
GBT Gregorian Focus Tracking in C

Don Wells*

June 19, 1998

Abstract

The GBT Gregorian subreflector, an off-axis portion of an ellipsoid, plus the feedroom with the
feedhom move relative to the prime focal point of the main paraboloidal mirror. The subreflector
must be maneuvered relative to the prime focal point and the feedhom to maintain nearly stigmatic
imaging (maximum gain, minimum sidelobes). An algorithm is described which computes the required
actuator motions as a function of elevation. Raytracing analysis shows that GBT wavefronts produced
by this optical prescription exhibit no focus error, spherical abberation or coma; their only abberation
is astigmatism, with amplitude 0.4 mm for E = 0° and E = 90°.1

Contents

1 Introduction 1

2 The geometry of GBT focus tracking 2

3 Function srFocusTrackingO 4

3.1 Optimum focus tracking of gravity-induced deflections 11

3.2 Abberations caused by focus-tracking without "extra-tilt" 16

3.3 Comparison with previous work 16

4 Sources of confusion: multiple conventions 17

5 Features expected to be added in future versions 18

Bibliography 19

1 Introduction

S. Srikanth showed [Sri94] several years ago that the loss of gain at the Gregorian focus due to gravity-
induced deflections of the GBT tipping structure can be compensated quite effectively by translation of the

*nailto:dwellsfinrao. edu
1The source code described in this memo is available at ftp://fits.cv.nrao.edu/pub/gbtjiHells_src.tar.gz.

2 Page GBT Gregorian Focus Tracking in C GBT Memo 183

Figure 1: Extra Tilt and Translation of the Subreflector

subreflector: "The residual path length error after fitting a plane is 0.49 mm, giving a phase efficiciency of
84.54% at 20 Ghz." Srikanth found his compensation solution by a search procedure. In this report I show
that the optimum translation can be computed by a geometric procedure which I have coded in C, and that
the wavefront residuals are slightly improved if the subreflector is tilted by a small amount.

2 The geometry of GBT focus tracking

Before discussing the full geometry problem, we will define the terms "extra ellipsoid displacement" and
"extra ellipsoid tilt". Figure 1 shows a schematic cross-section of the subreflector and the prime and
Gregorian foci, in the plane of symmetry of the GBT, with the optical axis horizontal (as though the
GBT were at E — 0°). The cross-section of the ellipsoid is the ellipse in the figure, with the off-axis segment
occupied by the GBT subreflector in bold line. The point labelled "PFP of BFP" is the point of peak gain
of the paraboloidal primary mirror, i.e., the "best focus". The point labelled "feed at El" is the phase
center of the Gregorian feedhom. Two ray paths are shown as moderately-bold dashed lines from the PFP
to the subreflector to the feed. The point labelled "C" is the center of the ellipsoid, which has two foci,
"Fl" and "F2", on its major axis; these foci are 11 meters apart. If the elevation angle of the GBT is its
"rigging angle,"2 the "feed" and "PFP" points will also be 11 meters apart—they will be adjusted to have
this relationship during the alignment of the upper feedarm, near the end of the construction of the GBT.
At the rigging angle the ellipsoid can be maneuvered until Fl coincides with the PFP and F2 coincides with
the feed, and the design parameters of the GBT will then produce perfect imaging on axis. In this situation
the center C will coincide with the bisection point of the PFP-to-feed line.

At elevations other than the rigging angle, the PFP and feed will be separated by distances greater or less
than 11 meters, and Fl and F2 cannot be made to coincide with the PFP and feed. For these cases we must
displace the center of the subreflector away from the bisection point of the PFP-to-feed line. In Figure 1 this

2In this memo the rigging angle is taken to be 44°, the value used in the GBT project during 1990-97. Recently the decision
has been made (Lee King, private communication) to change to 50.8°, approximately the midpoint of the GBT's 5° ►-»■ 95°
elevation range.

GBT Memo 183 GBT Gregorian Focus Tracking in C Page 3

Gregorian axis at rig

axis at El

commanded
axis

Figure 2: Subreflector Focus Tracking Actuator Motions

motion is labelled as "extra ellipsoid displacement"; it is relative to the bisection point. The RMS phase
error analysis in [Wel98b] shows that we can get the best imaging performance by tilting the subreflector
slightly; this motion is labelled "extra ellipsoid tilt" in the figure, and it is relative to the line connecting the
PFP and feed. These motions will produce the closest approximation to stigmatic imaging as the feedhom
moves relative to the PFP due to the changing gravity vector.

The terms "BFP axis" and "PFP of BFP" in the figure refer to function smGetNodeWrtBfpQ [WK95a,
Section 5.3 and Appendix C], which invokes function smGetNodeDataO [WK95b] to obtain "grid"
coordinates, displacements and tilts of structural model nodes and then uses results of function
smParaboloidQ [WK95a] to transform them to the "BFP" [Best-Fitting Paraboloid] coordinate system.
The origin of this coordinate system is at the PFP [Prime Focal Point] and its Z-axis is coincident with the
axis of the main mirror; the focal point origin and the axis move wrt the tipping structure coordinate system
as the main mirror distorts homologously from paraboloid to paraboloid. Use of BFP coordinates simplifies
Gregorian optics calculations.

