, we use (6.7) 
to compute the displacement vector from 0^ to the offset origin point of the 
geometric elevation frame. 

(6.11.1) Xa (E9) = (doff ■ SA) X§> + (-<*„„ • CA) Y™ + (A.) Z^ . 

The negative of this vector is the displacement vector from Eg to OQ   . 

(6.11.2) Xeg (Og0) = (-doff • SA) Xg + (doff • CA) yi0) + (-he) Zf . 

Expressing X^ (Oc? ) in components relative to the geometric elevation frame 
basis, using (6.9), one gets 

(6.12) Xeg (Of) = (he . CE - d0ff ' CE) Yeg + (-he • SE - d0ff • CE) Zeg . 

We now rotate Xeg (OQ) by the angle — I?JL about an axis through Eg which 
is parallel to Yag, to give a new origin point of the ground frame, Ojj . The dis¬ 
placement vector of this point from Eg is: 

(6.13) Xe, (Og)) = [Rot{-#± Yag)} Xeg (Of) . 

Using (5.18), we can show that, for an arbitrary displacement vector, D, 

(6.14) [Rot(-'d±Yag)}  D = (costfj.) D + 

(1 - costfxX B-Yag)Yag + (sin^j.) ( Dx?a,), 

when Yag is a unit vector. We also have 

(6.15) Y^ = (CE) Yeg 4- (-SE) Zeg . 

Equations (6.14) and (6.15) applied to (6.13) give 

(6.16.1)     Xeg (Of) =  (d0ff • sintf j.) Xeg 

+(he • CE - d0ff - SE • costisJYeg + (-he'SE- d0ff • CE • cos tfj.)^. 
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The shaft offset d0ff and the shaft misalignment angle i^x are both sufficiently 
small that we make negligible error by replacing (6.16.1) by 

(6.16.2)     Xefl (Of) = (d0ff • tfj.) X] eg 

+(he • CE - d0ff • SE)Ye9 + (-he ' SE - doff • CE)^. 

We apply (6.14) to find the rotated basis vectors of the ground frame: 

(6.17) 

gives 

(6.18) 

IG 
7(1) 
^G 

-I Roti-OiYag) 

Rot(-'d±Yag) 

Ro^-^Yag) 

Y(0) 
IG 
7(0) 
^G     3 

and using (6.15) then gives 

)Xag + (SA)Yag +(-CA.sm<d±)Zl 

)Xag + (-CA) Yag + (-SA ■ sin^) Z 
(-smtf^Yag     4- 

iFf = (-CA- cos #±)Xag + (SA) Yag 4- (-CA 

Yg* = (-SA' COS ^J.)^ + (-CA) Yag 4- (-SA 
^i1^ (-siniMK„     4-      (cos^±)^ 

zt ag 

(6.19.1) rG 
$(1) 

= [■ K
(1) 
03 

eg 

eg 

/ep 

where 

(6.19.1)     [n$>] = 

(-CA • Cj.)  (SA • S^ 4- CA • CE • Si)  (SA • CE - CA • SE ■ S±) 
(-SA • Cj.) (-CA • SE 4- CE ■ SA • Si) (-CA • CE - SA • SE • Si) 

(-Si)        (-CE-Cj.) (SE.C±). 

where we use the abbreviations CL = costf^ and Sx = sini^x- 

We have now obtained the rotation matrix relating the geometric elevation 
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frame to the ground frame, for the model of a telescope where the azimuth and 
elevation shafts are offset and have a small angular misalignment from perpen¬ 
dicularity. We can now find the translation vector relating the origins of the two 
frames, and this will allow us to obtain the relation between the ground and geo¬ 
metric elevation coordinates of fiducial points on the telescope's tipping structure. 
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7.   DETERMINATION OF AZIMUTH 

AND ELEVATION. 

So far, in this memo, the telescope orientation angles AZant, ELant are only math¬ 
ematical variables, not physical objects. They, together with ELsur/_ri^, are the 
independent real variables used to describe analytical transformations of points 
and vectors associated with an ideal geometric complex, the geometric model of 
the Green Bank Telescope. These transformations describe positions and motions 
of structural node points, fiducial reference points and local unit frame vectors on 
the telescope when the ideal telescope rotates in azimuth, tips in elevation and 
deforms under gravity loading. 

One starts with a set of structure node points: 

| JCj J   Z = 1, Z..., Zmaxj 

and a set of fiducial reference points: 

{tfk ] k = 1, 2..., /cmax} 

in a 3-dimensional abstract Euclidean space, E3, which is not yet related to ge¬ 
ographic or astronomical space. Each of the points is defined by three Cartesian 
reference coordinates in this space: 

(Xeg(ELSurf_rig] ^^H) , Yeg (EL surf-rig] ^U), 2eg(ELSur f-rig] ^i)) 

for the node point  0^, and 

\X eg {EL surf-rig] Vk), ^eg\E Lsurf_rig] ijfc), Zeg\hiLsurf_rig\ tjfc)) 

for the fiducial point  fo;. 
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These coordinates are cataloged in a data base list of "ideal" geometric eleva¬ 
tion frame coordinates for the structure node points and a separate data base 
list of "ideal" geometric elevation coordinates for the fiducial reference points. 
These listed coordinates are interpreted as initial position coordinates in E3 for 
node and fiducial points of the ideal geometric telescope. Later, data base lists 
will be prepared for "measured" geometric elevation frame coordinates of node 
and fiducial points of the as-built physical telescope. The "measured" geometric 
elevation coordinates will be coordinates corresponding to a particular reference 
orientation of the telescope:  ELgurfjrig • 

There is a mapping: 

(7.1) 

Xe(mi)= Xe( AZant, ELant] ELgurf-rig] ^ ) :   & X R X & - E3 

defined by 

xXeg\EL surf-rig] ^U), Yeg(E L surf-rig] ^H), Zeg\ELsurf-rig] ^H)) —* 

(Xe(AZant, ELant, ^i), Ye(AZant, ELant, **), Ze(AZant, ELant] ^)) 

which predicts, on the basis of the ideal elastic model of the telescope, the co¬ 
ordinates of OTj in the geometric elevation frame to be expected when the ideal 
telescope is moved to azimuth angle AZant and elevation angle ELamt- 

Likewise, there is a mapping: 

(7.2) 

Xe(^fe) = Xe(AZant, ELant, ELsurf-Rig] $k) '•   R    X jR X E    —* E 

defined by 

(XegyELsurf-rig] Vfc)j Yeg\EL surf-rig] Vk), Zeg (EL surf-rig ] ^k)) —* 
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(Xe(AZant, ELant] *«), Ye(AZant, ELant] Mi), Ze(AZant, ELant] ^)) 

which predicts, on the basis of the ideal elastic model of the telescope, the co¬ 
ordinates of 5* in the geometric elevation frame to be expected when the ideal 
telescope is moved to azimuth AZant and elevation ELant- 

At node points associated with either feed arm laser stations or main reflec¬ 
tor target retroprisms one defines transformations of local coordinate frame basis 
vectors in a similar way. 

The orientation of the as-built Green Bank Telescope could be described by 
pointing and elevation angles: AZ shaft and ELshaft • These would represent, in 
some sense, best estimators for the telescope azimuth and elevation shaft angles 
of the as-built telescope relative, respectively, to astronomical South and the local 
gravity horizon. Physical definitions for these angles are not intuitively obvious. 
To define them, should be able to measure them. Direct measurement is non- 
trivial. 

Two conventional candidate measurement procedures are available. One can 
measure shaft orientations by reading electromagnetic shaft encoder angle read¬ 
outs. Or, one can orient the telescope to observe well-known celestial objects 
at well-defined times, pointing the telescope to observe maximum received radio 
signal at the telescope's prime focus. Neither of these methods is direct. Angle 
encoders may have readout error. Corrections for atmospheric refraction must 
be made, including corrections for azimuth and elevation, and the atmospheric 
variables: temperature, pressure, and relative humidity. Corrections for shaft im¬ 
perfections must be made. 

A third candidate method of measuring AZshaft and ELshaft is to determine 
best estimator angles: AZant and ELant for these angles, by range distance mea¬ 
surements using laser rangefinders, followed by a best fitting of the observed0 and 
adjusted set of ranges to the the ideal mathematical model of the deformable 
telescope. 

Antenna Azimuth, Astronomical Azimuth, Encoder Azimuth: 
Their Ranges And Sign Conventions. 
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The telescope models given in this memo use the variable AZant to describe the 
antenna structure. This variable was defined in the reference drawings [King-l]. 
AZant is measured counter-clockwise from astronomical South, looking down on 
the telescope. That is, when AZant = 0, the Y^ axis points to South, and when 

TT 
AZant = TT radian, the Y^ axis points to East. 

This is not the azimuth convention preferred by astronomers, when employing 
a topocentric azimuth/elevation horizon system of coordinates to describe celestial 
radio sources, or pointing radio telescopes. The preferred astronomical azimuth 
is measured clockwise from astronomical North, looking down to ground from the 
sky. That is, when the true astronomical azimuth of a radio source is zero, the 
observer looks to astronomical North, and when true astronomical azimuthof a 

TT 
radio source is equal to — radian, the observer looks to astronomical East.  The 

Zt 

range of astronomical azimuth is conventionally 0° to 360°. 

