
GBT Subreflector Actuator Functions in C

Don Wells*

January 21, 1998

Abstract

Two ANSI-C functions are described: srDisplacementToLengthO, which accepts displacements
(three linear, three angular) from the "home" position of the subreflector and computes six actuator
lengths, and srLengthToDisplacement (), which performs an iterative numerical inversion of function
srDisplacementToLengthO (i.e., it accepts actuator lengths and produces displacements). Partial
derivatives of the actuator lengths tort translation and tilt are tabulated.

Contents

1 Introduction 2

1.1 Coordinate systems and axis permutations 2

2 The functions and their algorithms 4

2.1 The inverse kinematic problem: srDisplacementToLengthO 4

2.2 The forward kinematic problem: srLengthToDisplacement. c 6

2.3 Actuator length calibration: srActuatorsLengths. c 8

3 Test cases & timing measurements 10

4 Partials of translation/tilt motions wrt actuator motions 10

5 Safety Considerations 15

A srlnclude.h 16

Bibliography 18

mailto:deellsQnrao. edu

2 Page GBT Subreflector Actuator Functions in C GBT Memo 175

SUBREFLECTOR POSITIONER - SIX ACTUATOR CONCEPT

Y Actuators (3)

kft Actuators (2)

Z Actuator

MOUNTING PLANE OF SUBREaECTOR
y$

Figure 1: Conceptual drawing of the GBT 6-DOF Stewart platform

1 Introduction

The GBT subreflector actuator system is an example of a "Stewart Platform" [Ste66]. Such devices consist
of a movable platform which is connected to a fixed structure by a set of linear actuators via U-joints. A
wide variety of arrangements of the actuators and U-joint locations is possible. Figure 1 is a conceptual
drawing of the arrangement used in the GBT subreflector. By studying the figure the reader can become
convinced that the six linear actuators will implement three translation and three rotation motions, a total
of six degrees of freedom. Figure 2 shows a view of the tip of the GBT feedarm as seen from the right side.
The actuators are labelled, and their length ranges are noted.

1.1 Coordinate systems and axis permutations

The (xa,ySizs) subreflector axes shown in Figure 1 are not the same as the elevation (tipping) structure
coordinate system which was discussed in [WK95]! The axes are permuted and rotated. The z, axis
corresponds to xe. The ys and x, axes correspond (roughly) to ze and ye respectively (they are rotated by
36.7° about z3/xe). The origin of {xs,ys,zs) shown in Figure 1 is at (0,-168.98,+2511.92) in the "reflector"
coordinate system [KM93, Kin94], or (0,-2327.96J+4608.71) in the elevation coordinate system [WK95,
pp. 15-16], which is the subreflector "vertex". This point is not the mathematical vertex of the ellipsoid;
rather it is the point of intersection of the axis of the feedhorn with the ellipsoid.

GBT Memo 175 GBT Subreflector Actuator Functions in C Page 3

YisYsl **-"+ Yi: !oo"i$c."

BJ SS -*5>

2. • iu"-isg"

Figure 2: Side view drawing of the subreflector actuators (facing left)

Figure 1 also shows two other axes, "a;n" and an unlabelled axis 90° from it and 36.7° from ys. The
unlabelled axis is parallel to the axis of the paraboloid, zr and ze. xn is parallel to ye and yr. The "n" of
xn is for "nutation", because it is the axis about which the subreflector should be rotated to move the beam
in azimuth (constant elevation) between feedhorns. The 36.7° tilt of the subreflector coordinate system was
specified by Srikanth [Sri90] so that motion of the subreflector in y, only will move the Gregorian focus along
the axis of the feedhorn.

Note that the axes of the (xn,ys,za) system are skewed: xn is not orthogonal to ys!
Also, we translate the subreflector along xs, but we tilt it about xn!

platform U-joints
encoder[6] M&C index servo amplifier name Location x, (in) V* (in) *, (in)

0 1 Yl tip of triangle 57.225 39.219 0.000
1 2 Y2 right-hand -30.150 55.703 51.123
2 3 Y3 left-hand -30.150 55.703 -51.123
3 4 XI right-hand -40.493 48.375 51.123
4 5 X2 left-hand -40.493 48.375 -51.123

Table 1: Identifications of the GBT subreflector actuators

4 Page GBT Subreflector Actuator Functions in C GBT Memo 175

2 The functions and their algorithms

The "forward kinematics problem" (given lengths Li, find the platform pose) is analytically intractable. The
inverse kinematics problem (given the pose, find Li) is, however, easy to compute: transform the coordinates
of the platform U-joints using the pose parameters and then the lengths are obtained as the Euclidian
distances between the respective U-joints. The forward problem can then be solved numerically by iterative
inversion of the inverse algorithm. The GBT inverse and forward kinematic problems have been implemented
in C, as described below.

The original version of the code below was constructed during April and May of 1993 by the author. It was
all in one file named tml9.c (the name refers to [Nan91]), which was delivered to the Precision Controls
Division [PCD] of CRSI in May 1993. PCD incorporated the code into the GBT's Operator Control Unit
[OCU]. The tinl9. c version of these algorithms did not include actuator end-point offsets, because the OCU
has no need for this refinement.

Fred Schwab (fschwabCnrao.edu) has provided advice on the mathematical methods used in these
implementations, especially for srLengthToDisplacement().

