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Abstract 

The "ray" package1 and program rayMain trace sets of rays representing wavefronts through systems 
of rotationally-symmetric aspheric optical elements. The starting sets of rays can represent either plane or 
spherical wavefronts, with feedhom tapering. The optical elements can be de-centered and/or tilted conic 
sections (planes, spheres, ellipsoids, paraboloids, hyperboloids) with additional superimposed radially- 
symmetric aspheric terms, and they can be mirrors as well as refracting surfaces. Both foci and nearly- 
plane wavefronts can be analyzed. 
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1    The ray library 

An unusual feature of this ray tracing package is that it is available as the library libray. a of ray-tracing 
routines in ANSI-C. The individual functions of this library can be called by custom application programs 
coded in C; a good example is the program srFocusTrackingTablel which is used to verify that the GBT 
focus tracking algorithm [Wel98a] will produce high quality imaging as the GBT distorts due to gravity as 
a function of elevation. In order to do this, srFocusTrackingTablel must call the structural model and 
BFP functions [WK95b, WK95a] in addition to the ray functions; no conventional standalone ray tracing 
program could do this. 

For conventional ray tracing applications a user can use program rayMain (Section 2, p. 10) to invoke the 
individual ray tracing functions from a script. Program rayMain is analogous to commercial standalone ray 
tracing programs. For example, in the analysis of the imaging properties of the GBT subreflector [Wel98b], 
the following terse script named srEllipsoidCase2.in commands rayMain to trace 29 spherical waves of 
13 rays each through the off-axis ellipsoidal mirror: 

Digits 4 O.OOOOl 

System GBT.Subreflector 

rayAddSurface "subreflector" -0.133110 0.528 0 0 -1\ 
[4.91667,0,0]ft[0,0,0] \ 

"cone"«[0,0,0]ft[1,0,0]1 
rayAddSurface "prime.plane" 0 0 0 0 1 \ 

[0,0,0]*[0,0,0.798] \ 
,,cylinder,,«[0,0,0]ft[l,0,0] 1 

rayGenerator "spherical"*[-11,0,0]ft[+0.902411,+0.312393,0]0.261677 \ 
0.02,3,6,2     0.261677,-13.0 2,13 "bundle" 

rayTrace 

rayGetFoci 
rayPrtFoci 

rayPltSystem 

rayPltPS [12,12] 0.15 [-11.0,0.01,0.] orthographic srEllipsoidCase2b.ps 

Quit 

The commands shown in the example above define two surfaces, generate and trace rays representing a set 
of spherical wavefronts originating from a grid of 29 points near the second ellipsoid focal point, determine 
the locations of the foci near the first focal point, print the results to standard output and send a Postscript 
plot to file srEllipsoidCase2b.ps. These operations, which invoke the individual functions in libray.a, 
are documented in this report. 

Copyright: The source files of library ray and program rayMain are being made available under a GNU 
"copyleft" license.2 Each of the source files begins with a copyright notice3 which is suppressed in the source 
file listings of this memo. 

Acknowledgements: It is a pleasure to thank R. Fisher, R. Norrod and P. Napier for a number of valuable 
discussions and R.G. Tull (Univ. Texas) for supplying a listing of the original Fortran version of the tracing 
algorithm. 

2See file "GIU-GPL_2.txt" in the ray distribution kit. 
3 "Copyright (C) 1995 Associated Universities, Inc. Washington DC, USA. This program is free software; you can redistribute 

it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either 
version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be 
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A 
PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU 
General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, 
MA 02139, USA. Correspondence concerning GBT software should be addressed as follows: GBT Operations, National Radio 
Astronomy Observatory, P. O. Box 2, Green Bank, WV 24944-0002 USA". 
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1.1    Tracing Bundles of Rays through a System: rayTraceO 

struct Node *rayTrace (                   /* returns traced RayBundleSet */ 
struct Node *RayBundleSet, /* the lists of input rays */ 
struct Node *System,      /* the list of surfaces */ 
double tolerance,        /* for aspheric intercepts */ 

Function rayTraceO traces a list of lists of rays through a list of surfaces, returning a new list of lists of 
rays. It uses Feder's algorithm [Fed51j for tracing a ray through a centered rotationally-symmetric aspheric 
surface,4 augmented by extensions [AS52] for de-centering and tilting of the surface. Feder's technique 
for tracing aspheric surfaces has been extended to use the numerical eccentricity [SM62, p.675], so that 
arbitrary conic sections can be traced, including superimposed radially-symmetric polynomial deviations 
from the conic sections.5 

The surfaces to be traced are conic sections plus polynomial terms, and are computed by rayTraceO as 

cs 
«== /= 72n       2, +>bs2 + Ats

4 (1) 
1+ v1- c s t1 ~€ ) 

where s is the radius of ray intercept (s2 = y2 + z2), c is the osculating curvature at the vertex (c = 1/r), 
e is the numerical eccentricity of the conic and the Ai are the radially-symmetric polynomical coefficients. 
Spheres are specified by setting e = 0 and curvature c = 1/r. The ray package follows Feder's convention 
[Fed51] that the X axis is the main optical axis of a system, and the sign convention for c is that it is positive 
if the center-of-curvature is to the right of the vertex (xcoc > ^vertex)- Planes are specified as spheres with 
curvature c = 0 (r = oo). Paraboloids with focal length / are specified as e = 1 and c = 1/2/. Ellipsoids 
with major axis a and minor axis 6 are specified as e = Va2 — b2/a and c = a/62. The reader can verify 
by inspection that equation (1) computes a paraboloid (e = 1) of focal length / = r/2 with A2 = A4 = 0 
as Xparaboioid = s2/2f.6 A plane with e = 0, A2 — A} = 0 and c = 0 is computed as arpiane = 0. A simple 
sphere with radius r is computed as x8phere = s2/r(l -f y/l — s2/r2), where the sign of ^sphere varies with 
the sign of c = 1/r (i.e., positive if arCoc > ^vertex)- 

The concept of the extensions for de-centering and tilting is that the coordinates of both surfaces and rays 
are defined relative to the same origin, and rays are transformed to local coordinates just before tracing 
them through a surface, and then are transformed back to the original coordinate system afterward. 

Argument Segments is a list to which items of type Segment (see ray.h in Appendix A.l) are appended by 
the ray tracing algorithm for plotting by function rayPltPSO (section 1.5, p.9); see Figure 3 for an example 
of plotted ray segments. 

The local variable declarations within rayTraceO include temporary variables used by Feder in [Fed51]. M 
is the vector from the vertex of the surface and perpendicular to the incident ray and having its terminus on 
the ray. M_l_2 is M2, the square of the length of this vector, and M_ix is its X-component Mix. xi_l (£1) 
is the cosine of the angle of incidence, xi_l_p (££) is the cosine of the angle of refraction. L is the length of 
the ray intercepted between the two surfaces. 

4 If tone (non-rotationally-symmetric) surfaces, such as the tertiary which was proposed [Sri91] for the GBT, need to be 
traced, this algorithm will need further extensions [SM62, p.675]. 