When discussing the telescope model in relation to observation of radio sources 
it will be convenient to work with not AZant, but with its supplement. Define 

(7.3) AZ   = TT  -  AZant • 

When applying laser ranging measurements to telescope pointing problems it 
will be convenient to work with the variable AZ in place of AZant • The variable 
AZ has the same rotational sense, and the same zero direction as astronomical 
azimuth. 

The variable AZ is a variable associated with mathematical models of the 
telescope, and is not yet defined defined for an as-built physical telescope. A 
correspondiing azimuth variable must be defined for the physical telescope to de¬ 
scribe azimuth orientation of the alidade structure of the GBT, a variable which 
can be measured optically. 

When defining the physical rotational position of the alidade structure, it is 
most convenient to use the same rotation sense and zero direction as for astro¬ 
nomical azimuth. Let us use a new variable: AZShaft, to describe the rotation 
angle of the alidade shaft (defined by the local alidade structure aligned by the 
pintle bearing ). It increases in the same sense as astronomical azimuth. We use 
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the following criterion to define the zero direction of: AZshaft'' when the telescope 
tipping structure is set to the rigging elevation angle and the main reflector sur¬ 
face is shaped as the parent paraboloid, the horizontal component of the direction 
of the paraboloid axis is towards astronomical North when AZShaft — 0. 

One of the measurement instruments used to measure AZshaft is the azimuth 
angle encoder. The azimuth encoder is an optical analog-to-digital angular mea¬ 
surement transducer that divides a circle into a specific number (222) of discrete 
shaft positions; its output signal amplitude increases linearly with increasing az¬ 
imuth shaft angle for a correctly manufactured encoder. (For the GBT encoder, 
output count and azimuth shaft angle increase as astronomical azimuth of an 
observed source increases). For an imperfect encoder one can generally find a 
correction function to convert output count to shaft angle. Let us call the nom¬ 
inal single readout (linear with count) of the encoder AZencoder- The readout an¬ 
gle of the azimuth encoder increases in the same sense as astronomical azimuth. 
The GBT azimuth encoder is designed to have an angular range of operation 
—270° < AZencoder < 270°. The encoder angle readout when AZshaft = 0 is called 
the zero offset angle of the azimuth encoder. 

We can define corresponding quantities to describe elevation of the tipping 
structure. The range of the elevation encoder is 0 < ELencoder < (^) TT • 

When laser ranging measurements are used in the determination of pointing 
variables of the GBT, by determining coordinates of appropriate sets of fiducial 
reference points, the measured ground frame coordinates of these fiducial points 
are used to fit the tilted deformed model of the telescope, and the calculated val¬ 
ues obtained, by fitting, for ELant and TT — AZant are used as estimated measured 
values for ELshaft and AZ shaft- 

Telescope Pointing. 

Call the output readings of the azimuth and elevation shaft angle encoders 
AZencoder anci ELencoder respectively. Let us write: 

(7.4.1) AZshaft = AZenC0der + AZ^ + AZ™ + AZ<3> + AZ^ + ... . 

(7.4.2) ELshaft = ELencoder + EL^ + EL® + EL(3) + ELM + ... . 
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The terms AZ^ and EL^ are pointing correction terms, to be determined, 
and are functions of encoder readout angles AZencoder and ELencoder- 

The angles AZShaft and ELShaft do not include atmospheric refraction. They 
specify best-estimate spatial orientations of the alidade and tipping structures 
with respect to a local terrestrial topographic frame (the ground frame). 

We wish to observe an astronomical point source emitter, at local apparent 
sidereal time: LAST, and true local terrestrial azimuth (neglecting atmospheric 
refraction): AZtrue(Source, LAST) and elevation ELtrue(Source, LAST). At the 
telescope, because of atmospheric refraction, the apparent azimuth and elevation 
of this sky object are different from true azimuth and elevation. We may call 
them AZ apparent and ELapparent- The apparent direction of the radio source de¬ 
pends upon the atmospheric refractivity profile along the ray-optical path from 
sky to earth for radio propagation from the direction AZtrUe, ELtme at the time 
of observation. We may write: 

(7 ^\       FT —FT ,    A (refraction)       ty —AY i    A (refraction) 
\i .O)      Hi IJ apparent — ^'■L'true ~r ^-^EL ,   ^^ apparent — -^•^'true ~r t-^AZ 

In general, the azimuth refraction correction term is small and is usually neg¬ 
ligible. The elevation correction A^J c l(m', below 100 GHz observing frequency, 
is given in section 1.2.5 of [Wells-2]. 

To point the telescope, in the absence of elastic gravity-load deformation, the 
apparent azimuth and elevation of a radio source would be set to coincide, respec¬ 
tively, with the azimuth and elevation shaft angles of the telescope. But the main 
reflector will be deformed from a parabolic shape, unless reshaped using the main 
surface acuators. In the present discussion, telescope operation is assumed to oc¬ 
cur so that the main reflector will be reshaped into a best fit paraboloid which is a 
function of the telescope's shaft elevation angle, ELshaft- Detailed computations 
of the configuration of the best fit paraboloid have been given in GBT Memo 131, 
by D. Wells and L. King [Wells-2], including the C-language computer codes to 
implement these calculations. There is an elevation-shaft-angle dependent shift 
of the best fit paraboloid's axis from the elevation angle of the shaft. 

(7.6)    ELbfp = ELshaft + Aglp). 
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The current elastic model of the telescope tipping structure does not indicate 
an azimuth shift due to gravity loading, but we may formally include such a term, 
in case the elastic model requires a later update if construction asymmetries arise 
during telescope construction. Formally we can write, 

(7.7)    AZbfp = AZshaft + *%?'. 

The incremental term in (7.6) is calculated from the elastic model of the tip¬ 
ping structure, and has been given in [Wells-2]. The incremental term in (7.7) is 
assumed to be zero, unless a non-zero term is required by an updated elastic model. 

To point the telescope, allowing for elastic gravity-load deformation, the ap¬ 
parent azimuth and elevation of the radio source are set to coincide, respectively, 
with the azimuth and elevation angles of the best fit paraboloid. 

When the telescope has been pointed: 

(7.8) ELtrue 4- ^EL = ELbfp   ,    AZtrue = AZbfp . 

The pointing equations for the telescope are then: 

(7.9) ELtrue(Scmrcey LAST) + A^e
L
fraction) = 

ELencoder + ^EL     "^ ^ ^^       > 
k 

(7.10) AZtrue(S(mrce} LAST) = 

AZencoder + A^ + £ AZ™. 

One wishes to solve these equations for ELencoder and AZencoder] their solutions 
are the setpoint values for the shaft encoder angle outputs to be read out when 
the telescope points to the radio source. That is, encoder outputs ELencoder and 
AZencoder which satisfy (7.9) and (7.10) are, respectively, the commanded elevation 
and azimuth encoder outputs ELcommond and AZcommond required for pointing to 
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be achieved. Angles ELtrue and AZtrue are given input parameters in the equa¬ 
tions; they are obtained by converting celestial coordinates of the radio source 
into terrestrial topographic direction coordinates in the local horizon coordinate 
system. 

The equations are complicated, because the sum terms are themselves func¬ 
tions of ELencoder and AZencoder- The refraction terras are functions of the true az¬ 
imuth and elevation of the radio source. This comphcation is mitigated by the fact 
that the correction terms are slowly-varying functions of their arguments. Negli¬ 
gible error should be generated by replacing the independent variables ELencoder 
and AZencoder ^ the sum terms by ELtrue and AZu-ue- (If one wishes to correct 
such small errors one can compute the encoder angles, making such a replace¬ 
ment, and then modify the solution by adding additional terms corresponding to 
the Taylor's series expansions of the sum terms about the encoder angles. This 
will not be attempted here.). 

The sum terms in (7.9) and (7.10) are usually obtained by associating each 
term with a particular mechanical or thermal deviation of the telescope structure 
or encoders from their nominal design characteristics. Examples of mechanical 
effects to be corrected are: are encoder angle index offsets, encoder eccentricity, 
encoder cyclic errors, deviation of the azimuth shaft from vertical!ty , lack of 
perpendicularity between elevation and azimuth shafts, offset error due to non- 
intersection of the azimuth and elevation shaft axes, elevation-dependent flexure 
of the alidade structure, main reflector flexure. An example of a thermal expan¬ 
sion effect is a roll of the tipping structure about the horizontal feed arm due to 
unequal solar heating of the two alidade legs. 

Equations of the form (7.9) and (7.10) describe a "traditional" pointing model 
of the telescope. Traditional pointing models were developed for the following 
azimuth-elevation instruments, among others: the Haystack telescope [Meeks-1]; 
the 36-foot millimeter wave telescope at Kitt Peak [Schr-l], [Ulich-l]; the 30-meter 
IRAM millimeter wave telescope [Greve-1]; the ESSCO 45-foot antenna at Green 
Bank [Ghigo-1]. Von Hoerner [Hoe-l] suggested a traditional pointing model for 
the GBT. 