2.1 The inverse kinematic problem: srDisplacementToLengthO

int srDisplacementToLength(/* returns !=0 on delta-errors */
double trans[3], /* delta translations (in) */
double tilts [3], /* delta tilts (deg) */
double temp. /* temperature (deg_C) */
double encoder[6], /* output: lengths to use (in) */
double apex_deltaC33[6], /* U-joint errors(in) */

Function srDisplacementToLengthO is a transliteration from Basic to ANSI-C of the algorithm given
in [Nan91]. The original version accepted only two angular displacements. srDisplacementToLengthO
supports a third angle, 0y, by inserting another rotation matrix after the 9X rotation (if 0y = 0, this is an
identity matrix, consistent with the algorithm of [Nan91]). Rotation about 0y is needed for focus tracking,
because of the elevator asymmetry.

/* srDisplacenentToLength.c compute actuator lengths from displacements
D.Wells, HRAO-CV
1993-05: original version
1995-05: this function now in separate file
1996-02: changes
1997-04-02: change disp[6] argument to trans[3] & tilts[3].
1997-10-28: changes to implement new mathVectorNatrix macros
1997-11-10: swap order of rotations: (Y,-ty) now is after (Z,+cl)

*/

[GNU GPL copyright notice omitted]

♦include "srlnclude.h"
♦include "mathVectorMatrix.h"
♦include "gbtOpticalConstants.h"

int srDisplacementToLength(/* returns l^O on delta-errors */
double trans[3], /* delta translations (in) */
double tilts[3], /* delta tilts (deg) */
double temp, /* temperature (deg_C) */

GBT Memo 175 GBT Subreflector Actuator Functions in C Page 5

double encoderC6], /* output: lengths to use (in) */
double apex_delta[3][6], /* U-joint errors(in) */
double h.ome_sub_delta[3] [6]) /* U-joint errors(in) */

{
int m, i, j, status;
double

cl, /* subreflector coor system rotation */
tx, /* tilt about X-axis */
ty, /* tilt about Y-axis */
tz, /* tilt about Z-axis */
ma[3][3],
sum, Isum, diff,
new_sub_endt3][6],
actual[6]; /* desired actual lengths of the actuators */

MVM_PRIVATE_VARIABLES

The following two arrays of U-joint coordinates of the (fixed) feedarm apex ends of the 6 actuators and
the "home" position of the subreflector ends of the actuators are from [Sch92, p.4], and are identical to
those in [Zai92, p.A9]. They are in the subreflector coordinate system (rotated 36.7° wrt the tipping and
the reflector coordinate systems) and are in inches.

const double apex_endC3D[6] = i
/* LI L2 L3 L4 L5 L6 */
{ 58.391, -29.753, -29.753, -163.08, -163.08, -17.798}, /* X_s */
{150.161, 166.683, 166.683, 82.478, 82.478, 70.290}, /* Y_s */
{ 0.0, 51.123, -51.123, 51.123, -51.123, -12.25 } /* Z_s */

};
const double home_sub_end[3]C6] - •(

/* LI L2 L3 L4 L5 L6 */
{57.225, -30.15, -30.15, -40.493, -40.493, -18.495}, /* X_s */
{39.219, 55.703, 55.703, 48.375, 48.375, 48.856}, /* Y_s */
{ 0.0, 51.123, -51.123, 51.123, -51.123, 45.473} /* Z_s */

};

Function arguments home_sub_deltan D and apexjieltaQ Q specify offsets to the above endpoint
coordinates; these arrays must be defined by the code which calls function srDisplacementToLengthO.

Step 1 Compute rotation matrix to transform endpoints

This operation is done as five rotations:1

• Transform from xa to Xn axis (36.7° rotation)

• Rotation 9X about Xn axis

• Transform from Xn back to x3 axis

• Rotation 9y about ys axis2

• Rotation $z about z8 axis

cl = GBT_SR_AXIS_TLT * DTR; /* 36.7 deg in gbtOpticalConstants.h */
tx = tilts CO] * DTR; /* DTR=Kiegrees-to-radians in <ditto> */
ty = tilts[1] * DTR;
tz = tilts[2] * DTR;
ANGLES_2_MATRIX(MC, ma, Z,-cl, X,+tx, Z,+cl, Y,-ty, Z,+tz);

1 Macro AIGLES.2_MATRIXO, which is invoked in this step, is defined in mathVectorHatrix.h; it computes a rotation matrix
from up to five rotations about specified axes.

2This rotation was not included in [Nan9l]. Also, in earlier versions of this function, such as the code shipped to PCD in
May 1993 and incorporated by them into the OCU software, this rotation by $y was done in the transformed (xn) coordinate
system rather than in subreflector coordinates.

6 Page GBT Subreflector Actuator Functions in C GBT Memo 175

Step 2 Compute the new subreflector ends of the actuators

Rotation matrix ma[] [] is multiplied by vector home_sub_end[3 to get the new lengths. The
empirical cahbration matricies hom-subjdelta[] □ and apexjdeltaf] [] are added to the
design values of the end-point coordinates.

for (m = 0; m < 6; m++) {
for (i = 0, Isum = 0.0; i < 3; i++) {

for (j * 0, sum = 0.0; j < 3; j++)
sum+= (ma[i] [j] * (home _sub_ end [j] [m] + home_sub_delta[j3 Da]));

new_sub_end[i][m] = trans[i] + sum;
diff = (new_sub_end[i][m] - (apex_end[i]Cm] + apex_deltaCi]Cm]));
Isum += (diff * diff);

}
actual[m] = sqrt (Isum);

}

Step 3 Compute actuator encoder values to use

We must correct for actuator encoder zero point and scale errors, and for the effective thermal
expansion coefficient of the actuator. See discussion in section 2.3.

for (m = 0; m < 6; m++)

encoderCm] = srActuatorsLengths(m, actual Cm], temp);

Step 4 Test the maximum-delta rules

These rules were specified by the Loral engineers who designed the GBT Gregorian subreflector
actuators; they assert [Zai92] that no binding or interference of the mechanism will occur if
these rules are obeyed, and if positions stay within the "required motion" box of the GBT.

status = 0;
if (fabs(encoderCO]
if (f abs(encoder CO]
if (fabs(encoderCl]
if (fabs(encoderC3]

((encoderCl]
((encoderCl]

if

if

encoderCl])
encoderC2])

encoder C2])

encoder C4])

encoder C5])

encoder C5])

2.