5The basic algorithm used in rayTraceO was developed by the author during the summer of 1967 as part of the design work 
for the Coude spectrograph of the McDonald Observatory 2.7-meter telescope [Tul69, Tul72], under the direction of Robert 
G. Tull (Univ. Texas), the designer of the spectrograph. The algorithm was embodied in a program named COUDE. In 1993, the 
author contacted Tull in order to obtain a 26-year-old line printer listing of COUDE, and then translated the code from Fortran-66 
to ANSI-C while typing in the first version of function rayTrace (). Program COUDE was used to analyze a spectrograph which 
has optical complexity comparable to the GBT: the collimator is an off-axis paraboloid, the camera is a Schmidt with the 
diffraction grating at the entrance pupil, and a tilted Schmidt corrector in the collimated beam is used to generate the necesary 
elliptically-symmetric Schmidt-type wavefront correction to compensate the spherical abberation of the camera. 

6Equation (l) implies that a paraboloid can also be specified as c = 0, e = 0, A2 = 1/2/. 
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Function rayTraceO performs many of its calculations using macros defined in mathVectorMatrix.h, which 
is included by ray.h. Application programs which call rayTraceO and other functions of the library may 
also find these macros useful. The macros expand operations on three-element vectors and 3x3 matrices as 
inline scalar operations (no f or-loops are used), in hopes that scalar optimization in compilers will improve 
performance. 

1.2    Defining the Surfaces of the System: rayAddSurface () 

struct Node *rayAddSurface( /* returns ptr to new node */ 
struct Node *list. /* list of surfaces */ 
chair surf name Q , /* descriptive string */ 
double curvature. /* 1/r */ 
double epsilon. /* eccentricity of conic */ 
double A_2, /* deformation terms */ 
double A_4> 
double index_ratio. /* N/N_l, -1 means mirror */ 
double S □, /* XYZ of vertex */ 
double E [] , /* Euler angles of vertex tilt */ 
emun VignetteType 

vign.type. /* VIGN.CYLINDER I VIGN.CONE */ 
double VOC], /* vignette origin XYZ */ 
double WC], /* vignette direction cosines */ 

Argument epsilon is the numerical eccentricity e; curvature is the inverse of the radius of the sphere 
which osculates to the surface at the vertex point. The index_ratio argument is the ratio of the indicies of 
refraction /xi = N/Ni, where N is the index to the left of the surface and Ni is the index to the right. For 
a focal plane or aperture stop, which neither refracts nor reflects, set /ii = 1; for a mirror, set pi — —1. 

The position of the vertex of the surface is given by argument S [], relative to an arbitrary origin chosen by 
the user. For example, in Table 3 the GBT's prime focal point has been chosen as the origin, and so the 
vertex of the paraboloidal primary is at X = —60 meters.7 The vertex point of a plane is undefined, and 
the vertex point of a sphere can be varied by varying the tilt E D; the user should supply whatever values 
seem reasonable in such cases. 

Although the comment in the function prototype above asserts that argument EQ is the "Euler angles of 
vertex tilt" of the surface, this is not correct — the algorithm currently implemented in rayTraceO uses 
E[0] to rotate about the X axis, Etl] to rotate about the Y axis and E[23 to rotate about the Z axis, in 
that order. For example, in Table 3 (p. 12) the tilt of the GBT's subreflector is specified as E[2], rotation 
about Z, with value -0.097214 radians (-5.57°), and the vertex is specified to be (4.8935,-0.4772,0.0) meters. 
It is likely that future versions of rayTraceO will implement a true Euler angle convention for ED - 

The vignetting arguments vign.type, V0[], WD and VR are provided to define the edge of the optical 
element, however the current implementation of function rayTraceO does not use them. When the 
vignetting logic is added to rayTraceO it will be necessary to implement an output list for the rays which 
are vignetted; this will support "spillover" calculations in radio telescopes. The author's present thinking is 
that this will be done by adding a pointer to that list of bundles of rays to the Surface struct; tools will 
be provided to sum the fluxes of rays in the various lists. The concept of the vignetting arguments is that 
two types of aperture stops will be supported: surfaces delimited by cylinders and surfaces delimited by 
cones. The GBT paraboloidal primary is an example of the cylindrical case and its ellipsoidal secondary is 

7The ray package does not define the unit used for positions of surfaces, but it does provide arguments tolerance and d 
(number of digits after decimal point) in functions rayTraceO, rayPrtSystemO, etc. Users can consider the positions and 
tolerances to be inches, centimeters or meters as desired. Angle arguments are always radians. 
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steps 
items 

1-D 2-D 3-D 

0 1 1 1 
1 3 5 7 
2 5 13 33 
3 7 29 123 
4 9 49 257 
5 11 81 515 
6 13 113 925 
7 15 149 1419 
8 17 197 
9 19 253 

10 21 317 
11 23 377 
12 25 441 

Table 1: Items (rays,cases) as function of number of "steps" 

an example of the cone case. The cylinder or cone is defined by a point, a vector and a radius. An example 
of the use of these arguments in the cylinder case is shown in Table 3, for the case of the "main.mirror", 
where an aperture stop of 50 meters radius is specified to be located at (-60,-54,0) meters, normal to the 
X-axis of the system. In practice an optical system like the GBT can be traced with reasonable accuracy by 
the present implementation of rayTraceO, because function rayGeneratorO can produce bundles of rays 
which will suffer negligible vignetting. 

1.3     Generating Bundles of Rays: rayGeneratorO 

void rayGenerator( /* no value returned */ 
struct Node *RayBundleSet, /* appends this list of Bundles */ 
char bundle_name Q, /* default used if NULL */ 
char wave.type[], /* "plane" 11 "spherical" */ 
double wave_point □ , /* XYZ */ 
double wave_direction D. /* unit_vector */ 
double wave_radius. /* linear 11 angular */ 
double case.step. /* angular 11 linear */ 
int   case_steps, /* #steps off-axis */ 
int   axis_mask. /* 7=XYZ,4=X,2=Y,6=XY,.. */ 
int   ray_steps, /* #rays off-axis */ 
double taper_angle. /* of feed horn (radians) */ 
double taper_db. /* down at taper.angle */ 
int ColorCode_l, /* first ColorCode */ 
int ColorCode_2, /* last ColorCode */ 

The concept is that a "bundle" of rays can be generated and appended to an existing list of bundles. Each 
bundle is intended to represent an individual wavefront case; sets of bundles can be traced, analyzed, printed 
and plotted as sets, with single calls to functions, because the sets are represented as lists of lists of rays and 
lists of computed results. 