The terms in von Hoerner's traditional pointing model for the GBT are: 
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Term Cause Value 

Elfi* Azimuth axis offset to North by Pi Pi cos(AZ) 
AZM Azimuth axis offset to North by Pi Pi tan(EL) sin(AZ) 
EL^ Azimuth axis offset to East by P2 P2sin(AZ) 
AZW Azimuth axis offset to East by P2 -P2tan(EL)cos(AZ) 
EL^ Elevation axis deviates from JL 0 
AZ® to Azimuth axis by P3 P3tan(EL) 
ELM Zero elevation offset, feed offset to Y PA 
AZM Zero elevation offset, feed offset to Y 0 
EL& Beam not JL to Elevation axis, feed 0 
AZ& offset to X P5sec(EL) 
EL^ Zero azimuth offset 0 
AZ^ Zero azimuth offset Pe 
ELW Gravity, symmetrical P7cos(EL) 
AZW Gravity, symmetrical 0 
ELW Gravity, asymmetrical P8sin(EL) 
AZ^ Gravity, asymmetrical 0 

A (refraction) Refraction (Form not given) 

A series of memos is available presenting the pointing model for the equatorial 
140-foot telescope at Green Bank, and its modifications over two decades of tele¬ 
scope operation. ( [Gor-l], [Hoe-2] to [Hoe-6], [Madd-1], [Pau-l] ). In particular, 
memos by von Hoerner give an in-depth presentation of the problem of differential 
thermal effects on telescope pointing, and methods used to overcome them. 

Alternatively, one can present encoder setpoint elevation and azimuth angles 
as a two-dimensional Fourier series expansion in true elevation and azimuth an¬ 
gles, to model radiotelescope pointing. Individual terms in a Fourier series model 
of the telescope are not given unique physical interpretation. A model of this type 
has been given for the GBT by J.J.Condon fCon-l]. Condon's model is currently 
scheduled for implementation on the GBT. In Condon's pointing model, equations 
(7.9) and (7.10) are replaced by series of the form: 
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(7.11)      ELtrue(S0Urce, LAST) + Agf^*0 - EL^mand = 

qvaax pmax 

4oL) + E E 4f) sin(p • ^) sinfe • ^L)+h(£L) COS(P • ^) sin(9 •EL) 
q=l     p=l 

+4f L> sin(p. AZ) cos(g. EL) 4- d<£L) cos(p • AZ) cos(g. EL). 

(7.12)   AZtrue(Source, LAST) - AZcommand = d^z)+ 

gmax pmax 

+ sec(EL) • X)    E apgZ) sin(P'AZ) sin(9'EL) + ^Z) cos(p• AZ) sm(q • EL) 
9=1     P=l 

+c^) sin(p • AZ) cos(g. EL) + dg** cos(p • AZ) cos(q • EL). 

One can use angles ELtrue and AZtrue m the right hand sides of the above 
equations, to sufficient accuracy. (These are determined by the calibration sky 
object, at the time of observation). The commanded elevation and azimuth angles 
are computed using these equations. It is possible to partition and reserve certain 
terms in the above series to represent explicitly those pointing corrections which 
are due to waviness of the alidade track. Also, some of the low order Fourier 
terms correspond uniquely to physically defined terms in the traditional pointing 
model. This is discussed in [Con-1]. 

In Condon's GBT Memo 75, the source of the Fourier coefficients is not dis¬ 
cussed. Passing reference is made to astronomical measurements of calibrator 
radio source positions and laser ranging measurements, but no detailed sugges¬ 
tions are given for coefficient determination. If sky radio source positions are used 
to determine telescope pointing, effects of subreflector and feed arm motions on 
the pointing determination must be removed or corrected. That is, feed arm mo¬ 
tions and deformations and subreflector position and orientation should not enter 
into the pointing equations as additional variables or error sources. 

The modular software and control implementation of the GBT Pointing Sys¬ 
tem, which is to perform antenna pointing and focus tracking tasks, is described 
in GBT Memos 103 [Fisher-1] and 122 [Hogg-1]. 

In [Hogg-1] a distinction is made between "pointing" which involves bringing 
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radiation from a sky object to a prime focus, and "focus tracking", which deals 
with bringing the radiation from prime focus to a receiver, via the subreflector. In 
Condon's pointing model such a distinction is not defined. If pointing coefficients 
of Condon's model are to be determined by astronomical measurement procedures, 
it is important to understand the practical effects of focus tracking considerations 
on these measurements. That is (for example), receiver feed positioning, feed arm 
elastic deformations, subreflector position and orientation should either not af¬ 
fect the pointing coefficient measurements or should be compensated or removed. 
Possible effects of focus tracking interactions involving the feed arm, subreflector 
and receiver feed positioning on pointing coefficient determination need some ex¬ 
amination. One should insure that pointing is in fact determined independently 
of the behavior of components on the feed arm. 

Laser metrology could be of help in determining pointing, independent of feed 
arm component behavior. We discuss this and give examples in the paragraphs 
which follow. 

It should be practical to use laser rangefinder measurements of structural fidu¬ 
cial reference point positions, when the GBT telescope is moved in elevation and 
azimuth, to obtain individual terms in a traditional pointing model of the GBT. 
By including pointing terms which are both assignable to a particular structural 
deviation and measurable by laser rangefinding explicitly in the pointing model 
one could decrease the contributions of arbitrary terms to the pointing model. It 
is also possible to measure separately the translational and rotational motions of 
the alidade structure due to waviness of the alidade track when telescope azimuth 
is varied. During the initial calibration of the GBT, measurements of the follow¬ 
ing types would be made: 

Measurement 1. The tipping structure is fixed in elevation. The telescope 
is rotated 360° in azimuth. Orbit curves, in space, with respect to the ground, 
are measured for fiducial reference points of retroreflectors attached to the ali¬ 
dade structure. In particular orbit curves are measured for diametrally opposite 
retroreflector pairs at approximately the same height above ground. If the alidade 
track is flat and horizontal, these orbit curves should be horizontal circles. If the 
track has a mean tilt from the horizontal the orbit circles will display this tilt. If 
the track is wavy or if the alidade truck wheels are nonuniform the orbit curves 
will show a wave departure from circularity. One can also determine the effect of 
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track waviness in generating azimuthal twist of the elevation shaft with respect to 
the alidade base (a deformation considered significant by Condon) by looking at 
differential changes in the azimuthal orientation of displacement vectors between 
diametrally opposite alidade fiducial point pairs near the top and bottom respec¬ 
tively of the alidade structure, as azimuth is varied. 

Measurement 2. The alidade is fixed in azimuth. The tipping structure is 
rotated 90° in elevation. The orbit curves in space, with respect to the ground, 
are measured for fiducial reference points of retroreflectors on the feed arm and 
box structure. If the elevation shaft is horizontal, the retroreflector fiducial point 
orbit curves will be (approximately 90°) arcs of vertical circles. If the elevation 
shaft is tilted from the horizontal, the orbit curve planes will no longer be vertical, 
and will show this tilt. Deviations of the elevation shaft from the horizontal can 
be caused either by non-perpendicularity of the elevation and azimuth axes, or 
by alidade track waviness. By making these measurements at each of several dif¬ 
ferent azimuths, and also using the results of Measurement 1, the effects of track 
waviness and axis non-perpendicularity can be separated. 

Measurement 3. The alidade is fixed in azimuth. The tipping structure is 
rotated 90° in elevation. The orbit curves in space, with respect to the ground, 
are measured for fiducial reference points of retroreflectors high on the alidade, 
located beneath the elevation shaft bearings, and also for alidade retroreflector 
fiducial points located near the base of the alidade. If the alidade were perfectly 
rigid, and the tipping structure were balanced so that it exerted no large bending 
moments on the alidade, these alidade fiducial reference points would not move. 
If they are observed to move, the bending of the alidade structure can be deter¬ 
mined from their orbit curves. 

It seems likely that these and other laser measurement schemes can be devel¬ 
oped in detail as practical aids to achieve GBT pointing. But laser measurements 
can also be used to observe changes in the pointing model of the telescope as the 
telescope ages, and can flag when the model needs updating or upgrade. 
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8. DISCUSSION. 

We now discuss the motivation and applications for the telescope coordinate 
modeling presented in the earlier chapters. The GBT possesses features which are 
unusual or unique among radio telescopes. It has an actively driven main reflec¬ 
tor, gregorian configuration with offset feed, and an active laser ranging metrology 
system which will dynamically measure reflector surface shape and subreflector 
position, monitor pointing, vibrations and structural features to provide informa¬ 
tion about dynamic telescope behavior. For the ranging system to achieve these 
goals, it must dynamically aim feed arm laser ranging beams at moving target 
reflectors, while possibly in motion as these targets are scanned. 