2.

2.

1.

39.

62.

60) status = 1;
60) status = 2;
62) status = 4;
40) status = 8;
19) status = 16;

return (status);

2.2 The forward kinematic problem: srLengthToDisplacement .c

int srLengthToDisplacement(/* returns !=0 if maxdelta fails */
double lenC6], /* input actuator lengths (in) */
double temp. /* temperature (deg_C) */
double trans C3], /* delta translat ions (in) */
double tilts C3], /* delta tilts (deg) */
double apex_deltaC3] C6], /* U- joint error(in) */
double home_sub_deltaC3] C6! , /* u- joint error(in) */

The algorithm of srLengthToDisplacement () is the Newton-R^phson iterative method for solving a system
of nonlinear equations. N-R multiplies the inverse of the Jacobian (partial derivative) matrix by the residual

GBT Memo 175 GBT Subreflector Actuator Functions in C Page 7

vector to obtain a vector of corrections which are subtracted from the current solution vector. In a nonlinear
problem, such as this one, the Jacobian matrix varies with the solution vector. Because the inverse Jacobian
is expensive to compute we approximate it by using only the inverse Jacobian at the "home position" of the
subreflector; this works because this problem is nearly linear in the neighborhood of the home position. The
entire range of valid lengths of the actuators has not been explored to verify that the inversion works for
all cases, especially when argument dispD is initialized to zero (intermediate iterations might violate the
length rules). Normally we will have dispC] = c, and the problem is nearly linear; use of an approximate
inverse Jacobian should only result in extra iterations in extreme cases.

/* srLengthToDisplacement. c compute displacements from actuator lengths
D.Wells, NRAO-CV
1995-05/96-02
1997-04-02: change dispC6] argument to transC3] Jfc tiltsCS].
1997-11-10: minor change of comments

*/

[GNU GPL copyright notice omitted]

#include <math.h>
#include "gbtOpticalConstants.h"
#include "srlnclude.h"

int srLengthToDisplacement (/* returns !=0 if maxdelta fails */
double lenC6], /* input actuator lengths (in) */
double temp, /* temperature (deg_C) */
double transC3], /* delta translations (in) */
double tiltsC3], /* delta tilts (deg) */
double apex_deltaC3]C6], /* U-joint error(in) */
double home_sub_deltaC3]C6], /* U-joint error(in) */
int *iter) /* M-R iterations */

{

This function iterates the Newton-Raphson algorithm until the computed lengths agree with the input
lengths. It uses transQ and tiltsf] as its initial value for the iterations (i.e., transC] and tiltsC] are
both input and output arguments of the function). The calling program should either initialize trans C]
and tiltsC] to zeroes, or should use the last returned pose if the new lengths are almost the same as
for the last call.

int i, j, status;
double lenpC6], residC6], adiff, biggest_resid, sum, vC6] ;
const int maxiter = (10);
const double tolerance = (0.0001); /* inches */

The following Inverse Jacobian matrix j i C6] C6] of the transformation (see [Sch92, Eq.(4)]) was computed
at the "home" position using a Mathematica program supplied by F.Schwab. The values are essentially
identical to those of Eq.(ll) on p.6 of [Sch92], except that the signs of the partials of length wrt angle
in rows 4-6 are flipped because of an opposite convention for angle sense.

const double j i C6]C6] = {
/* LI L2 L3 L4 L5 L6 */
{-0.5202510,+0.1216542,+0.1216542,+0.5166016,+0.5166016, 0.0 },/*dX*/
{-0.3450957,-0.3266342,-0.3266342,-0.0030950,-0.0030950,0.0 },/*dY*/
{-0.0491685,-0.7560834,+0.4310301,-0.1789911,+0.1897813,+!.0667840},/*dZ*/
{0.0 ,+0.0094583,-0.0094583,-0.0060318,+0.0060318, 0.0 },/*tX*/
{ 0.0 ,+0.0036598,-0.0036598,+0.0081530,-0.0081530, 0.0 },/*tY*/

8 Page GBT Subreflector Actuator Functions in C GBT Memo 175

{-0.0114321,+0.0057268,+0.0057268,-0.0000410,-0.0000410, 0.0 } /*tZ*/
};

for (*iter = 0; *iter < maxiter; (*iter)++) {

Step 1 Compute actuator lengths

status = srDisplacementToLength (trans, tilts, temp, lenp,
apex_delta, home_sub_delta);

if (status != 0) break;

Step 2 Compare computed lengths to input lengths

biggest_resid =0.0;
for (i = 0; i < 6; i++) {

residCi] = (lenCi] - lenpCi]);
adiff = fabs (residCi]);
if (adiff > biggest_resid) biggest_resid = adiff;

}

Step 3 Convergence test

Terminate iteration loop if biggest length residual is less than the tolerance,

if (biggest_resid < tolerance) break;

Step 4 otherwise, compute new correction vector

The residual vector res id □ is multiplied by the matrix J 1 to get the Newton-Raphson
correction vector vC]:

for (j = 0; j < 6; j++) {
for (sum =0.0, i=0; i<6; i++) sum += (residCi] * jiCj]Ci]);
vCj] = sum;

}

Step 5 Finally, apply the correction vector (update the pose vectors)

for (i = 0; i < 3; i++) {
trans Ci] += vCi] ;
tiltsCi] += (vCi+3] / DTR);

}
}
return (status);

2.3 Actuator length calibration: srActuatorsLengths.c

double srActuatorsLengths(/* returns act j encoder length (in) */
int j. /* which actuator 0-5 */
double actual. /* actual length of actuator j (in) */

GBT Memo 175 GBT Subreflector Actuator Functions in C Page 9

The following function is a place-holder; the actuator length calibration done by the metrology group [Par96]
will be incorporated into this function in a future release of this code.