Two types of bundles can be generated, plane and spherical; character string argument wave_typeQ specifies 
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Figure 1: Ray pattern in 100 meter aperture (ray_steps = 4 »->■ 49 rays) 

this. A bundle of rays will originate at wave_pointn and will proceed in wavejdirectionC]. Actually, 
rayGeneratorO appends a set of ray bundles with a single call; the arguments and algorithms provided are 
intended to support typical analytical problems in optical systems, such as tracing plane wavefronts with the 
angle off-axis being stepped, or tracing spherical wavefronts with the position of the feedhorn being stepped 
relative to the on-axis focal point. Argument axis .mask specifies which axes will be stepped. Argument 
case-steps specifies the number of steps db off-axis, and case_step is the step size. For each step a bundle 
of rays will be generated of size wave_radius and with rayjsteps rays ± about the axis of the bundle. 
Function rayGeneratorO can produce vast numbers of rays from innocuous-looking values of these few 
arguments! For example, in Table 3 (p. 12) the four arguments "0.0001388,2,2,4" generate five sets of 
49 rays each, 245 rays in total. This is a plane wave case, and so case_step=0.0001388 is interpreted as 
0.14 mr (29 arcsec). The case_steps argument is 2, so five cases (-2, -1, 0, +1, +2) will be computed for 
each active axis. The ax is-mask is 2, which we see is the Y axis only, so only five cases will be generated. 
The ray_steps argument is 4; the number of rays to be generated for this value is given as 49 in the a2-D" 
column of Table I.8 With a few keystrokes we could change this argument to 6, and thereby generate 113 
rays, more than doubling the sampling of the wavefront. In practice, when debugging the setup of a new 
problem, it is convenient to start with a small value for rayjsteps so that the calculation will go rapidly, 
and then increase the value to improve accuracy when the problem appears to be operating correctly. 

Arguments taper jangle and taper _db implement radio-style beam tapering (in optical systems aperture 
8The number of items is simply 2n + 1 for the 1-D case, but for 2-D and 3-D it is limited by the wave jradius argument; 

Figure 1 shows how the 49 rays fit into the circular area. 
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Figure 2: Power-weighting of rays (q = 43.17, OH — 15°) 

tapering is called "apodization"). The relative E-field pattern of the feedhorn in decibels is 

£(0) = 2Olog(cos0)9, (2) 

where 9 is the single off-axis [RSCWL81]. Parameter g is specified implicitly by giving the value of E{6) at 
the edge of the beam. If OH is the subtended half-angle of the subreflector, we have 

E{0H) = 20? log cosfl/r, 

and we can solve for the exponent q as 

q = 
E(0H) 

(3) 

(4) 20 log cos OH 

For example, in [Nor90b] we have OH = 15° and E(0H) = —12 dB, which implies q = 43.17. The relative 
power of the rays in the generated wave is computed as 

/(r) = cos2*(—OH), (5) 

where rjj is the radius in the wavefront corresponding to angle OH , and this intensity (power) is used in the 
ray library as a weighting factor for analyzing foci and wavefronts. For example, a taper of —12 dB is a 
weight of 0.0630 for marginal rays (see Figure 2). An un-apodized (un-tapered, uniformly weighted) optical 
system can be traced by setting the taper_db parameter to zero. 

The three color arguments will assign color codes to individual rays or to individual bundles of rays. In 
Table 3 these three arguments are "2,13 "bundle""; "bundle" means that the rays of the five cases (angle 
off-axis stepping by 29 arcsec) will have five different colors, starting with color code "2" (i.e., codes 2, 3, 4, 
5 and 6 will be used). The colors assigned to the codes are arbitrary. 
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1.4    Analyzing foci and wavefronts: rayGetFociO and rayGetPlanesO 

struct Node *rayGetFoci( /* returns list of Focus */ 
struct Node *RayBundleSet, /* list of lists of rays */ 
double tolerance. /* position accuracy          */ 

Function rayGetFociO uses a least-squares regression to solve for the XYZ coordinates of a focal-point about 
which a nearly spherical wavefront converges to the smallest RMS volume. The regression also produces 
the pathlength of the wavefront for the focal point. The algorithm then selects a delta pathlength which is 
large (50 x) compared to the 3-D RMS of the ray points on the wavefront about the focal point solution. 
It subtracts this delta pathlength from the pathlength produced by the regression and computes the XYZ 
coordinates of this pathlength for each ray, and then computes the difference between the delta pathlength 
and the Euclidean distance between these XYZ coordinates and the XYZ position of the focal point; i.e., 
it forms the radial residual between the ray points and a sphere centered on the focal point. The RMS of 
these residuals is the RMS phase deviation of the nearly spherical wavefront. The rays are weighted by their 
intensity (radio power), as discussed in Section 1.3. This calculation of the focal point location ignores wave 
interference effects, which will be significant at low frequencies (< 5GHz?) but are less and less important 
as frequency is increased. 

Function rayGetFociO adds segments to the segment list to draw a ±3<r 3-D box (sides 6<TX, 6o-y, 6a2) 
centered on each focal point that it computes (see Figure 4 for examples). 

struct Node *rayGetPlanes( /* return list of planes */ 
struct Node ^RayBundleSet, /* list of lists of rays */ 
double yz_axis □, /* Zemike analysis axis */ 
double yz_radius. /* Zemike radius */ 

For the analysis of nearly-planar wavefronts, we need to fit the pathlengths of rays across the aperture with 
Zernike polynomials [BW59], and identify the terms which represent the primary (Seidel) aberrations. The 
argument nord to function mathZernikeO in rayGetPlanesO is 

int nord0=4,3,2,-1; /* max_orders for Seidel abberations */, 

which will command mathZernikeO9 to compute the nine terms shown in Table 2 (cf. Table 6). 

During the fitting process the y, z coordinates of each ray intercepting the plane are converted to polar 
coordinates p, 0 relative to yz_axis □. The formulae are 

r = y/Ay2 + Az2, 

cos 0 = Ay/r, 

(6) 

(7) 

The function prototype is: 

int mathZernikeC /* returns #coeffs in u[] * ui[] */ 
double r. /* radius in range 0—>1.0 */ 
double cost. /* cosine of theta */ 
double sint. /* sine      of theta */ 
int        nord[], /* order limits */ 
double u[] , /* Zernike coefficients return here */ 

It is likely that the details of this C function will be discussed in a future GBT Memo, as a part of the active surface servo 
development effort. A similar set of polynomials was used earlier in the GBT project [Nel90] to analyze the shapes of the GBT 
panels. 
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index Zernike term n m Function Seidel Abberation 

0 ^0000 0 0 1 Zero Point (Pathlength) 
1 A2000 2 0 2p2-l Curvature (Defocus) 
2 -44000 4 0 6p4 - 6p2 + 1 Spherical Abberation 
3 A1010 1 1 pcos0 Tilt (Pointing Error) 
4 ^1011 1 1 psinfl [sine term] 
5 ^3010 3 1 (3p3-2p)cos0 Coma 
6 ^3011 3 1 (Zp3-2p)sm0 [sine term] 
7 -A2020 2 2 p2 cos 20 Astigmatism 

and 

Table 2: Seidel (3rd order) terms fitted to wavefronts by rayGetPlanesO 

sin 0 = Az/r 

P = r/rmax, 

(8) 

(9) 

where rmax is argument yz_radius. 

If argument printjnodeD has value "verbose", rayGetPlanesO will print a listing of the least squares 
solution for the coefficients, the RMS of fit and the correlation matrix, for the first bundle only. This is 
mainly intended as a debug aid, because rayPrtPlanes () produces a more readable listing of the coefficients, 
and does it for all of the bundles which were traced. 