Range measurements are made as follows [Payne-l]. An intensity-modulated 
light beam is transmitted over the measurement path, reversed by a target retrore¬ 
flector, and returned to the scan instrument. The phase of the return beam's 
modulation envelope is measured and compared to that of the outgoing beam. 
A corresponding phase measurement is made over a comparison path, to remove 
common mode path [from the laser output face to the scan mirror center (outgo¬ 
ing) and from scan mirror center to photodetector surface (return)]. Corrections 
relating target prism optical center to the telescope surface are discussed in [Gol- 
1]. The difference between measurement path and comparison path phase delays 

is 27r I —— I, where dopt is the optical path length from the scan mirror center 
\Anod/ 

to the optical center of the retroreflector. Phase detector output is the phase de¬ 
lay, modulo 27r. Distance from scan center to target center is determined modulo 
the modulation wavelength Amod, after the path length is corrected for refraction. 
Range measurement is modular, not absolute. There is ambiguity of a multiple 
of Amod/2 in each measurement. GBT ranging instruments do not provide mul¬ 
tiple modulation frequency capability, to resolve the ambiguity. Distances to be 
measured should therefore be known a-priori  to Amod/2. 
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During GBT operation, feed arm displacements at the ranging stations varies 
by several modulation wavelengths, as telescope elevation changes. Distances 
from range scan centers to targets changes by several modulation lengths. Atti¬ 
tude changes of range station platforms to the main reflector are also significant, 
requiring changes in commanded scan angles. Additionally, actuators may move 
to alter the main reflector surface. A-priori information concerning scan mirror 
position and attitude and main reflector target center must be accurate enough 
to avoid ambiguity. The model of the deformed telescope (with alidade correc¬ 
tions) presented in this memo is intended to supply computational tools to get the 
needed a-priori information. It is expected that the model will be coded in object 
oriented language, and that data bases of fiducial and node point coordinates, at 
some reference elevation, will be supplied. Computed distances and attitudes can 
then be used to remove distance ambiguity and correct commanded scan aiming 
angles so that each demanded range measurement is achieved. 

Reference Optical Telescope, Design Telescope and Tilted 
Geometric Telescope. 

The first two models were developed to trace how basic design dimensions for 
the GBT are derived from fundamental optical parameters, and to present a self 
consistent set of design dimensions (Appendix I) and relate them to GBT design 
drawings. The geometric telescope model was developed to define geometric ref¬ 
erence frames used to describe a more general, as-built telescope. In section 6, 
this model is extended to allow shaft offset and misalignment. Coordinate and 
basis vector transformations relating local reference frames are given in Appendix 
I. Transformation matrices are given symbolically, to allow substitution of as-built 
telescope dimensions in place of design dimensions. Additional reference frames, 
besides those appearing in the GBT design drawings, are defined for the feed 
house, turret, and receiver feed flanges, to provide a nomenclature and framework 
for description of microwave receiver component locations. 

The Tilted Deformed Telescope. 

Using frames defined for the tilted geometric telescope as reference frames for 
the telescope whose tipping structure is deformed in accord with the Finite El¬ 
ement Model, position shifts of structure node points and retroreflector fiducial 
points were calculated. Attitude shifts of laser platforms were calculated, to find 
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laser beam aiming corrections as a function of tipping structure elevation. The 
model also provides equations to predict range changes between station scan mir¬ 
rors and main reflector target centers, as elevation varies. It also allows one to 
calculate improved distances between feed arm scan centers and ground retrore¬ 
flector fiducials, to get ground frame coordinates of the feed arm laser scan centers. 

Determination of Azimuth and Elevation. 

Use of laser ranging to assist with pointing of the GBT was discussed in [Payne- 
2] and [Wells-2] , and is mentioned in passing as an aid to determination of Fourier 
coefficients for Condon's pointing model [Con-1]. 

If laser metrology is to assist with pointing, the laser range measurement tasks 
and range distance analyses for this purpose must be defined carefully. We briefly 
review the pointing process, and then discuss possible use of laser ranging to assist 
with this task. 

We start with an astronomical source which is to appear at known appar¬ 
ent horizon system elevation and azimuth, at a known time. To best observe 
this source, the telescope primary must be shaped to an appropriate paraboloid. 
(This is preferably the best fit paraboloid corresponding to the source elevation, 
but might also be the most recently available paraboloid if surface actuators can 
not be adjusted for this measurement). The telescope is driven in elevation and 
azimuth until the axis of the available paraboloid coincides with the apparent 
direction of the radio source. This is done by entering commanded position an¬ 
gles into the telescope servo system and driving (ELencoder - ELcommond) and 
(AZencoder ~~ AZ command) to zero, so the telescope points to a direction in space cor¬ 
responding to the condition that the encoder angle readouts are the commanded 
angles. Angles ELcarnmand and AZccnnmand are near to but not equal to the appar¬ 
ent radio source angles. Proper command angles can be obtained from the source 
angles if one has a pointing model of the telescope (e.g., either a traditional or 
Condon's). The pointing model consists of a trigonometric series expansion in 
source elevation and azimuth (as independent variables) for the commanded ele¬ 
vation, and a trigonometric series in source elevation and azimuth for commanded 
azimuth. The usual procedure used for determining a pointing model for a radio 
telescope is to use microwave holography with a radio source which is either a 
stationary satellite or a celestial maser. At the GBT, holography can be supple¬ 
mented with laser ranging metrology. 
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Considerations for applying laser metrology to pointing are given in [Wells-2]. 
Wells suggests using retroreflectors at several heights on the alidade legs to de¬ 
tect and measure thermal distortion, and retroreflectors near the elevation axle 
bearings to determine axle orientation. Alidade retroreflectors can also be used 
to find alidade azimuth rotations from an azimuth reference. We note that they 
may also be placed beneath opposite ends of the box structure supporting the 
main reflector, along a line perpendicular to the elevation shaft. Rotation of the 
line joining these retroreflectors can be used to find changes in tipping structure 
elevation from an elevation reference angle, for example ELsurf-rig- Use of laser 
rangers to determine alidade track pointing variation due to track waviness was 
discussed in section 8. 

Determination of the Fiducial Point Coordinate Data Base. 

To use laser ranging for telescope metrology one must possess a data base list 
of fiducial reference point coordinates. It can be acquired as follows. 

One first performs a ground control survey. Using theodofites and a total 
station equipped with a boresighted Electronic Distance Measurement laser, one 
measures and adjusts a survey control network. (A TOPCON total station is 
available at Green Bank). The EDM ranging laser has frequency diversity opera¬ 
tion and measures absolute distance to within three millimeters. The control net 
includes ground based retroreflector fiducials, metrology laser scan center fidu¬ 
cials, and reference monument fiducials. The adjusted network distances will be 
accurate to three millimeters, which is much shorter than the laser beam 10 cm 
modulation half wavelength. The network is then resurveyed by trilateration us¬ 
ing metrology ranging station lasers. The needed modular distance corrections 
are now available from the preliminary survey results. Adjusted distances of the 
resurveyed network are expected to have accuracy near 50 /mi. One then has accu¬ 
rate position coordinates available for the ground based fiducial reference points, 
and has accurate distances between range station mirror scan centers. 

One independently determines orientations, with respect to the ground frame, 
of the kelvin mounts and the laser scan axes of the ground ranging stations using 
conventional surveying methods. One can then use scan elevation and azimuth 
readouts of a ranging beam to find direction cosines of the beam's direction vector 
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with respect to ground reference frame coordinate axes. One can then triangulate 
from a pair of laser ranging stations at known separation from one another to a 
target retroreflector on the telescope, to obtain an unambiguous range from that 
target to each of the laser scan centers, to an accuracy near one centimeter. That 
is, one uses scan angle readouts, when a target is ranged, to compute the angles 
between the laser beam directions and the line segment between the scan centers, 
and then uses the accurately known distance between scan centers to compute 
ranges, using the law of sines for the triangle whose vertices are the scan centers 
and target fiducial point. Scan angle readouts on the laser stations are accurate 
to about 27r X 10""5 so they can be used to compute range to an accuracy of about 
1 cm. A triangulation range is accurate enough to supply the modular part of 
the range distance from laser scan center to target. Accurate distance is then 
obtained from range phase output, after triangulation range information is made 
available. 

For fiducial points associated with ground based lasers and target retroreflec¬ 
tors, the data based coordinates are the fixed ground frame coordinates obtained 
from the control survey. 

For alidade based retroreflectors, data base coordinates are measured when 
the tipping structure is set at a selected reference elevation, preferably ELgurf-rig- 
Coordinates are measured by ranging when the alidade is set to an arbitrarily 
selected azimuth reference angle. Those reference angles can initially, during 
telescope commissioning, be shaft encoder output angles and can be corrected 
subsequently to true source angles, after a pointing model has been obtained. If 
time permits, during commissioning, it would be valuable to obtain coordinates 
of targets on the alidade, with the alidade set at its reference azimuth and the 
tipping structure set to the upper and lower extremes of elevation. 

Alidade fiducial retroreflector coordinates, at reference azimuth, can be listed 
as either ground frame coordinates or (after transformation) as geometric alidade 
coordinates. 

Measurement of feed arm fiducial reference point coordinates should be done 
by laser ranging from ground based lasers and by ranging from feed arm lasers 
to ground based retroreflectors, with tipping structure set to the surface rigging 
elevation angle, ELsurf-rig •   If direct laser-to-laser ranging can be done, range 
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measurements between laser scan center points should be made separately in each 
direction, feed arm to ground and ground to feed arm. Feed arm retroreflector 
fiducial point coordinates should be data based as geometric elevation coordinates. 

Summary. 

The GBT was modelled geometrically to provide a framework to locate posi¬ 
tions of fiducial reference points on the telescope structure and to describe their 
expected position changes as the antenna moves. Corrections in position due to 
gravity load deformation of the tipping structure, as calculated by the tipping 
structure's finite element model, were derived to provide aiming corrections for 
feed arm lasers used for main reflector surface determination. 