/* srActuatorsLengths.c compute actuator length corrections
D.Wells, NRAO-CV
1997-05-21: initial version
1998-01-15: minor revisions

*/

[GNU GPL copyright notice omitted]

#include "srlnclude.h"
include "gbtOpt icalGonstants.h"

double srActuatorsLengths(/* returns act j encoder length (in) */
int j, /* which actuator 0-5 */
double actual, /* actual length of actuator j (in) */
double temp) /* temperature (deg_C) */

{
double

encoder; /* encoder value to produce desired actual length */

The six actuators of the GBT Gregorian subreflector have been measured in the NRAO-GB metrology
laboratory in order to relate the length values indicated by their magnetostrictive encoders to their
actual lengths from U-joint to U-joint. This function incorporates this cadibration information. It takes
the actual length which is desired and returns the encoder value to command to get that length.

The function interface as defined here makes no provision for an error return on illegal j or illegal actual;
it is presumed that such errors will be caught elsewhere in the Gregorian focus tracking algorithms.

The temp argument will be used to include thermal expansion coefficients in the calculation of the actual
lengths. (The actual lengths will be the nominal values, except for zero point and scale errors, at the
RIGGIHGJTEMP, which is 21.10C = 70° F for the GBT.) The magnetostrictive encoders are made of some
type of stainless steel, whereas the rest of the encoder is made of a steel which is similar to the steel in
the GBT structure.3 This stainless steel has a thermal coefficient which is significantly different from the
coefficient for the conventional steel. The resulting differential thermal expansion is just barely significant
in the GBT.

switch (j) {
case (0): /* Yl actuator */

encoder = actual; break;
case (1): /* Y2 actuator */

encoder = actual; break;
case (2): /* Y3 actuator */

encoder = actual; break;
case (3): /* XI actuator */

encoder = actual; break;
case (4): /* X2 actuator */

encoder = actual; break;
case (5): /* Z actuator */

encoder = actual; break;
default:

encoder = actual;
}

return (encoder);
}

3 With the exception that the backup structure of the Gregorian subreflector is made of aluminum.

10 Page GBT Subreflector Actuator Functions in C GBT Memo 175

Table 2: Points used in derivatives computation

Name Ax Ay |_ Az

Home 0.00 0.00 0.00
G-x-y-z -9.49 -3.63 -4.00
G-x-y+z -9.49 -3.63 4.00
G-x+y-z -9.49 3.63 -4.00
G-x+y+z -9.49 3.63 4.00
G+x-y-z 9.49 -3.63 -4.00
G+x-y+z 9.49 -3.63 4.00
G-fx+y-z 9.49 3.63 -4.00
G+x+y+z 9.49 3.63 4.00

F-x-y-z -9.49 -22.63 -0.83
F-x-y+z -9.49 -22.63 0.83
F-x+y-z -9.49 11.63 -0.83
F-x+y+z -9.49 11.63 0.83
F+x-y-z 9.49 -22.63 -0.83
F+x-y+z 9.49 -22.63 0.83
F+x+y-z 9.49 11.63 -0.83

3 Test cases & timing measurements

The four testcase calculations and two timing measurements shown in Figure 3 were made on a SPARC
system. Case [1] verifies the lengths of the actuators in the "home" position. Case [2] computes a pose with
substantial translation and tilt displacements. In Case [3] the lengths computed in case [2] are inverted in
8 Newton-Raphson iterations to yield the original commanded pose, after having started the iteration with
zero displacement. Case [4] demonstrates that only 3 iterations are needed if the the starting pose is near
the correct answer.

4 Partials of translation/tilt motions wrt actuator motions

During preparation of a review [Wel98] of the motion requirements for the subreflector, there was a need to
know how the velocity and acceleration limits on actuators Li would translate to limits on AXg, AYg, AXa,
0Xn, Qy and 6Z over the allowed envelope of displacements. A program was built to calculate the required
partial derivatives by numerical differentiation. Table 2 gives the coordinates of the points in the envelope
for which partials were computed; it extends the official envelope to a wider box in the region around the
"home" position in order to support beam switching. Tables 3 through 8 display the computed partials. In
each case we want to know the maximum absolute value of the partial, and this is shown at the end of each
table. For each point we look for the largest partial derivative along the row and print it in bold font. The
summary row at the end of each table shows which actuator will be the limiting case for each type of motion.
The actuators which have the largest derivatives in Tables 3 through 5 (Ax, Ay, Az cases) are obvious after
examining the geometry in Figures 1 and 2, but the 0.836 maximum for LQ for the "F-x-y-z" case in Table 6
surprised the author, who expected that L2 and L3 would always be the limiting cases (as they are for the
"home" case). The Li result in Table 8 surprised the author at first, but it was obvious after examination
of the x, coordinates in Table 1 (the lever arm for Li is almost twice as large as for L2 and £3).

GBT Memo 175 GBT Subreflector Actuator Functions in C Page 11

1998-01-21T18:49:24Z <gibbon.cv> SunOS 5.5

Kernel says CPU's clock rate is 150.0 MHz.
Kernel says main memory's clock rate is 50.0 MHz.