1.5    Printing & plotting from lists (rayPrtPlanes(), rayPltPSO, etc) 

void rayPrtSystem(struct Node *list, 
int d) 

/* list of surfaces */ 
/* digits after decimal point */ 

A good example of the output produced by this command is shown in the middle part of Table 4 (p. 14). The 
curvatures are printed in "g" format with six significant figures, the eccentricities with five figures, the Ai 
with two figures and index ratios JI,- with five figures. The positions S [i] are printed with d digits after the 
decimal point, while the E[i] angles are always printed with 5 decimal places (10/ir « 2 arcsec precision). 
The primary purpose of this listing is to facilitate debugging of optical prescriptions. 

void rayPrtFoci (struct Node *foci_list, 
int d) 

/* list of Focus structs */ 
/* digits after decimal point */ 

A good example of the output produced by this command is shown in the lower part of Table 4 (p. 14). The 
focal point solution is printed for each bundle of rays that was traced. The "n" column is the number of 
rays in the ath bundle. Columns (xc,yc,zc) are the positions of the phase centers of the converging nearly- 
spherical wavefronts, 1c is the path length to the phase center, (xs,ys,zs) are the mean errors (<rr,(ry,<rz) of 
the phase center coordinates and Is is the mean error of the pathlengths 1c. These values are printed with 
d digits precision. 

void rayPrtPlanes (struct Node *planes_list, /* list of Plane structs */ 
int d) /* digits after decimal point */ 

A good example of the output produced by this command is shown in the lower part of Table 6 (p. 17), where 
the values of the Seidel terms are printed for each bundle of rays which was traced. The quantity being fitted 
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is the pathlength to the final aperture stop; the mean pathlength of the wavefront is given as AQOOO- Only 
those coefficients which are non-zero to d digits precision are printed—negligible values are printed as blanks. 
The values are printed with d digits after the decimal point. rayPrtPlanes () prints the values of terms Aioio 
and Axon (Wavefront Tilt, Pointing Error) in milliradians rather than the wavefront amplitude; it does this 
by multiplying the amplitudes by 1000.0/yz_radius (the latter is an argument supplied to rayGetPlanes ( ) 
which is transferred in struct Plane). rayPrtPlanes() prints a warning message if the RMS wavefront 
residual after fitting the 3rd-order Zernike terms is greater than zero to d digits precision; i.e., the residual 
represents the bth order terms of the wavefront.10 

void rayPrtBundles (struct Node *set, 
int d) 

/* list of lists of rays */ 
/* digits after decimal point */ 

This is a debug utility. 

void rayPrtSegments(struct Node *list, 
int d) 

/* list of ray segments      */ 
/* digits after decimal point */ 

This is a debug utility. 

void rayPltSystem( /* returns lines in segments list */ 

struct Node *system. /* list of optical elements      */ 

The current implementation of this function merely plots the axes of the optical system; a future version will 
walk through the list of surfaces system and will plot a mesh of lines for each of them, delimited by their 
respective vignetting parameters. Lines plotted are appended to the list of segments. 

void rayPltPS( /* returns PS in psnameC] */ 
struct Node ♦segments. /* list of line segments */ 
double height_cm. /* height of PS in centimeters */ 
double width_cm. /* width of PS in centimeters */ 
double width. /* width in units of System */ 
double to_point[]. /* XYZ of point in center of PS */ 
char plt_mode □ , /* "Orthographic"1"Perspective" */ 

A view of the list of segments is computed as the Postscript file psname □ - The size of the Postscript image 
in centimeters is (width_cm,height_cm), and argument width specifies the width in the units of the optical 
system. The to_pointn will appear in the center of the image. Although pit .mode is provided, it is not 
implemented in the current version of rayPltPSO; the implementation always computes "Orthographic" 
projections with 4-X to the right and +Y pointing up, looking toward — Z. 

2    The ray-tracing main program rayMain 

Program rayMain contains a simple command language parser which recognizes function names, parses 
argument values and passes the arguments to the functions. The algorithm of the parser is the following 
steps: 

10It is shown in [Wel98a] that the RMS wavefront residual (the combined 5th order terms) of the GBT Gregorian optical 
system for E = 0° and for E = 90° is about 15/*, whereas the 3r<'-order terms have typical amplitudes of a millimeter, 50 x or 
more larger than the RMS residual.  The GBT is a 3rd-order system to high accuracy. 
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1. Read next input line and append it to the command line being accumulated 

2. If the last character of the input line is the character "\", remove it and control goes back to step 1. 

3. If the first character of the command line is "#", it is a comment; it is echoed to the standard output, 
the command line is cleared, and control goes back to step 1. 

4. The command line is scanned for occurrences of any of the characters ", () [] "AC" and tab; they are 
changed to blanks. 

5. The command line is scanned for occurrences of two or more blanks; they are changed to single blanks. 

6. If the first character of the command line is a blank, the blank is deleted. 

7. If the last character of the command line is a blank, the blank is deleted. 

8. If the command line is empty (all blank), control goes back to step 1. 

9. The transformed command line is echoed to standard output; if longer than 65 characters it is printed 
on more than one line in segments of 65 characters. 

10. The command code is parsed as the initial string of characters up to the first blank. If the code is 
"Quit", rayMain exits. 

11. The command code is tested against the list of valid codes: Digits, Set Name, System, rayAddSurface, 
rayGenerator, rayGetFoci, rayGetPlanes, rayPltPS, rayPltSystem, rayPrtBundles, rayPrtFoci, 
rayPrtPlanes, rayPrtSegments, rayPrtSystem and rayTrace. If the code is recognized, the blank- 
delimited arguments are parsed by sscanf () formats in which the successive format codes are 
appropriate for the data types of the arguments of the functions to be invoked. Then the specified 
function is called with the arguments. After the function returns, control goes back to step 1. 

The "Digits" command wants two arguments: the d value and the tolerance value to be used in calls to 
the functions. The print commands, whose functions take argument "d", will get the number of digits from 
the "Digits" command, and rayTrace will use the tolerance. 

The "System" command wants one argument, the name to be given to the optical system which will be 
defined by the rayAddSurf ace () calls. 

The "SetName" command wants one argument, the name to be given to the bundles of rays which will be 
generated by subsequent rayGeneratorO calls. A default name choice will be used if this command is not 
supplied. A good example of the use of this command is shown in five occurrences in the lower part of 
Table 5 (p. 16), and the result of the operation is shown in the bundle-name column of the rayPrtPlanes 
output in the lower part of Table 6 (p. 17). 

All string arguments must be single strings—they cannot contain embedded blanks. Underscores can be used 
to separate words; good examples of this technique are the system name and three of the surface names in the 
command script shown in Table 3 (p. 12). The double-quotes around the surface name mainjnirror in the 
script are irrelevant—the command parser strips them, and would regard main and mirror as two arguments 
rather than one if a blank were present instead of the underscore. The quotes are used as punctuation in 
these cases because the author judged that they make the script more readable. 

Other punctuation symbols and the backslashes are allowed to make scripts more readable, but they are 
irrelevant to command interpretation because rayMain strips them at steps 2 and 4 above. The author uses 
the punctuation characters to group arguments into logical, mnemonic patterns. 