Laser ranging measurements are modular, and are not unambiguous. Initial 
estimates of position, good to one half modulation wavelength (near 10 cm) are 
needed to eliminate ambiguity. It is practical to obtain a measured data base of 
fiducial point coordinates for a single telescope pointing position and then use a 
geometric model of the GBT to compute coordinates of any selected fiducial point 
at arbitrary elevation and azimuth. Model computations developed in this memo 
provide a way to do this. 

It is expected that computations developed in this memo will be coded in ob¬ 
ject oriented code, and a data base of measured fiducial point coordinates will be 
developed during commissioning of the telescope. Subsequently, a data base of 
fiducial positions and the telescope model will be available to evaluate laser range 
measurements used to improve the pointing and study the dynamic behavior of 
the telescope. 

As a final comment, I express the hope that this memo can serve as a basis 
to stimulate discussion and innovation with regard to use of laser metrology as a 
tool for diagnostics and operation of the GBT. Dynamic laser metrology is a new 
and promising tool for radiotelescopes. It should be used to to the full extent of 
its capabilities. 
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Appendix I. Matrix Relations For The Ideal Geometric Telescope. 

We use the following abbreviations: 

SA  =  sin AZant 
CA  =   cos AZant 

AZant is the antenna azimuth angle. 
ELant is the antenna elevation angle 

SE  = sin ELant 
CE  = cos ELant 

Spf = sin 45.5 degrees 
Cpf =   cos 45.5 degrees 

Ss  = sin 36.7 degrees 
Cs  = cos 36.7 degrees. 

SB =  sin p 
CB =  cos p 

ST -  sin (a-p) 

SpfE 
CpfE 

ssE 
csE 

sin (ELant + 45.5 degrees) 

cos (ELant + 45.5 degrees) 

sin (ELant + 36.7 degrees) 

cos (ELant + 36.7 degrees) 

SET= sin (ELant +     a-p   ) 

CET= cos (ELant +    a-p   ) 

2A     - 
:2A     = 

sin (2 AZant) 

cos (2 AZant) 

hpe     =    hip     +     hre 

dpe     =     dre 

mr    =       mp 

hmr    "       hrp-hmp 

hrs      =:    hrp     +    hsp 

drs      =     dsp 

ltr 

Ltr 

dmr+CTdtm 

hrp-hmp-STdtm 

hse     =     hrs      +     hre 

dse     =     drs     +     dre 

d*„     =    dtr      +    d lte 

lte 

tr 

tr 

're 

lit*.      =    hft.      +    h lre 

mp 
Tee 

lrce hip- 
mp' 
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Numerical Values Of The Transformation Parameters. 

The following parameters are functions of the antenna angles, AZant and ELant: 

SA , CA , SE , CE, 

SET = sin (ELant + 12.329 degrees),   GET = cos (ELant + 12.329 degrees), 

'pfE     •   CpfE •    S2A   •   C2A   • sE sE 

The numerical values of the trigonometric parameters are: 

v S 0.713250449 

cpf 
= 0.700909264 

ss 
= 0.597625147 

Cs = 0.801775644 

SB = 0.097061786 

CB = 0.995278357 

ST = 0.213524886 

Two sets of values for the length parameters are provided. The table to the left 
gives values derived from the reference optical telescope model. The table to the 
right gives values derived from from design values stated on the GBT drawing 
C35102M081-B, which are the optical telescope values rounded to the nearest 
millimeter. 

Length Parameter Reference Optical 
Telescope Value 

(centimeters) 

Design Drawing Value 

(centimeters) 

dmp 106.7680 106.8000 

hmp 1094.8062 1094.800 

dsp 429.1726 429.2000 

sp 
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Lre 

're 

rp 

lpe 

lpe 

Lrs 

lrs 

se 

se 

'rce 

rce 

lmr 

mr 

ltm 

ltr 

lte 

Lte 

4826.0000 

499.9990 

5843.9110 

6000.0000 

6499.9990 

5843.9110 

6429.1726 

429.1726 

6929.1716 

6273.0836 

53.3840 

5452.5969 

106.7680 

4905.1938 

142.2400 

245.7751 

4874.8220 

6089.6861 

5374.8210 

4826.0000 

499.9990 

5843.9110 

6000.0000 

6499.9990 

5843.9110 

6429.2000 

429.2000 

6929.1990 

6273.1110 

53.4000 

5452.6000 

106.8000 

4905.2000 

142.2400 

245.7681 

4874.8282 

6089.6791 

5374.8272 
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Alidade To Base Transformation: 

/X* X 

Yl =     [R12] 

iz 
ag 

agj 

[712] 

[R12] 

CA   SA   0! 

I-SA  -CA 0 

0       0     1, 

[T12] 0 

0] 

x\ 
Y 

z, 

CAXag-hSAYag 

ag 

Alidade Frame Origin: 

/X(Ag)| 

Y(Ag) 

Z(Ag)J 

(0] 

0 

Base To Alidade Transformation: 

X ag 

ag 

ag 

[R21] [121] 

[R21] 

/-CA -SA  01 

SA   -CA 0 

0       0     1 

[T21] 

/0\ 

0 

X ag 

ag 

ag 

-CAX -SAY 

SAX - CAY 

Z 
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Elevation To Alidade Transformation: 

X ag 

ag 

ag 

[R23] 

X eg 

eg 

eg J 

[723] 

[R23] 
fl     0      0 \ 

10    SE   CE 

\0 -CE   SEj 

[T23] 

X ag 

ag 

agj 

X eg 

SEYeg-HCEZeg 

CEYeg^-SEZeg^he 

Alidade to Elevation Transformation: 

eg 

Y eg 

eg J 

[R32] 
ag 

[T32] [T32]       =    [R32](-1)[T23] 

[R32] 

fl    0      0  \ 

0   SE -CE 

0  CE   SE 

[T32] 

0 

CE-he 

-SEh, 

Xeg 

Y 1 eg 
^ 

X 

SEYag-CE-Zag-HCEhe 

CEYag-hSEZag-SEhe 
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Elevation To Base Transformation: 

[R13] 

[R13] 

X eg 

eg 

eg J 

[T13] 

/-CA   SASE    SACE 

l-SA  -CASE -CAGE 

0       -CE SE 

[R13] = [R12][R23] 

[T13] = [T12] + [R12][T23] 

rri3] 

0 

0 

-CAX Pff-H SASEY „4- SACEZ PO eg eg eg 

-SAX„- CASEY ._- CACEZ_ eg eg eg 

-CEYeg+SEZeg+he 

Elevation Frame Origin: 

fX(Eg)\ " 0 " 

Y(Eg) 0 ( = [T13] ) 

Base to Elevation Transformation: 

X eg 

eg 

eg 

[R31] [T31] [T31]       =    [R31](-1)rri3] 

[R31] 

/ -CA       -SA        0 

SASE  -CASE  -CE 

\SACE -CAGE    SE 

[T31] 

0 

CE-h€ 

-SEh. 

X eg 

eg 

eg J 

-CAX -SAY 

SASEX - CASEY - CEZ -f- CEh( 

SACE-X - CACEY -t-SE-Z - SEh( 
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Reflector To Elevation Transformation: 

X eg 

eg 

Leg 

[R34] 
'V 
Yrg 

IT34] 

[R34] 
fl  0  0) 

[0   1   0 

0  0   1, 

P"34] 

0 

-d re 

re 

X eg 

eg 

eg 

X rg 

Yrg-dre 

Zrg + hre 

Elevation To Reflector Transformation: 

rg 

rg 

rg 

[R43] 

Xeg 

Yeg 
[T43] [T43]       =    [R43](-1)[T34] 

[R43] 

/l   0  0) 

0   1   0 

\0 0   1, 

rr43] re 

re 

X rg 

rg 

rgj 

X eg 

Yeg+dre 

Zeg~llre 
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Reflector To Base Transformation: 

X 

Y 

Z 

[R14] 

[R14] 

xrg 

Yrg 

LZrg 

[T14] 

-CA   SASE    SACE 

l-SA -CASE -CAGE 

0       -CE SE 

[R14] = [R13][R34] 

[T14] = [T13] + [R13]|T34] 

[714] 

-SASEdre+SACEhre 

CASEdre-CACE-hre 

CEdre+SEhre-Hhe 

-CAXrg-h SASEYrg-f-SACEZ rg-SASE-dre-h SACEhre 

-SA-Xrg- CA-SB-Y    - CACEZrg+CASEdre- CACEhre 

-CEYrg-i-SEZrg-l-CEdre-hSEhre-Hhe 

Reflector Frame Origin: 

/X(Rg)\ 

Y(Rg) 

\Z(Rg)/ 

-SA-SEdre-f-SACEhre 

CASEdre-CACEhre 

CEdre+SEhre-»-lie 

( = [T14] ) 

Base to Reflector Transformation: 

X rg 

rg 

L   rgj 

[R41] [T41] rr41]       =    [R41](-1)[T14] 

[R41] 

-CA       -SA        0 

SASE   -CASE  -CE 

ISACE -CAGE   SE 

[141] 
/ -CA       -SA        0  \ 

SASE  -CASE  -CE 

\SACE  -CAGE    SE/ 

SASEdre-SACE^hre 

-CASE-dre+CACEhre 

-CEdre-SEhre-he 

dre-hCEhe 

-hre-SE-he 

"Xrg" 
Yrg 

"" 