Sun-4 floating-point controller version 0 found.
A Fujitsu/Ross RT620 hyperSPARC chip is available.
FPU's frequency appears to be approximately 152.9 MHz.

7* Cl] srDisplacementToLengthO - 'home position' case:
%
%
X
X
X

10000 executions in 240000 usee —> 24.0 usec/execution

7, [2] srDisplacementToLengthO - large displacement case:
X
X
X
X

trans = C 0, 0, 0]
tilts = [0, o. 0 1

len = [110.948, 110.981, 110.981
127.242, 127.242, 61.578]

trans = [18, -24, 1]
tilts = c -1, -0.3, 0.5]

len = c 135.455, 135.654, 137.007
151.84, 151.901, 75.4609]

status = [0]

foDispli 1C< amen ttO - inversion of [2} with transC]=ti
len = [135.455, 135.654, 137.007

151.84, 151.901, 75.4609]
trans = C 0, o. 0]
tilts = c 0, o. 0]
trans = [18, -24, 1.00003]
tilts s c -0.999988, -0.299997, 0.5]

X
X
X
X
X
X
X
X 8 Newton-Raphson iterations.

X [4] srLengthToDisplacement() - inversion of C2] with transQ=tilts[]=+/-eps:
X
X
X
X
X
X
X
X 3 Newton-Raphson iterations.

10000 executions in 1100000 usee —> 110.0 usec/execution

Figure 3: Test cases and timing measurements

len = [135.455, 135.654, 137.007
151.84, 151.901, 75.4609]

trans = 18.001, -24.001, 1.00103]
tilts = -1.00099, -0.298997, 0.499]
trans = 18, -24, 0.999987]
tilts = -0.999965, -0.300006, 0.5]

12 Page GBT Subreflector Actuator Functions in C GBT Memo 175

Table 3: Partials of length Li wrt translation Ax

(inch/inch)

Home -0.010 -0.003 -0.003 0.963 0.963 -0.011
G-x-y-z -0.092 -0.085 -0.085 0.948 0.948 -0.169
G-x-y+z -0.092 -0.085 -0.085 0.948 0.948 -0.150
G-x+y-z -0.098 -0.091 -0.091 0.965 0.965 -0.176
G-x+y+z -0.098 -0.091 -0.091 0.965 0.965 -0.156
G+x-y-z 0.073 0.079 0.079 0.961 0.961 0.148
G+x-y+z 0.073 0.079 0.079 0.961 0.961 0.132
G+x+y-z 0.078 0.085 0.085 0.974 0.974 0.154
G+x+y+z 0.078 0.085 0.085 0.974 0.974 0.136

F-x-y-z -0.079 -0.073 -0.073 0.894 0.894 -0.139
F-x-y+z -0.079 -0.073 -0.073 0.894 0.894 -0.137
F-x+y-z -0.106 -0.099 -0.099 0.981 0.981 -0.173
F-x+y+z -0.106 -0.099 -0.099 0.981 0.981 -0.168
F+x-y-z 0.063 0.068 0.068 0.919 0.919 0.122
F+x-y+z 0.063 0.068 0.068 0.919 0.919 0.120
F+x+y-z 0.084 0.092 0.092 0.986 0.986 0.151
F+x+y+z 0.084 0.092 0.092 0.986 0.986 0.147

Table 4: Partials of length Li wrt translation Ay (My)

(inch/inch)

Home -1.000 -1.000 -1.000 -0.268 -0.268 -0.347
G-x-y-z -0.995 -0.996 -0.996 -0.316 -0.316 -0.416
G-x-y+z -0.995 -0.996 -0.996 -0.316 -0.316 -0.371
G-x+y-z -0.994 -0.995 -0.995 -0.260 -0.260 -0.309
G-x+y+z -0.994 -0.995 -0.995 -0.260 -0.260 -0.273
G+x-y-z -0.997 -0.996 -0.996 -0.274 -0.274 -0.418
G+x-y+z -0.997 -0.996 -0.996 -0.274 -0.274 -0.372
G+x+y-z -0.996 -0.996 -0.996 -0.224 -0.224 -0.310
G+x+y+z -0.996 -0.996 -0.996 -0.224 -0.224 -0.274

F-x-y-z -0.997 -0.997 -0.997 -0.448 -0.448 -0.606
F-x-y+z -0.997 -0.997 -0.997 -0.448 -0.448 -0.595
F-x+y-z -0.994 -0.995 -0.995 -0.194 -0.194 -0.166
F-x+y+z -0.994 -0.995 -0.995 -0.194 -0.194 -0.162
F+x-y-z -0.998 -0.998 -0.998 -0.394 -0.394 -0.607
F+x-y+z -0.998 -0.998 -0.998 -0.394 -0.394 -0.597
F+x+y-z -0.996 -0.996 -0.996 -0.167 -0.167 -0.167
F+x+y+z -0.996 -0.996 -0.996 -0.167 -0.167 -0.163

GBT Memo 175 GBT Subreflector Actuator Functions in C Page 13

dLi
Table 5: Partials of length Li wrt translation Az (TJ/C

2-
)

(inch/inch)

Home 0.000 0.000 0.000 0.000 0.000 0.937
G-x-y-z -0.034 -0.034 -0.034 -0.033 -0.033 0.893
G-x-y+z 0.035 0.035 0.035 0.034 0.034 0.916
G-x+y-z -0.037 -0.037 -0.037 -0.034 -0.034 0.934
G-x+y+z 0.038 0.038 0.038 0.035 0.035 0.949
G+x-y-z -0.034 -0.034 -0.034 -0.029 -0.029 0.897
G+x-y+z 0.035 0.035 0.035 0.029 0.029 0.919
G+x+y-z -0.037 -0.037 -0.037 -0.029 -0.029 0.938
G+x+y+z 0.038 0.038 0.038 0.030 0.030 0.952