The function arguments for lists of bundles of rays, lists of surface elements and lists of line segments are not 
supplied with the commands to rayMain. These lists are created and managed by rayMain automatically. 
There is no command which will delete these lists and re-initialize them—rayMain is intended to used to 
execute one problem at a time. To calculate two problems, run rayMain twice with separate scripts. 
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# Testcasel: plane saves entering GBT Gregorian at rigging angle 

# D.Wells, IRAO-CV, 1995-07-06,08-29. 

[GNU GPL copyright notice omitted] 

Digits 4 0.00001 

System GBT_Gregorian_at_44d 
t unit is meters, origin at prime focus. 
# eps=0.528, e=5.5m, a=e/«ps=10.4167in, b=sqrt(a~2-e~2)=8.8463m 
# r0=b~2/a=7.5126m, c*l/r0=0.133110, d=a-e=4.9167m 
f alpha=17.89878d=0.312393r, beta=5.56996d=0.097214r 
# vertex=(Fl+d*cos(beta) ,Fl-d*sin(beta),0)t(0,0,-beta) 
ff the.big.mirror: fp=60.0m, rO=l20.0m, c=l/r0=0.0083333 
>              greg.focus=(Fl-2e*cos(beta),Fl+2e*sin(beta),0), 
rayAddSurface "main.mirror" +0.0083333333 10 0-1 \ 

[-60,0,0]ft[0,0,0] \ 
"cylinder"«C-60,-S4t0]ft[l,0,03 SO 

# tilt prime focus plane to 45.7d (prime focus box orientation): 

rayAddSurface prime.plane 0 0 0 0 1 \ 

[0,0,0]ft[0,0,0.798] \ 

"cylinder"*[O.O.Olftfl,0,0] 1 

rayAddSurface subreflector -0.133110 0.528 0 0 -1\ 

4.8935 -0.4772 0    0 0 -0.097214 \ 
"cone"«[0,0,0]ft[l,0,0]l 

rayAddSurface greg.plane 0 0 0 0 1 \ 

[-10.9481,1.0677,0]ft[0,0,+0.312414] \ 
"cylinder-CEO.O.O] Jk[l ,0,0] 1 

rayPrtSystem 

# Generate plane wave at origin (prime focus), 100m diameter 54m offaxis 

ff grid spacing 0.1388mr=28.63asec corresponds to 2.1 in-spacing Q-band horns, 

ff feed taper is -13db at 15d=0.26rad 
rayGenerator "plane"«[0,-54,0]ft[l,0,0]50 \ 

0.0001388,2,2,4 0.26,-13.0     2,13 "bundle" 

rayTrace 
rayGetFoci 

rayPrtFoci 
rayPltSystem 

rayPltPS [12,10] 100.0 [-20,-47,0] orthographic rayTestCasela.ps 

rayPltPS [10,10] 0.10 [-10.9481,1.0677,0] orthographic rayTestCaselb.ps 

Quit    

Table 3: Input file for Foci example 

2.1    Example 1: Multiple plane waves imaged to GBT Gregorian foci 

The script shown in Table 3 defines the GBT surfaces for E = 44° (the rigging angle) in the order in which 
an incident plane wave from the sky encounters them; the subreflector geometry parameters are taken from 
[Nor90a]. The comments in this script give the details of calculation of a number of key quantities of interest 
which were used to compute the arguments to the ray tracing functions. The prime4)!cine and greg-plane 
surfaces are defined in order to make these important locations explicit in the optical prescription—they have 
Pi = 1, and so do not deflect the rays, even though function rayTrace does do the full tracing calculation 
on them. The origin is at the prime focal point, and the unit is meters, so the vertex of the mainjnirror 
is at x = —60 and the prime .plane is at x = 0. The arguments to rayGenerator create five plane waves 
starting at the origin (x = 0), with tilts stepping by about 29 arcsec and with each wave represented as 
49 rays. Because the main-mirror is to the left of the origin, the wave moves to left initially. 

Figure 3 shows how the five sets of rays proceed through the GBT (because rayPltSystem does not yet plot 
the surfaces, we see only the points where the rays change direction). The width of this scene is 100 meters. 
Figure 4 shows the region around the Gregorian focus greatly enlarged (width 100 mm, 1:1 scale). We see 
that the on-axis wave focusses perfectly but that the off-axis waves focus to caustic surfaces. 
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Figure 3: Overview of rays traced through the GBT (rayTestCasela.ps) 

Figure 4: Foci at the Gregorian focal plane (rayTestCaselb.ps) 
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ff Testcasel: plane saves entering GBT Gregorian at rigging angle 
ff D.Wells, IRAO-CV, 1995-07-06,08-29. 
[GNU GPL copyright notice omitted] 
ff Command=<Digits 4 0.00001> 
ff Command=<System GBT_Gregorian_at_44d> 
ff unit is meters,  origin at prime focus. 
ff eps-0.528, e=5.5m, a=e/eps=10.4167m, b=sqrt(a~2-e~2)=8.8463m 
ff      r0=b~2/a=7.5126m, c=l/r0=0.133110, d=a-e=4.9167m 
# alpha=17.89878d=0.312393r, beta=5.56996d=0.097214r 
ff      vertex=(Fl+d*cos(beta),Fl-d*sin(beta),0)4(0,0,-beta) 
ff      the_big_mirror: fp=60.0m, r0=120.0m, c=l/rO=0.0083333 
# greg_focus=(Fl-2e*cos(beta),Fl+2e*sin(beta),0), 
ff Command=<rayAddSurface main.mirror +0.0083333333 10 0-1 -60 0 0 0 0 0 cy I 
# Hinder -60 -54 0 1 0 0 50> 
ff      tilt prime focus plane to 45.7d (prime focus box orientation): 
ff Command=<rayAddSurface prime.plane 0000100000 0.798 cylinder 0 0 I 
ff       |0 1 0 0 1> 
ff Command=<rayAddSurface subreflector -0.133110 0.528 0 0-1 4.8935 -0.4772 I 
ff        |0 0 0 -0.097214 cone 0 0 0 1 0 0 1> 
ff Command=<rayAddSurface greg.plane 0 0 0 0 1 -10.9481 1.0677 0 0 0 +0.312411 
ff       |4 cylinder 0 0 0 1 0 0 1> 
ff Command=<rayPrtSystem> 

-=-< GBT_Gregorian_at_44d >-=- 
Surface Properties: 
i        name curv   eps    A_2   A_4      mu 
—   —     —   —  
1 main_mirror 0.00833333 1 0 0 -1 
2 prime.plane 0 0 0 0 1 
3 subreflector -0.13311 0.528 0 0 -1 
4 greg.plane 0 0 0 0 1 

Vertex Positions and Tilts: 
i name S[0] S[l] S[2] E[0] E[l] E[2] 

1 main_mirror -60.0000 0 0000 0.0000 0 00000 0 00000 0 .00000 
2 prime.plane 0.0000 0 0000 0.0000 0 00000 0 00000 0 79800 
3 subreflector 4.8935 -0 4772 0.0000 0 00000 0 00000 -0 .09721 

ff Generate plane wave at origin (prime focus), 100m diameter 54m offaxis 
ff grid spacing 0.1388rar=28.63asec corresponds to 2.1in-spacing Q-band horns. 
ff feed taper is -13db at 15d=0.26rad 
ff Command=<rayGenerator plane 0 -54 0 1 0 0 50 0.0001388 2 2 4 0.26 -13.0 2 I 
ff       |13 bundle> 
ff Command=<rayTrace> 
ff Commands<rayGetFoci> 
ff Command-<rayPrtFoci> 