CAX -SAY 

SASEX - CASEY - CEZ +drp+CElu 

SACEX - CAGEY -tSEZ - hre- SEhe 
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Prime Focus To Reflector Transformation: 

X rg 

rg 

'rg 

[R45] 

X 
Pg 

Pg 

L pg 

[T45] 

[R45] 
0       0     1 

Cpf -Spf 0 

spf cpf 0 

[T45] 

0 

0 

V 

X rg 

rg 

rg 

'Pg 
CpfXpg-SpfYpg 

SpfXpg^CpfYpg + hrp 

Reflector To Prime Focus Transformation: 

X 
Pg 

Pg 

Pg 

[R54] 

X rg 

rg 

[rgj 

n*54] rr54]       =    [R54](-1)p-45] 

[R54] 

0   Cpf   Spf 

0 -Spf Cpf 

1 0       0 

[T54] 

-Spfhip 

-Cpfhrp 

X 
Pg 

Pg 

Pg 

C pf Y rg + S pf Z rg " S pf hrp 

S^Y^+CpfZ 

Y 
rg 

pf Yrg-t-upfz,rg 

X, 

pfV 
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Prime Focus To Base Transformation: 

[R15] 

xpg 
YPg 

ms] [R15] = [R14][R45] 

IT15] = IT14] + [R14]IT45] 

[R15] 

SASpffi SAC pfE 

CASpffi -CACpfE 

pfE 'pflE 

CA 

SA 

0 

[TIS] 

SACEhpe- SASEdre 

-CACEhpe-CASEdre 

SElipe-HCEdre + he 

SASpfEXpg-f-SACpffiYpg-CAZpg-HSACEhpe-SASEd 

-CASpffiXpg- CACpffiYpg- SAZpg- CA-CE-hpe- CASEd 

-CpfEXpg^SpfEYpg+SEhpe^CEdre^he 

re 

re 

Prime Focus Frame Origin: 

/X(Pg)\ 

Y(Pg) 

\z(Pg)/ 

SACEhpe- SASEdre 

-CACEhpe-CASEdre 

SE.hpe^CEdrei-he 

( = [T15] ) 
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Base to Prime Focus Transformation: 

X Pg 

Pg 

L   Pg 

[R51] [T51] |T51]       =    [R51](-1)IT15] 

[R51] 

SASpfE   -CASpfE  "CpflE 

SACpfE -CACpfE   SpfE 

-CA -SA 0 

[T51] 

SASpffi   -CA'SpfiE  ~CipfE 

SA'CpfE -CA"CpfE   SpfE 

-CA -SA 0 

-SACEhpe-f-SASEdre 

CA-CEh -}-CASEdre 

-SEhpe-CEdre-he 

|T51] 

C
Pffi(SEhpe^CEdre + he) - C 2ASpfESEdre- SpffiCEhpe 

-Spfe(SEhpe+CEdre + he) " C lA CpfE"SEd re" CpfE'CE- hpe 

2A"0" J re 

xpg 

Ypg 

SA-SpffiX -CASpffiY -CpffiZ +Cpffi(SEhpe-HCEdre^he)-C2ASpffiSEdre-SpfECEhpe 

SACpfE-X-CACpfE.Y+Spffi-Z-Spfe(SEhpe^-CE-dre-t-he)-C2A.Cpffi.SEdre-Cpffi-CEhpe 

CAX - SAY - S2ASEdre 
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Subreflector To Reflector Transformation: 

X rg 

rg 

rg 

[R46] 

Xsg 

Y
sg 

[T46] 

[R46] 

0 0 1 

Cs -Ss 0 

Ss   CS  0 

[T46] rs 

rs 

X rg 

rg 

rg 

~sg 
Cs'Xsg~ SsYsg- djg 

Ssx sg"*"C s'Ysg + hrs 

Reflector To Subreflector Transformation: 

X sg 

sg 

sg 

[R64] 
'Xrg 

Yrg 
p-64] [T64]       =    [R64](-1)[T46] 

[R64] 

0   Cs   Ss 

0 -Ss Cs 

1 0     0 

[T64] 

Csdrs" Ss'^rs 

"Ss^rs'^-s'^rs 

Xsg 

Ysg 

C s'Y rg+ SsZrg+ C s'drs ~ S s'hrs 

"Ss"Yrg+    s'Zrg_ Ss^rs" ^ s'^rs 

X rg 
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Subreflector To Base Transformation: 

[R16] 
"xsg" 
Y 1 sg 

[T16] [R16] = [R14][R46] 

1T16] = [T14] + [R14]|T46] 

[R16] 

SASsE    SACsE   -CA 

-CASsE -CACsE -SA 

sE sE 

[Tie] 

-SASEdse+SACEhse 

CASEdse-CACEhse 

CEdse+SEhse + he 

SASsEXsg^SACsEYsg- CAZsg- SASEdSe-hSACEhse 

"CAS sEX sg " CAC sEY sg - SAZ sg + CASEdse - CACEhse 

-CsEXsg^SsEYsg+CEdse+SEh
Se^he 

Subreflector Frame Origin: 

fX(Sg)\ 

Y(Sg) 

lz(Sg) 

-SASEdse-hSACEhse 

CASEdse-CACElise 

CEdse-hSEhse-1-he 

( = [T16] ) 
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Base to Subreflector Transformation: 

X sg 

sg 

L   sgj 

[R61] [TBI] |T61]       =    [R61](-1)P"16] 

[R61] 

SA-SsE   -CASsE  -CsE 

SACsE -CACsE   SsE 

-CA -SA 0 

[T61] 

8 sE'SE'dse ~ S sE'CE'hse +■C sE'CE'd se-"-C sESE'hse +■ C sE'he 

C sg-SE-dgg- C sE-CE-hgg- SsECEdse- SsE-SE-hse- SsE-he 

0 

"Xsg" 

Y sg 

SA-SsEX -CASsEY -CsEZ -t-SsESEdse-SsECEhse+CsECEdse-fCsESEhse+CsEhe 

se    "sE   e SACsEX - CACsEY -hSsEZ +CsE.SEdse- CsE-CEhse- S^GE-d^- SsESEhM- S^h. se    w sts "" " se 

CAX -SAY 
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Gregorian Ellipsoid To Reflector Transformation: 

Xrg 

Yrg 
[R47] 

Xceg 

Y ceg 
[T47] 

[R47] 

0 0 1 

SB -CB 0 

icB   SB   Oj 

rr47] 'rce 

lrce 

Xrg 

Yrg 

^ceg 

SB'X ceg ~ CB'Y ceg - d rce 

CBXceg-f-SBY^g-hh^ 

Reflector To Gregorian Ellipsoid Transformation: 

X ceg 

ceg 

ceg 

[R74] 

X rg 

rg 

rg 

F74] P74]       =    [R74](-1)[T47] 

[R74] 

/0   SB   CBl 

0 -CB SB 

a    0     0 

IT743 

SBdrce-CBlirce 

-CBdrce-SBhrce 

^ceg 

Y ceg " 

SBYrg+CB-Zrg+SBdrCe- CB-hrce 

-CB-Yrgi-SBZrg-CBdrce-SBhrce 

X rg 

Gregorian Focus Point: Prime Focus Point: 

X ceg(Mg) 

ceg Y_(M 

ceg 

where 

(Mg)J 

= 550 cm. 

X ceg(pg) 

ceg( Y „„„^P g) 

ceg(P g) 
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Turret To Reflector Transformation: 

'Xrg" 
Yrg 

[R48] 

X 
tg 

tg 

L^tgJ 

[T48] 

[R48] 

0 0 1 

CT -ST 0 

ST   CT   Oj 

[T48] 

"Xrg 

Yrg CT-Xtg-ST-Y^-d^ 

ST-Xtg+CT-Ytg + hfr 

Reflector To Turret Transformation: 

"x«g" 
Y«g 

[R84] 

X rg 

rg 

rg 

[T84] [T84]       =    [R84](-1)[T48] 

[R84] 

(0   CT   ST I 

10 -ST CT 

11 0      0 
[784] 

CT-dfr-ST-hfr 

-ST-d^-CT-h^. 