F-x-y-z -0.006 -0.006 -0.006 -0.006 -0.006 0.783
F-x-y+z 0.007 0.007 0.007 0.007 0.007 0.792
F-x+y-z -0.008 -0.008 -0.008 -0.007 -0.007 0.971
F-x+y+z 0.009 0.009 0.009 0.008 0.008 0.972
F+x-y-z -0.006 -0.006 -0.006 -0.005 -0.005 0.785
F+x-y+z 0.007 0.007 0.007 0.006 0.006 0.794
F+x+y-z -0.008 -0.008 -0.008 -0.006 -0.006 0.974
F+x+y+z 0.009 0.009 0.009 0.007 0.007 0.976

Table 6: Partials of length Li wrt tilt 0a

(inch/degree)

Home 0.000 0.717 -0.717 -0.322 0.322 0.687
G-x-y-z -0.040 0.742 -0.774 -0.288 0.271 0.784
G-x-y+z 0.040 0.774 -0.742 -0.271 0.288 0.758
G-x+y-z -0.042 0.744 -0.778 -0.337 0.320 0.739
G-x+y+z 0.043 0.778 -0.743 -0.320 0.337 0.714
G+x-y-z -0.040 0.654 -0.687 -0.323 0.309 0.636
G+x-y+z 0.040 0.687 -0.654 -0.309 0.324 0.626
G+x+y-z -0.042 0.650 -0.685 -0.366 0.351 0.585
G+x+y+z 0.043 0.685 -0.650 -0.351 0.366 0.578

F-x-y-z -0.007 0.750 -0.756 -0.158 0.154 0.836
F-x-y+z 0.007 0.756 -0.750 -0.154 0.158 0.833
F-x+y-z -0.009 0.761 -0.768 -0.385 0.382 0.665
F-x+y+z 0.010 0.769 -0.761 -0.382 0.385 0.661
F+x-y-z -0.007 0.675 -0.680 -0.209 0.206 0.714
F+x-y+z 0.007 0.680 -0.675 -0.206 0.209 0.713
F+x+y-z -0.009 0.660 -0.668 -0.407 0.404 0.514
F+x+y+z 0.010 0.668 -0.660 -0.404 0.407 0.513

14 Page GBT Subreflector Actuator Functions in C GBT Memo 175

Table 7: Partials of length L,- wrt tilt Oy
<&>

(inch/degree)

Point
Lj L2 Lz L4 Ls Le

Home 0.000 -0.003 0.003 0.860 -0.860 0.294
G-x-y-z 0.035 -0.095 0.058 0.822 -0.870 0.154
G-x-y+z -0.035 -0.058 0.095 0.870 -0.822 0.176
G-x+y-z 0.037 -0.101 0.062 0.837 -0.885 0.161
G-x+y+z -0.037 -0.062 0.101 0.885 -0.837 0.182
G+x-y-z 0.035 0.052 -0.089 0.837 -0.878 0.406
G+x-y+z -0.035 0.089 -0.052 0.878 -0.837 0.400
G+x+y-z 0.037 0.056 -0.095 0.848 -0.890 0.425
G+x+y+z -0.037 0.095 -0.056 0.890 -0.848 0.415

F-x-y-z 0.006 -0.069 0.063 0.793 -0.802 0.141
F-x-y+z -0.006 -0.063 0.069 0.802 -0.793 0.146
F-x+y-z 0.008 -0.093 0.084 0.870 -0.880 0.175
F-x+y+z -0.008 -0.084 0.093 0.880 -0.870 0.180
F+x-y-z 0.006 0.057 -0.064 0.816 -0.824 0.350
F+x-y+z -0.006 0.064 -0.057 0.824 -0.816 0.351
F+x+y-z 0.008 0.077 -0.086 0.875 -0.884 0.434
F+x+y+z -0.008 0.086 -0.077 0.884 -0.875 0.431

Table 8: Partials of length L,- wrt tilt 92 <&>

(inch/degree)

Home -0.991 0.530 0.530 -0.624 -0.624 0.122
G-x-y-z -0.930 0.608 0.608 -0.577 -0.577 0.279
G-x-y+z -0.930 0.608 0.608 -0.577 -0.577 0.249
G-x+y-z -0.926 0.613 0.613 -0.631 -0.631 0.251
G-x+y+z -0.926 0.613 0.613 -0.631 -0.631 0.222
G+x-y-z -1.045 0.448 0.448 -0.617 -0.617 0.010
G+x-y+z -1.045 0.448 0.448 -0.617 -0.617 0.009
G+x+y-z -1.048 0.442 0.442 -0.663 -0.663 -0.030
G+x+y+z -1.048 0.442 0.442 -0.663 -0.663 -0.027

F-x-y-z -0.941 0.597 0.597 -0.438 -0.438 0.315
F-x-y+z -0.941 0.597 0.597 -0.438 -0.438 0.310
F-x+y-z -0.920 0.620 0.620 -0.690 -0.690 0.202
F-x+y+z -0.920 0.620 0.620 -0.690 -0.690 0.197
F+x-y-z -1.039 0.459 0.459 -0.497 -0.497 0.093
F+x-y+z -1.039 0.459 0.459 -0.497 -0.497 0.091
F+x+y-z -1.052 0.436 0.436 -0.714 -0.714 -0.074
F+x+y+z -1.052 0.436 0.436 -0.714 -0.714 -0.072

GBT Memo 175 GBT Subreflector Actuator Functions in C Page 15

5 Safety Considerations

In principle it is possible to command a combination of actuator lengths which will cause the mechanical parts
of the system to bind or to collide with each other or with other elements of the telescope. Some combinations
could bend one or more U-joints excessively, endangering the rubber seals. The design engineers studied
these possibilities and their summary statement [Zai92, p.5] was: "There is no danger of exceeding hardware
limits if the subreflector operates within its provided envelope and none of the 'extreme deltas' are exceeded"
These conclusions are implemented by a set of multi-level tests, both software and hardware, which are
discussed in [Zai92j.