-=-< plane, r=50 >-=- 
bundle.name  n      xc yc zc 1c xs ys zs Is 

-0.00028 0.00000 
-0.00014 0.00000 
0.00000 0.00000 
0.00014 0.00000 
0.00028 0.00000 

49 -10.9361 
49 -10.9416 
49 -10.9473 
49 -10.9530 
49 -10.9589 

1.0151 0.0000 140.8236 0.0030 0.0009 0.0004 0.0031 
1.0414 -0.0000 140.8289 0.0015 0.0004 0.0002 0.0015 
1.0676 0.0000 140.8342 0.0000 0.0000 0.0000 0.0000 
1.0939 0.0000 140.8394 0.0015 0.0005 0.0002 0.0016 
1.1202 0.0000 140.8447 0.0030 0.0009 0.0004 0.0031 

ff Command=<rayPltSystem> 
ff Command=<rayPltPS 12 10 100.0 -20 -47 0 orthographic rayTestCasela.ps> 
ff Command-<rayPltPS 10 10 0.10 -10.9481 1.0677 0 orthographic rayTestCaselb.| 
ff        lps> 
ff Command-<Quit> 

Table 4: rayMain output for Foci example 
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Figure 5: Q-band horns emitting spherical waves (rayTestCase2a.ps) 

2.2    Example 2: Spherical waves from Q-band horns produce plane waves 

In this example we trace cones of rays (spherical waves) originating from the phase centers of the four 
horns proposed for the 40-50 GHz Q-band receiver system [WS95] and we analyze the resulting nearly-plane 
wavefronts at the GBT aperture plane. Figure 5 is a view of the Gregorian focal point with width 100 mm, 
reproduced at 1:1 scale (these feedhorns are tiny!). The upper and lower ray cones are actually two cones 
projected one on top of the other. The central cone of rays is the on-axis case which is computed as a 
reference. The input script shown in Table 5 defines the GBT at the rigging angle in the same manner as 
in the first example, but in opposite order, and it defines the prime .plane as the last intercept point for 
the rays. Because the arrangement of the four feedhorns does not correspond to any combination of the 
rayGeneratorO arguments, the five ray bundles are computed as five separate executions of rayGenerator 
with different bundle names. 

The output produced in this example calculation is in Table 6. The interesting feature is the rayPrtPlanes 
output at the bottom of the table. The five nearly-plane wavefronts have been analyzed, and their 3r<1-order 
Zernike coefficients, the Seidel abberations, are tabulated. Most of the cells of the tabular listing are blank, 
meaning that those coefficients are zero in the 4th decimal place (note Digits 4 at the top of Table 6). The 
Aoooo values are the pathlengths for the four horns in meters, differing by only 100/i. The non-zero .Aioio and 
ylioii coefficients are the tilts of the four wavefronts produced by the off-axis feedhorns. The .Aion (sine) 
terms are wavefront tilt in azimuth, out of the GBT's plane of symmetry, and they are all the same value, 
±0.1388. The unit for these tilt values is milliradians, as was mentioned in Section 1.5 in the discussion of 
rayPrtPlanes(). So, four beams are off-axis in aximuth by ±0.1388 mr = ±28.63 arcsec. The ^4ioio tilts are 
in elevation, and they differ by about one percent—the scale factor between linear focal plane displacement 
and angle on the sky in elevation is varying significantly. Because only the tilt terms are non-blank in this 
listing, and rayPrtPlanes has not warned us about significant RMS wavefront errors (5th-order terms), we 
can conclude that these four 100 meter-wide wavefronts are planes to better than 100/i. 
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ff Testcaseff2: spherical saves from proposed 40-50_GHz feedhorns through GBT 
ff D.Wells, IRAO-CV, 1995-07-28,08-29. 

[GNU GPL copyright notice omitted] 

Digits 4 0.00001 

System GBT_Gregorian_at_44d 
ff unit is meters, origin at prime focus, cone from feedhorn to right. 
» eps=0.528, e=5.5m, a=e/eps=10.4167m, b=sqrt(a~2-e~2)=8.8463m 
» r0=b"2/a=7.5126m, c=l/rO=0.133110, d=a-e=4.91667m 
ff alpha=17.89878d=0.312393r, beta=5.56996d=0.097214r 
ff vertex=(Fl+d*cos(beta),Fl-d*s in(beta),0)ft(0,0,-beta) 
»      the_big_mirror: fp=60.0m, r0=120.0m, c=l/rO=0.0083333 

rayAddSurface "subreflector" -0.133110 0.528 0 0 -1\ 

4.89346 -0.477217 0    0 0 -0.097214 \ 
"cone"Ci:0,0,0j*[l,0,0Dl 

ff      tilt prime focus plane to 45.7d (prime focus box orientation): 
rayAddSurface "prime.plane" 0 0 0 0 1 \ 

[0,0,0]*[0,0,0.798] \ 
,,cylinder,,«[0,0,0]ft[:i,0,0] 1 

rayAddSurface "main_mirror" +0.0083333333 10 0-1 \ 
[-60,0,0]ft[0,0,0] \ 

"cylinder,,C[-60,-54,0]ft[l ,0,0] 50 
rayAddSurface "prime.plane" 0 0 0 0 1 \ 

[0,0,0]ft[0,0,0] \ 

"cylinder"«[0,0,0]ft[l,0,0] 1 

Generate spherical saves at Gregorian feedhorn(s): 
greg_focus=(Fl-2e*cos(beta),Fl+2e*sin(beta),0), 

cone tilted by (alpha-beta)=(17.89878d-5.56996d)=12.32882d 
cone half-angle=14.993d=0.261677r 

feed taper is -13db at 15d=0.26rad; sphere.save.origins in 26.67_Bn grid 

0.02667m,  (alpha-beta)=12.32882d 

ff 
ff 
ff 
ff 
ff 
ff gx=-10.94806m, gy= 1.06767m, delta" 

Setlame "lL/R_-26.67_+26.67" 
rayGenerator "spherical"«[-10.94237,  1.04162, 

0.02667,0,3,4  0.261677,-13.0 

Setlame "2L/R_-26.67_-26.67" 

rayGenerator "spherical"«[-10.94237, 1.04162, -0.02667]ft[+0.976938,+0.213522,0]0.261677 \ 

0.02667,0,3,4  0.261677,-13.0 2,13 "bundle" 
Setlame "3L/R_+26.67_+26.67" 

rayGenerator "spherical'^C-lO.95376, 1.09373, 

0.02667,0,3,4  0.261677,-13.0 
Setlame "4L/R_+26.67_-26.67" 

rayGenerator "spherical"«[-10.95376, 1.09373, -0.02667]ft[+0.976938, +0.213522,010.261677 \ 
0.02667,0,3,4  0.261677,-13.0 2,13 "bundle" 

Setlame "On_Axis_reference" 
rayGenerator "spherical"«[-10.94806, 1.06767, 

0.02667,0,3,4  0.261677,-13.0 

rayTrace 
rayGetPlanes C-54,0]50 "silent" 

rayPrtPlanes 

rayPltPS [10,10] 0.10 [-10.9481,1.0677,0] orthographic rayTestCase2a.ps 

Quit 

0.02667]ft[+0.976938,+0.213522,0]0.261677 \ 
2,13 "bundle" 

0.02667]ft[+0.976938,+0.213522,0]0.261677 \ 
2,13 "bundle" 