X 
tg 

tg 

tg 

CT-Yjg+ST-Zjg + CT-d^- ST-h^ 

-STYrg+CTZrg-STdtr-CThtr 

X rg 
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Turret To Base Transformation: 

[R18] 

X tg 

tg 

tg 

+      [T18]     , 
[R181SIR14HR48] 

[T18] = |T14] + [R14][748] 

Using SET = sin (ELant +     a- p   ) 

GET = cos (ELant +   a-p   ), 

[R18] 
/-CA   SA-SE    SACE\ /O     0    1 

SA  -CASE -CAGE CT -ST 0 

0 -CE SE    / \ST   CT   Oj 

SASET   SACET  -CA\ 

CASET CACET -SA 

-GET        SET        0 

[T18] 

-SASEd^-h SACEh^- SASEdre-h SACEhre 

CASEd^- CACEhtr-i-CASEdre- CACEhre 

CEd^ SE-h^-hCEd^-h SEhr, + h re re 

-SASEdte-hSACEhte 

CASEdte-CACEhte 

CE.dte+SEhte^he 

-CAXtg-h SASEYtg+ SACEZtg- SASEdtei- SACE-hte 

-SAXtg- CASEYtg- CACEZtg + CASEdte- CACEhte 

-CEYtg+-SEZtg-hCEdte-i-SEhte-hhe 

Turret Frame Origin: 

/X(Tgy 

Y(Tg) 

iZCTg), 

-SASEdte+SACEhte 

CASEdte-CACEhte 

CEdte-t-SEhte+-he 

( = [T18] ) 
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Base To Turret Transformation: 

xtg 

Ytg 
[R81] 

X 

Y 

Z 

[781] [781]       =    [R81](-1)[718] 

[R81] 

/SASET -CASET -GET) 

SACET   CACET    SET 

-CA -SA 0 

[781] 

fSASET -CASET -GETI 

SACET   CACET    SET 

-CA -SA 0 

SASEdte-SACEhte 

-CASEdte-t-CACEhte 

-CEdte-SEhte-he 

[T81] 

SA2SETSEdte- SA2SET-CEhte-h CA2SETSEdte- CA2SETCEIite+ CETCEdte+- CETSEhte-h CEThe 

SA2CET-SE-dte- SA2CET-CEhte- CA2 CETSEdte-HCA2CETCEhte- SETCEdte- SETSE-hte- SEThe 

0 

[781] 

SETSEdte- SETCEhte-H CETCEdte-h CETSEhte-h CEThe 

-C2ACET-SEdte-hC2ACETCEhte- SETCEdte- SETSEhte- SEThe 

0 

X sg 

sg 

sgj 

SA-SETX - CASETY - CET-Z + SET-SE-(dte4-hte) + CETCE(dte- hte) + CEThe 

SACETX +CACETY -hSETZ i-C2ACET(CEhte- SEdte) - SETCEdte- SETSEhte- SET-he 

-CAX -SAY 
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Appendix II.   List Of Symbols. 

Reference Optical Telescope 

a Offset angle from the ellipsoid major axis, of the mid 
ray from gregorian focus to the subreflector. 

P Angle between the paraboloid and ellipsoid axes. 
7 Angle FQ II FI 

&H      Half-angle of tangential plane ray fan from 
the gregorian focus to the subreflector. 
from the prime focus to subreflector. 

OQ        Offset angle, from the paraboloid axis, of the 
tangential fan's mid ray from the prime focus to 
the main reflector. 

a Semimajor axis of the ellipsoid. 
b Semiminor axis of the ellipsoid. 
e Eccentricity of the ellipsoid. 
fe Distance from ellipsoid focus point to ellipsoid center point. 
fp Design focal length of the paraboloid. 
dsp Length of _L from Ii to paraboloid axis. 
h^ Projected length of ray FQ II along paraboloid axis. 
dmp Length of _L from Fj to paraboloid axis. 
hmp Projected length of ray F0 Fi along paraboloid axis. 
ri Length of ray Fi Ii 
ri Length of ray FQ II 

FQ Prime focus point of reference optical telescope. 
Fi Gregorian focus point of reference optical telescope. 
Ii Intersection point of tangent fan mid ray with subreflector ellipsoid. 
VQ Vertex point of the paraboloid. 
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Design Telescope 

Ad Origin point of the alidade frame of the design telescope. 
Bd  (= B) Origin point of the base frame. 
Ed Origin point of the elevation frame of the design telescope. 
Pd Focal point of the parent paraboloid. 
Rd Origin point of the reflector frame of the design telescope. 
Sd Origin point of the subreflector frame of the design telescope. 
Md Gregorian focus point of the parent ellipsoid. 
Td Origin point of the design turret frame. 

Xad, Yad, Zad Basis vectors of the alidade frame of the design telescope. 

Xed, Ygd, Z^ Basis vectors of the elevation frame of the design telescope. 

Xrd, Yrd, Zrd Basis vectors of the reflector frame of the design telescope. 

Xsd, Ysd, Zsd Basis vectors of the subreflector frame of the design telescope. 

Xtd, Ytd, Ztd Basis vectors of the turret frame of the design telescope. 

SpfE sm(ELant 4-45.5 degrees) 
CpfE cos(ELant + 45.5 degrees) 
SsE sin(£?Lont + 36.7degrees) 
CSE cos(ELant + 36.7degrees) 
ST sin(a! — P) 
CT cos (a — P) 
SET sm(ELant -\-a- ft) = sin(i?Lonf + 12.329 degrees) 
GET cos(ELant + «-/?)= cos(ELant + 12.329 degrees) 
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Tilted Geometric Telescope 

Ag Origin point of alidade frame of the geometric telescope. 
B Origin point of the base frame. 
Eg Origin point of elevation frame of the geometric telescope. 
Pg Prime focus point of the geometric telescope. 
Q An arbitrary point. 
Rg Origin point of reflector frame of the geometric telescope. 
Sg Origin point of subreflector frame of the geometric telescope. 
Mg Gregorian focus point of the geometric telescope. 
Tg Origin point of turret frame of the geometric telescope. 
CEg Origin point of ellipsoid frame of the geometric telescope. 
Hg Origin point of receiver house frame of the geometric telescope. 
Ni Origin point of the i'th receiver flange frame. 
he Distance from B to Eg. 
dtm Distance from Tg to Mg . 
AZant Alidade azimuth angle of the geometric telescope. 
ELant Elevation angle of the geometric telescope tipping structure. 
SA sin(AZant) 

CA cos(AZant) 
SE sm(ELant) 

CE cos(ELant) 
X, Y7 Z Basis vectors of the base frame. 

Xag, Yag, Zag      Basis vectors of alidade frame of the geometric telescope. 
Xeg, Yeg, Zeg       Basis vectors of elevation frame of the geometric telescope. 

Xrg, Yrg, Zrg       Basis vectors of reflector frame of the geometric telescope. 

Xpg, Ypg, Zpg      Basis vectors of prime focus frame of the geometric telescope. 

Xsg, Ysg, ZSg      Basis vectors of subreflector frame of the geometric telescope. 
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Xtg, Ytg, Ztg Basis vectors of turret frame of the geometric telescope. 

Xhg, Yhg, Zhg Basis vectors of receiver house frame. 

Xni, Yni, Zni Basis vectors of i'th receiver flange. 

X(Q), Y(Q), Z(Q) Base frame coordinates of (arbitrary) point Q. 
Xeg(Q), Yeg(Q), Zeg(Q) Geometric elevation frame coordinates of point Q. 
Xed(Q), Y^Q), Zed(Q) Design elevation frame coordinates of point Q. 
Xag(Q), Yag(Q), Zag(Q) Geometric alidade frame coordinates of point Q. 
Xad(Q), Yad(Q), Zad(Q) Design alidade frame coordinates of point Q. 
Xrg(Q), Yrg(Q), Zrg(Q) Geometric reflector frame coordinates of point Q. 

[^2] Rotation matrix of the coordinate transformation 
from geometric alidade frame to base frame. 

[T12] Translation matrix of the coordinate transformation 
from geometric alidade frame to base frame. 

[R21} Rotation matrix of the coordinate transformation 
from base frame to geometric alidade frame. 

[T21] Translation matrix of the coordinate transformation 
from base frame to geometric alidade frame. 

[Rjk] Rotation matrix of the coordinate transformation from 
frame k to frame j. (Note order of subscripts). 

[Tjk] Translation matrix of the coordinate transformation 
from frame k to frame j. 

The matrices [Rjk], [Tjk] are given 
explicitly in Appendix I. 
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Tilted Deformed Telescope 

[Di] Geometric telescope displacement 
vector from structural node 9tj to 
fiducial reference point fo • 

6,  Vi,  Ci [A]  = ZiXeg + ViYeg + QZeg 
[A(ELant)]{n. = [&]m-      Gravity-load-produced displacement of 

node tftj .from its geometric telescope 
position, expressed in terms of the 
geometric elevation frame basis vectors. 

ELgurf-rig Surface rigging (setting) elevation angle. 
ELarm-access Elevation for upper feed arm at vertical. 
ELaccess Alternative surface rigging elevation. 
^ A fiducial reference point on the telescope. 
Sj- Fiducial reference point number j. 
£ Laser platform fiducial point near 9^. 
VXi Telescope structure node point, number i. 
[a] ^. Finite-element-analysis-generated 

displacement coefficient matrix 
associated with structure node 91^. 

[T]^ Finite-element-analysis-generated 
joint rotation coefficient matrix 
associated with structure node 9^ . 

t^ = [Ro^ELant)]^.       Rotation vector of the structural joint 
at node 9^ , due to gravity loading. 

^I)   ty,   tz tf^i   =   txA.eg  -f- tyYeg   + tzZ/eg 

[SRxJt(ttni)] [Di] Additional displacement of ^ due to 
joint rotation at 91^. 
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S Laser station scan mirror center fiducial point. 
T Laser station scan target fiducial point. 
AT Laser scan mirror azimuth angle of target point T. 
ET Laser scan mirror elevation angle of target point T. 
R, 0, $ Spherical polar scan coordinates of target point T. 
£T, VT, ZT Laser station platform local cartesian coordinates 

of target point T. 
Xe($i), Ye($i), Ze($i) Geometric elevation frame coordinates of fc 

after gravity-load displacement. 
^e(^i), ^e(^t)) Ze(yii)      Geometric elevation frame coordinates of 9^ 

after gravity-load displacement, 

^(^t), Ze(yii), Ze(yii)      Orthogonal triple of unit vectors generated by 
rotating the geometric elevation frame 
basis vectors by [^ifo^tg^)]. 