A key concept is a set of six rules concerned with differences between actuator lengths. These rules appear in
the last ten lines of code of srDisplacementToLengthO (Section 2.1). The actuators have potentiometers
which produce analog voltages proportional to encoder readings, and these are combined in operational
amplifier and comparator circuits to provide an analog hardware implementation of these rules, with slightly
looser limits than in the software. If these hardware limit detectors trigger, they disable the system and
necessitate a manual reset. The PCD control software for the actuator servos also implements these rules
in software, and inhibits motions when the rules are violated, which should prevent triggering the hardware
limits.

The six length-difference rules are a necessary but not sufficient condition for the safety of the system: we
must also limit displacement to combinations inside a specified box. In [Zai92] the corners of this box are
specified as the eight points labelled "F±x±y±z" in Table 2.

Motions in Az larger than ±0.83 inch may be desirable in order to move the beam between feedhorns
separated by up to about 14 inches in the Gregorian focal plane while maintaining optimal imaging quality.
Probably the best way to implement this will be to modify PCD's firmware implementation so that it will
permit displacements inside the box defined by the eight points labelled "G±£±y±z" in Table 2 in addition
to permitting displacements inside the F±x±y±z box.

16 Page GBT Subreflector Actuator Functions in C GBT Memo 175

A srlnclude.h

The error message macros which appear below are experimental—it is not yet clear whether they will be
useful in the M&C implementation.

/* srlnclude.h — Include for the GBT's Gregorian subreflector
D.Wells, HRAO-CV
1996-02-14: new version of sr actuator include
1997-04-25: srlnclude merges ellipsoid.h,greg_focus_track.h,greg_actuators.h
1997-05-21: eliminated enum gft_mode
1997-06-13: change made to test procedure for moving code to MftC
1997-07-23: added macro GET_SR_TILTS()
1998-01-15: removed focus tracking debug code k Schwab iteration macro

*/

[GNU GPL copyright notice omitted]

#ifndef SR.IHCLUDEJI
#define SR.IHCLUDE.H

#include <math.h>
#include "smlnclude.h"

/* -=- Macros to define actuator names and length-rule error messages: -=- */
♦define SRL0 Yl
♦define SRL1 Y2
♦define SRL2 Y3
♦define SRL3 XI
♦define SRL4 X2
♦define SRL5 Zl
♦define SR_ACTUAT0RS_NAMES_N(A) *A
♦define SR_ACTUATORS_ERR0RS_M(A,B,C,D) A "(" *B " - " ♦€ ") " D
♦define SR_ACTUAT0RS_MAMES_A(A0,A1,A2,A3,A4,A5) \

char *srActuatorsNames[] = {SR_ACTUAT0RS_HAMES_H(A0), \
SR_ACTUAT0RS_NAMES_M(A1), \
SR_ACTUAT0RS_NAMES_M(A2), \
SR_ACTUAT0RS_HAMES_H(A3), \
SR_ACTUAT0RS_HAMES_H(A4), \
SR_ACTUAT0RS_MAMES_H(A5)}

♦def ine SR_ACTUAT0RS_HAMES SR_ACTUAT0RS_NAMES_A(SRL0,SRL1,SRL2,SRL3,SRL4,SRL5)
♦define SR_ACTUAT0RS_ERR0RS_A(A0,A1,A2,A3,A4,A5) \

struct srActuatorsErrorStruct f \
int bit; \
char ^message; \

} srActuatorsLengthEixors D = i. \
■C 1, SR_ACTUAT0RS_ERR0RS_M("abs", A0, A2,
{ 2, SR.ACTUATORS.ERRORS.MC'abs", A0, A2,
i 4, SR.ACTUATORS.ERRORS.MC'abs", Al, A2,
{ 8, SR_ACTUAT0RS_ERR0RS_M("abs", A3, A4,
{16, SR_ACTUAT0RS_ERR0RS_M("", Al, A5,
{32, SR_ACTUAT0RS_ERR0RS_M("", Al, A5,

}; \
const int NsrActuatorsErrors = (sizeof (srActuatorsLengthErrors) \

/ sizeof(struct srActuatorsErrorStruct))
♦def ine SR_ACTUAT0RS_ERR0RS SR_ACTUAT0RS_ERR0RS_A(SRLO,SRL1,SRL2,SRL3,SRL4,SRL5)

"> 2, .60")}, \
"> 2. .60")}, \
"> 2. 62")}, \
"> 1. .40")}, \
"< 39. .19")}, \

GBT Memo 175 GBT Subreflector Actuator Functions in C Page 17

/* -=-=-=-=-=-=-=- Function Prototypes: -=-=-=-=-=-=-=- */
♦ifdef cplusplus
extern "C" {
♦endif /* endif cplusplus */

int srDisplacementToLength(/* returns !=0 on delta-errors */
double trans[3], /* delta translations (in) */
double tilts[3], /* delta tilts (deg) */
double temp, /* temperature (deg_C) */
double encoder[6], /* output: lengths to use (in) */
double apex_delta[3][6], /* U-joint errors(in) */
double home_sub_delta[3][6]) /* U-joint errors(in) */

int srLengthToDisplacement (
double len[6],
double temp,
double trans[3],
double tilts[3],
double apex_delta[3][6],
double home_sub_delta[3][6],
int *iter)