0.00000]ft[+0.976938,+0.213522,0]0.261677 \ 

2,13 "bundle" 

Table 5: Input file for Planes example 
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ff Testcaseff2: spherical saves from proposed 40-50_GHz feedhorns through GBT 
# D.Wells, IRAO-CV,  1995-07-28,08-29. 
[GNU GPL copyright notice omitted] 
ff Command=<Digits 4 0.00001> 
ff Commands<System GBT_Gregorian_at_44d> 
ff unit is meters, origin at prime focus, cone from feedhorn to right. 
ff eps=0.528, e=5.5m, a=e/eps=10.4167m, b=sqrt(a"2-e"2)=8.8463m 
» r0=b-2/a=7.5126m, c=l/rO=0.133110, d=a-e=4.91667m 
ff alpha=17.89878d=0.312393r, beta=5.56996d=0.097214r 
ff vertex=(Fl+d*cos(beta),Fl-d*sin(beta),0)ft(0>0,-beta) 
ff      the_big_mirror: fp=60.0m, r0=120.0m, c=l/r0=0.0083333 
ff Command=<rayAddSurface subreflector -0.133110 0.528 0 0-1 4.89346 -0.47721 
ff        |17 0 0 0 -0.097214 cone 0 0 0 1 0 0 1> 
ff      tilt prime focus plane to 45.7d (prime focus box orientation): 
ff Command=<rayAddSurface prime.plane 0000100000 0.798 cylinder 0 0 | 
»        |0 1 0 0 1> 
ff Command=<rayAddSurface main.mirror +0.0083333333 10 0-1 -60 0 0 0 0 0 cy| 
» Hinder -60 -54 0 1 0 0 50> 
ff Comraand=< rayAddSurface prime.plane 00001000000 cylinder 0 0 0 1   I 
ff |0 0 1> 
ff      Generate spherical saves at Gregorian feedhorn(s): 
ff      greg_focus=(Fl-2e*cos(beta),Fl+2e*sin(beta),0), 
ff cone tilted by (alpha-beta)=(17.89878d-5.56996d)=12.32882d 
ff cone half-angle=14.993d=0.261677r 
ff      feed taper is -13db at 15d=0.26rad; sphere_save_origins in 26.67_mm grid 
» gx=-10.94806m, gy= 1.06767m, delta= 0.02667m, (alpha-beta)=12.32882d 
ff Command=<SetIame lL/R_-26.67_+26.67> 
« CottBaand=<ray<ienerator spherical -10.94237 1.04162 0.02667 +0.976938 +0.213I 
ff        1522 0 0.261677 0.02667 0 3 4 0.261677 -13.0 2 13 bundle> 
ff Command=<SetIame 2L/R_-26.67_-26.67> 
ff Commands<rayGenerator spherical -10.94237 1.04162 -0.02667 +0.976938 +0.21| 
ff        13522 0 0.261677 0.02667 0 3 4 0.261677 -13.0 2 13 bundle> 
« Command=<SetIame 3L/R_+26.67_+26.67> 
ff Command=<rayGenerator spherical -10.95376 1.09373 0.02667 +0.976938 +0.213) 
ff        1522 0 0.261677 0.02667 0 3 4 0.261677 -13.0 2 13 bundle> 
ff CoM»and=<SetIame 4L/R_+26.67_-26.67> 
« Command=<rayGenerator spherical -10.95376 1.09373 -0.02667 +0.976938 +0.21| 
«        13522 0 0.261677 0.02667 0 3 4 0.261677 -13.0 2 13 bundle> 
ff Commands<SetIame On_Axis_reference> 
ff Command=<rayGenerator spherical -10.94806 1.06767 0.00000 +0.976938 +0.213I 
* 1522 0 0.261677 0.02667 0 3 4 0.261677 -13.0 2 13 bundle> 
ff Command=<rayTrace> 
ff Command=<rayGetPlanes -54 0 50 silent> 
ff Command=<rayPrtPlanes> 

-=-< spherical, r=0.26167 >-=- 
A_0000 A_2000 A_4000 A.IOIO A.lOll A_3010 A_3011 A_2020 A_2021 

i     bundle.name     n Zero.Pt Defoe Sph.Ab  Tilt <sin>  Coma <sin> Astigm <sin> 

1 lL/R_-26.67_+26.67 49 140.8334 
2 2L/R_-26.67_-26.67 49 140.8334 
3 3L/R_+26.67_+26.67 49 140.8334 
4 4L/R_+26.67.-26.67 49 140.8334 
5 On_Axis_reference 49 140.8333 

ff Command=<rayPltPS 10 10 0.10 -10.9481 1 
»        lps> 
ff Command=<Quit> 

-.1381  .1388 
-.1381 -.1388 
.1395  .1388 
.1395 -.1388 

.0677 0 orthographic rayTestCase2a.I 

Table 6: rayMain output for Planes example 
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A    Appendices 

A.l    Include file ray.h 

The function prototypes which are at the end of ray. h have been suppressed in the following listing: 

/* ray.h — Include file for the 'ray' (ray-tracing) package. 

D.Wells, HRAO-CV 

97-05-03 many name changes 

97-05-30 removed changes to rayGeneratorO */ 

[GNU GPL copyright notice omitted] 

#ifndef RAY_H 

♦define RAY.H 

#include <stddef.h> 

#include <stdlib.h> 

#include <stdio.h> 

tinclude <string.h> 

#include "mathVectorMatrix.h" 

♦define TRUE 1 

♦define FALSE 0 
♦define NANENAX 21 
♦define FORNNAX 100 
♦define ANNINAX 9 
enum VignetteType {VIGH_CYLINDER, VIGN_C0HE>; 

enum ColorType   {C0L0R_BUNDLE, C0L0R_RAY}; 

enum PlotType    {ORTHOGRAPHIC, 0RTH0GRAPHIC_X, PERSPECTIVE}; 

struct Surface { 

char name[NAMEMAX]; /* user-supplied descriptive string */ 

double c_l;       /* curvature c-l/r;  positive if center of curvature is 
to right of surface. c_l for following surface */ 

double eps;        /* numerical eccentricity of the conic section. */ 

double a_2;        /* coefficients of radially-symmetric */ 

double a_4;       /*     aspheric deformation series. */ 

double mu_l;       /* $mu_l\equiv H/H_l$, M_l is index to right 

of following surface */ 

double SE33;       /* absolute vector to vertex of this surface. */ 

double E[3];      /* tilt of next vertex, 3 Euler Angles (see 

"General Ray-Tracing Procedure", 

G.H.Spencer and M.V.R.K.Murty, J0SA 52, 

pp.672-678, (June 1962)). */ 

enum VignetteType vign_type; 

double vign_origin[33; 
double vign_vector[3]; 

double vign_radius; 

}; 

struct Ray { 
double T[3];       /* $T \equiv (x, y, z)$ is the vector from the 

vertex of the first surface to the point of 
incidence of the ray on this surface. */ 

double QC31;       /* $Q \equiv (X, Y, Z)$ is the unit vector along 
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}; 

double direction; 
double Length; 
double Intensity; 
int ColorCode; 

the ray to the right of the first surface. X,Y,Z 
are  direction cosines; ray path is $T + 1 * Q$ */ 