Xe5(Q) Displacement vector of an arbitrary point, Q, 
from Eg , expressed in terms of geometric 
elevation frame basis vectors 

[A]^. Laser platform orientation matrix. Elements are 
projections of platform frame basis vectors 
onto geometric elevation frame basis vectors. 

Dep(£) Displacement vector of laser platform fiducial 
point ii from its associated structural node 
point, 9^, expressed in terms of geometric 
elevation frame basis vectors. 
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9^ A structure node point of the telescope. 
VIT Structure node point associated with 

laser scan target fiducial reference point T. 
Dgp (T, IT) Displacement vector of T from OV when 

actuator extension is equal to IT - 

£o(T), r)o(T), Co(T)      Geometric elevation frame components 
of D^ (T). 

D^CT) dD,(r,Jr)/«Ur 
^i(T), ViCP), OCO      Geometric elevation frame components 

ofD^(T). 
DST Displacement vector of scan target point T 

from scan mirror center fiducial point S. 
1^(3) Displacement vector of S from structure 

node point 9^ associated with 
the scan mirror station platform. 

Di   (= De5(£)) Displacement vector of laser scan platform 
fiducial reference point £ from its 
associated structural node point 9^. 

X, Y, Z Basis vectors of local laser scan platform 
frame, of scan station located near structure 
node point 9^ . The origin point of this frame 
is at fiducial reference point £. The scan axis 
is assumed parallel to Z. 
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Alidade Structure Corrections 

d0ff Offset distance between non-intersecting 
azimuth and elevation axes. 

D An arbitrary displacement vector. 

Eg Origin point of the geometric elevation frame. 

T Arbitrary fiducial reference point embedded 
in the telescope's tipping structure. 

^-eg^) Displacement vector from geometric elevation 
frame origin point Eg to F. 

OQ Origin point of ground frame of tilted telescope 
with offset and misalignment of azimuth 
and elevation axes. 

i9x Angle of deviation from perpendicularity, of 
telescope azimuth and elevation axes. 

Ci cos $1 
iS'x sintfj. 

Xeg (J7), Yeg (J7), Zeg (J7) Geometric elevation frame coordinates of fiducial 
point F. 

XQ (J7), YQ  (T), ZQ (J7)      Ground frame coordinates of fiducial point F, for 
telescope with shaft offset and misalignment. 
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Determination Of Azimuth AndElevation 

AZ 

AZshaft, EL8haft 
■A-Ziencoder, &^encoder 

■AZrcommand, & ^command 

AZ®,EL® 

AZtrue, ELtrue 

AZ = TT - AZant 
Supplement of antenna azimuth. 
Telescope azimuth, elevation shaft orientation angles. 
Azimuth, elevation shaft angle encoder readout angles. 
Servo setpoint values for azimuth and elevation 
shaft optical encoder angle readout signals. 
Traditional pointing model correction term. 
True horizon system azimuth, elevation of an observed 
pointlike astronomical radio source. These angles are 
properties of the radio source, not the telescope. 

awL)> &wL)> C
P?

L)
» ^pf^      Elevation Fourier coefficients in Condon pointing model. ~pq      , "pq      , ~pq     , -pq 

(AZ)    b(AZ)      (AZ)    d(AZ) 
apq    > U

PQ    > 0pq    ' "pg Azimuth Fourier coefficients in Condon pointing model. 
[Note that the azimuth Fourier term sum is multiplied by 
sec EL to give proper behavior approaching zenith]. 

■A-^apparent, ■&'■*-*'apparent Apparent horizon system azimuth, elevation of an 
observed radio source, including the deviation of 
arrival direction due to atmospheric refraction. 

A0>/p) Pointing model correction for elevation shift to account for 
orientation of the GBT's main reflector paraboloid 
axis, when reflector is reconfigured to the optimal shape 
for a given shaft elevation (best fit paraboloid). 

LAST Local Apparent Sidereal Time of observation of source. 
[ LAST = GMST - X • (1715°) + AA cos e, 
where GMST is Greenwich Mean Sidereal Time, 
A is geographical longitude, AA is nutation in 
longitude, e is obliquity of the ecliptic]. 
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Appendix III. Finite Element Analysis Node Data Files. 

We include here a portion of the Node File for the Green Bank Telescope 
Finite Element Analysis, as a sample of the data file produced by this analysis. 

The file is a listing of tipping structure nodes, their geometric elevation co¬ 
ordinates and the coefficients of the displacement matrix and the joint rotation 
matrix associated with each node. We give a sample of the file's output on the 
next page. The output variables, in the notation of this Memo, are fisted below. 

Variable Listed Variable in Memo 

Node ID Index, i, of node 9^ . 
NodeX X^Vli) 
NodeY v^**) 
NodeZ he+Zegpli) 

ZDeltaX Oi.-z^) 
ZDeltaY Oi,,-,^) 
ZDeltaZ Oi.-»(9li) 
ZTiltX v-,(«ni) 
ZTiltY T,.-*Vk) 
ZTiltZ r,,-,(9l.) 

HDeltaX oi.»(9li) 
HDeltaY ^,»(^) 
HDeltaZ oi*(9li) 

HTiltX W^i) 
HTiltY ^(Wf) 

Distances are given in inches. 
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Node File for GBT Finite Element Analysis 

Node ID  NodeX    NodeY    NodeZ    ZDeltaX  ZDeltaY  ZDeltaZ  ZTiltX   ZTiltY   ZTiltZ   HDeltaX  HDeltaY  HDeltaZ  HTiltX   HTiltY   HTiltZ 

40982 65. 86 -2524.97 4181.96 -C 1.033 -4.0744 -3.9002 0.00157 -0. 00001 -0. 00008 -0. 0295 8.577 1.8984 -0.00418 0. 00018 -0, .00054 
41020 0 -2520.11 4434.21 0 -4.4404 -3.9024 0.00141 0 0 0 9.6744 1.8567 -0.00432 0 0 
41040 106. 07 -2520.11 4434.21 -0. 0029 -4.4373 -3.8982 0.00157 0. 00012 0. 00001 0. ,0096 9.6488 1.8423 -0.0044 0. ,00005 -0, .00016 
41060 122. 94 -2780.56 4377.18 -0. 0086 -4.354 -4.2824 0.00146 0. 00022 0. 00003 -0. ,0209 9.4376 2.9201 -0.00426 0. .00053 -0, .00001 
41080 0 -2787.53 4434.21 0 -4.4396 -4.2746 0.00145 0 0 0 9.6814 2.9937 -0.00424 0 0 
41082 0 -2590.76 4434.21 0 -4.44 -3.9935 0.00135 0 0 0 9.6742 2.1656 -0.0043 0 0 
50000 0 -2159.02 4459.06 0 -4.4914 -3.457 0.00037 0 0 0 9.7803 0.3821 -0.00332 0 0 
50001 0 -2176.99 4475 0 -4.4973 -3.4636 0.00037 0 0 0 9.8332 0.4418 -0.00332 0 0 
50002 0 -2194.96 4490.91 0 -4.5032 -3.4702 0.00038 0 0 0 9.8861 0.5016 -0.00333 0 0 
S0004 0 -2351.53 4640.36 0 -4.7122 -3.6472 0.00066 0 0 0 10.5945 1.0481 -0.00445 0 0 
50005 0 -2327.96 4608.71 0 -4.6923 -3.828 0.00065 0 0 0 10.4457 0.9416 -0.00454 0 0 
50010 0 -2329.08 4706 0 -4.758 -3.8288 0.00071 0 0 0 10.8871 0.9467 -0.00451 0 0 
50020 0 -2408.99 4667 0 -4.729 -3.8802 0.00061 0 0 0 10.7095 1.3066 -0.00449 0 0 
50030 0 -2409.74 4672.47 0 -4.7328 -3.878 0.00059 0 0 0 10.7396 1.3129 -0.00421 0 0 
50040 51 .12 -2408.99 4667 0, .0002 -4.7285 -3.8784 0.00061 -0, .00005 0 .00002 -0 .0012 10.7076 1.3069 -0.00449 -0, .00001 -0. ,00006 
50110 0 -2427.14 4707.78 0 -4.7568 -3.8911 0.00084 0 0 0 10.8926 1.3919 -0.00461 0 0 
50120 0 -2412.48 4692.43 0 -4.7442 -3.8796 0.00073 0 0 0 10.8215 1.324 -0.00462 0 0 
50140 14 -2412.48 4692.43 0, .0001 -4.7442 -3.8796 0.00073 -0 .00002 -0 .00003 0 10.8215 1.324 -0.00462 0 -0. ,00001 

50150 0 -2443.41 4672.58 0 -4.7263 -3.9061 0.00071 0 0 0 10.7331 1.4612 -0.00455 0 0 

50220 0 -2556.36 4600.07 0 -4.6841 -3.9687 0.00118 0 0 0 10.3904 1.997 -0.00448 0 0 

o 
en 
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