/* returns !=0 if maxdelta fails */
/* input actuator lengths (in) */
/* temperature (deg_C) */
/* delta translations (in) */
/* delta tilts (deg) */

/* U-joint error(in) */
/* U-joint error(in) */
/* H-R iterations */

double srActuatorsLengths(/* returns act j encoder length (in) */
int j, /* which actuator 0-5 */
double actual, /* actuallength of act j (in) */
double temp) /* temperature (deg_C) */

void srEllipsoid (double sl2, /* Separation=(FlF2-llm) (m) */
double t, /* Axis-tilt (radians) */
double dxycG) /* Center .offset (m) */

double srEllipsoidBestRms (/* returns extra.tilt^dphi (mr) */
double dsl2) /* delta_separation=(FlF2-llm) (mm) */

int srFocusTracking (
double elev,
double temp,
double Fl.delta[3],
double F2_delta[3],
double sub_trans D,
double sub_tiltsQ,
struct node.data

*greg_feed,
double *dL12,
double *extra_tilt]
double *delta_tilt1
double S [] ,
double Ef])

/* returns != 0 on error */
/* elevation (deg) */
/* temperature (deg_C) */
/* first-focus offset (m) */
/* second-focus offset (m) */
/* XYZ subrefl backup (in) */
/* xyz subrefl tilts (deg) */

/* feed coords/tilts wrt BFP */
/* PFP->feed - 11m (m) */
/* extra tilt subrefl (rad) */
/* (rad) */
/* subrefl opticl vertex (in) */
/* Euler ang vertex tilt(rad) */

♦ifdef cplusplus
};
♦endif /* endif cplusplus */
♦endif /* SR_IHCLUDE_H */

18 Page GBT Subreflector Actuator Functions in C GBT Memo 175

References

[Kin94] Lee King. GBT coordinate systems. Limited-distribution memo, January 1994.

[KM93] Lee King and Greg Morris. Foci arrangement and coordinate systems for the GBT. GBT Drawing
C35102M081, NRAO, December 1993. The first sheet of this set of five drawings schematically
defines six different coordinate systems to be used in the GBT project. Sheets 2-5 define the
algebraic relationships between these coordinate systems.

[Nan91] P. B. Nanavati. Equations of motion - subreflector positioner. Loral GBT Technical Memo 19,
Loral Western Development Labs, September 1991. The "inverse kinematic" algorithm for
calculating actuator lengths from displacements is derived by both matrix/vector and trigonometric
approaches. Appendix A includes a copy of NRAO drawing B35102M007 which specifies the
"nutation" axis Xn.

[Par96] David H. Parker. Subreflector actuator calibrations. Cover memo addressed to Bob Hall, with
reports "P0040" and "P0041" attached. P0040 is from M. A. Goldman 1996-01-21 and is titled
"Determination of Actuator Length for the Secondary Reflector of the Green Bank Telescope".
P0041 is from Bill Radcliff and David Bradley to David Parker 1996-02-23 and is titled "GBT
Secondary Reflector Actuator End-to-End Length Measurements"., February 1996.

[Sch92] F. Schwab. Error sensitivity of the GBT subreflector positioning mechanism. GBT Memo 93,
NRAO, November 1992. The memo addresses the question "What is the nature of the subreflector
positioning errors that would result from imperfect behavior of the U-joints and ball screws of the
subreflector positioning mechanism?".

[Sri90] S. Srikanth. Axial focussing. GBT Memo 49, NRAO, April 1990. "..the axis along which the
[subreflector is] to be moved (without the telescope beam shifting in the sky) for axial focussing
and the amount of movement required [are] determined..; the axis of focussing is 36.73° from the
axis of the., main reflector., [and] 24.4° from the secondary focus feed axis..".

[Ste66] D. Stewart. A platform with six degrees of freedom. Proc. Inst. Mech. Engrs., Part /, 180(15):371-
386, 1965-66.

[Wel98] Don Wells. GBT subreflector motions and servo properties. GBT Memo 176, NRAO, January
1998. Five types of GBT subreflector motions needed for astronomical observations are discussed,
and estimates of their amplitudes and frequencies are given. These estimates are translated into
velocity and acceleration requirements, which are compared with the specifications of the existing
servo implementation.

[WK95] Don Wells and Lee King. The GBT Tipping-Structure Model in C. GBT Memo 124, NRAO,
March 1995. Abstract: The finite element model of the GBT tipping structure has been
translated into executable code expressed in the C language, so that it can be used by the
control software modules for the pointing, focus-tracking, quadrant detector, active-surface and
laser-rangefinder subsystems of the GBT. We give a description of this C-code version of
the tipping structure model and two examples of its application to practical problems. See
ftp://fits.cv.nrao.edu/pub/gbt_dwells_doc.tar.gz for the current revision of this memo
(124.3 as of 1997-06-23).

[Zai92] J. Zaine. Mechanical analysis S/R positioner. Loral GBT Technical Memo 46, Loral Western
Development Labs, October 1992. This comprehensive report discusses operational, peak
operational and survival loadings, required motor torques, lost motion (backlash) of the U-joints
and possible structural interference and U-joint angle problems of the subreflector actuators.
Portions of Loral Interoffice Memorandum 3WL110-DLE-107, titled "NRAO 100m GBT Prime
Focus Feed & Subreflector Positioner Gravity Correction Travel Requirements" are included as
Appendix A (pp.Al-A13). The asymmetric structural model which was used enabled calculation
of the required out-of-plane Zs translation ±0.83in.