/* experimental, +l->+X, -1—>-X */ 
/* cumulative path length as ray traverses system */ 
/* same as power for radio */ 
/* color code to use when plotting this ray     */ 

struct Segment { 
double TICS]; 
double T2[3]; 
int ColorCode; 

}; 

/* x,y,z position of starting point of ray */ 
/* x,y,z position of ending point of ray */ 
/* color code to use when plotting this ray */ 

struct Focus { 
char name [NAMEMAX]; /* name .string for the ray bundle */ 

}; 

int n; 
double xyz[3]; 
double xyzs[3]; 
double 1c; 
double Is; 

/* number of rays in the bundle */ 
/* position of focus */ 
/* std.err of focus position */ 
/* mean pathlength to focus */ 
/* spherical wave rms wrt focus */ 

struct Plane { 
char name[NAMEMAX]; 
int n; 
int nu; 
double Amni[AMNIMAX]; 
double Asig[AMNIMAX]; 
int    mni[AMNIMAX]; 
double sig; 
double yz_radius; 

}; 

/* name.string for the ray bundle */ 
/* number of rays in the bundle */ 
/* number of Seidel terms */ 
/* Seidel terms for pathlengths */ 
/* Sigmas for Amni[AMNIMAX] */ 
/* indicies of Seidel terms */ 
/* rms of (pathlength-sunKAmniQ)) */ 
/* Zemike radius in rayGetPlanesO */ 

/* A_mni index 
/* names of Seidel aberrrations 

*/ 
*/ 

♦ifdef SEIDEL 
struct Seidel.item { 

int mni; 
char *name; 

}; 
static struct Seidel.item Seidel.listD * { 

{0000, "Zero_Pt"}, 
{2000, "Defoe"}, 
{4000, "Sph.Ab"}, 
{1010, "Tilt"}, 
{1011, " <sin>"}, 
{3010, "Coma"}, 
{3011, " <sin>"}, 
{2020, "Astigmatism"}, 
{2021, " <sin>"} 

}; 
const static int Seidel.n = sizeof(Seidel.list) / sizeof(struct Seidel.item) 
♦endif 

struct Node { 
void *item; 
struct Node *next; 

}; 

/* pointer to an "item" struct */ 
/* pointer to next item in list */ 
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A.2    List structures - initializing, inserting and deleting 

The ray package deals with lists of objects, not with fixed-dimension arrays.11 A simple list processing 
package is sufficient. This one is based on algorithms given by Sedgewick [Sed90, p.20]. 

The lists are composed of "nodes". Each Node structure consists of a pointer to another node plus a pointer 
to some data object (see definition in ray.h, Appendix A.l). A list consists of a chain of nodes, with the 
head node containing a pointer to the second node, which points to the third node, ..., an so forth until the 
tail node, whose "next" pointer points to itself. The head node always exists, and the data item associated 
with it is a descriptive character string supplied when the list is initialized by calling listlnitializeQ. 
The tail node does not point to a data object. The minimum (empty) list is a head node with its descriptive 
string and a tail node. The six function prototypes shown below are in ray.h. 

struct Node *listInitialize(char *name) /* descriptive string for list */ 

A pointer to the head of the new list is returned. 

struct Node *listInsertAfter ( /* returns ptr to new node */ 
void *newitem. /* ptr to new item struct */ 

This function will mallocQ a new instance of Node, set the item pointer of the new node to the pointer 
new it em, copy the pointer to the following node from the prior node into the new node and change the 
pointer of the prior node to point to the new node. 

struct Node *listAppend ( /* returns ptr to new node */ 
void *newitem. /* ptr to new item struct */ 

This function reads the list until it finds the node just before the tail node, then it calls listlnsertAf ter(). 
The terseness of the idioms for searching and manipulating these list structures is exemplified by this slightly 
simplified version of the function: 

struct Node *listAppend ( /* returns ptr to new node */ 
void *newitem, /* ptr to new item struct    */ 
struct Node *list) {    /* ptr to existing list        */ 

struct Node *t; 
t = list; 
while (t->next->next  != t->next) { t = t->next; > 
retumdistlnsertAfter (new it em, t)); 

} 
11 Use of list techniques in ray tracing is not merely a question of programming convenience and notational elegance — it 

is very nearly a matter of necessity, because the number of output rays produced for a given number of input rays is not 
predictable a priori. First, when rays are vignetted by one of the optical elements of a system, they need not be traced through 
the remaining elements, and they need not (probably should not) even appear in the output list of rays. (Of course, in radio 
telescopes "vignetting" is "spillover", and vignetted radio rays are interesting in their own right.) Secondly, when a ray is 
traced through a refractive surface, it becomes two rays, one reflected and one refracted. Each of these rays can then encounter 
another refractive surface (e.g., by an internal reflection) at which it too can become two rays. In general, each individual input 
ray passing through a refractive system produces an infinite cascade of output rays. In practice, many of the rays in the cascade 
will be vignetted by the optical elements and others can be discarded when their intensity falls below some specified sensitivity 
level. The cascading of refracted and reflected rays has actually been implemented and used for tracing special radomes, in 
which rays can even be reflected from the inside of one part of the radome and then refracted through an entirely different part 
(in [PPL95] these cases are called "flash lobes"). The ray package does not currently support tracing of rays reflected from 
refractive surfaces because the author only needs to trace reflective surfaces for the GBT analysis. 
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int listDeleteNext(struct Node *t) /* ptr to node in a list */ 

This function does free() on the data object to which the node points, cuts the node out of the chain of 
pointers and then does free() on the Node structure itself. 

void listDeleteList (struct Node *list) /* list of items */ 

This function walks through the list doing listDeleteNext () on each node, then does freeQ on the tail 
node, the descriptive character string and the head node. 

void listDeleteListList (struct Node *list)         /* list of lists of items */ 

The item pointer of a Node can contain a pointer to the head node of another list. This list-of-lists concept 
is very powerful, and is heavily used in the ray package. This function walks through the list of lists and 
calls listDeleteList() and listDeleteNext() to freeQ all storage associated with each node. It finishes 
the operation by deleting the tail node, descriptive string and head node of the list of lists. 

A.3    Features expected to be added in future releases of ray 

• rayTrace 

— Implement vignetting functions. Is ray intercept point inside the CONE or CYLINDER? If test 
fails, append ray to bundle-set of vignetted rays, marked by the vignetting surface. This will 
support spillover calculations in radio telescopes. 

— Implement polarization of rays, including refraction/reflection calculations at surfaces. This will 
support cross-polarization calculations in radio telescopes. 

— Change to Euler angle rotations for surfaces 

• rayGenerator 

— Implement "generalized spiral points" [SK97] for ray origins on spherical waves, and probably for 
plane waves too (use equal-area mapping from sphere to plane). This equal-area distribution will 
facilitate numerical integrations, such as for cross-polarization calculations in radio telescopes. 
The quasi-hexagonal pattern of the generalized spiral points will fit circular aperture stops better 
than does the square pattern generated by the present algorithm. 

• rayPltSystem 

— Implement plotting of vignetting-bounded surfaces, with axes. 

• rayPltPS 

— Implement "Perspective" mode; may need to add f rom_point and up_vector arguments. 
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