The situation of the GBT has an additional level of complexity: the actuator attachment points of the
subreflector are also translating and tilting due to the changing gravity vector! This situation is illustrated
in Figure 2. The line labelled "Gregorian axis at rig" is the rigging angle geometry, with small circles to
mark the position of the feedhom and the bisection point. The point labelled "feed at El" and the dotted
line connecting it to the PFP correspond to the "feed at El" dotted line in Figure 1. The ellipse, dashed-line
major axis and points labelled Fl, F2 and C correspond to the same entities in the previous figure; these
items represent the desired position of the subreflector. The new element in Figure 2 is the line labelled
"axis at El" and its three points; these items represent the position to which the subreflector moves for
elevation "El" due to the changing gravity vector after it has been adjusted to have the "Gregorian axis at
rig" position at the rigging angle. The translation vector and tilt angle in this figure illustrate the focus
tracking motions which we must calculate; these motions are the motions illustrated in Figure 1 corrected

4 Page GBT Gregorian Focus Tracking in C GBT Memo 183

for the gravitational displacement of the subreflector (see Step 13 [p. 10], Step 14 [p. 10] and Step 15 [p. 11]
below).

3 Function srFocusTrackingO

The interface to the function is:

int srFocusTracking (/* returns != 0 on error */
double elev. /* elevation Cdeg] */
double temp. /* temperature [deg_C] */
double Fl_delta[3], A first-focus offset Cm] */
double F2_deltaC3], /* second-focus offset Cm] */
enum srFT_M0DE mode. /* srFT.DEFAULT1srFT_NOEXTRA */
double sub_trans □ , /* XYZ subrefl backup Cin] */
double sub.tiltsD, /* xyz subrefl tilts Cdeg] */
struct node_data

greg_feed. / feed coords/tilts wrt BFP */
double *dS12, A PFP->feed - 11m Cm] */
double *extra_tilt. /* extra tilt subrefl Cmr] */
double SC] , A subreflector optical vertex [in] */

The strategy of this algorithm is to first calculate the position and orientation of the ellipsoid vertex (S C] and
EC], Step 12 [p.9]); this facilitates checking the first part of the calculations by ray tracing. The algorithm
then proceeds to compute the "center" position of the subreflector starting from S C], E[] and S_to-center [].
Finally, the tilts to command are computed by compensating EC] for subr.center.atjelev.tiltsC].

The results which are tabulated and plotted below present the GBT as a symmetric structure, with the
computed subreflector tilt angles all in the plane of symmetry. The actual GBT will be slightly asymmetric,
due to the elevator which is attached to the right-hand half of the feedarm. This elevator asymmetry will cause
the feedarm to move sideways by a small amount (±0.83 inch), and ultimately (when srFocusTrackingO
calls an assymetric structural model) the subreflector tilts will be three angles, not just one. The present
algorithm should be nearly sufficient to do this; in particular, the iterative algorithm used at Step 15
[p. 11] below will invert the final rotation matrix into the necessary three angles. The author is grateful
to Fred Schwab for developing the Mathematica program which computed the code of this iterative inversion
algorithm symbolically.

The function argument temp is only partially implemented in the current version of the algorithm
(see Step 1 [p.6]). Eventually the smGetNodeDataO [WK95b] and smParaboloidO [WK95a] functions
will return results which will scale with the thermal expansion of the materials. Also, eventually the
srDisplacementToLengthO function [Wel98a] will be modified to include calculation of the thermal
expansion of the actuators and the small differential expansion of the magnetostrictive actuator encoders.

The algorithm makes extensive use of 3-vectors and 3x3 rotation matricies. The statement VECTOR-ADD (TV,
V, TA, A, TB, B) computes vector V as the sum of vectors A and B; arguments TV, TA and TB specify the
"types" of the vectors. The vector operator macro package (mathVectorMatrix.h) defines two types of
vectors and matrices: (1) conventional indexed C arrays, with type codes VC and MC, and (2) sets of scalar
elements with names like myvector_D, myvector_l, .., mymatrix_02, mymatrix_12, etc., using type codes VS
and MS. Variables of the second type are declared by the VECT0R_VS() and MATRIXJISO statements below.
In this algorithm type (1) is used for function arguments and type (2) is used for internal variables. The
hope is that scalar optimization will improve speed for types VS and MS.

/* srFocusTracking.c — GBT Gregorian focus-tracking function

GBT Memo 283 GBT Gregorian Focus Tracking in C Page 5

D.Wells, NRAO-CV

1995-09-??: original development

1997-04-29: massive renaming of functions and includes

1997-05-01: test-mode argument removed to simplify function

1997-05-30: more renaming

1997-07-23: change vectors from VC to VS notations

1997-07-24: test macros MATRIXJTRAHSPOSE and GET.SR.TILTS

1997-11-21: minor changes for Vector-Matrix macro calls

1998-04-14: debug print macros renamed

1998-05-14: units indicated in comments systematically

1998-05-20: sub.transD bug fix

1998-06-11: removed delta_tilt, added additional 3-D rotation to tilts

1998-06-18: flip Y_S

*/

[GNU GPL copyright notice omitted]

#include <stdlib.h>

#define SR.DEBUG 1

#include "srInclude.h"

int srFocusTracking (

double elev,

double temp,

double Fl_delta[3],

double F2_deltaC3] ,

/* returns != 0 on error */

/* elevation Cdeg] */
/* temperature [deg_C] */
/* first-focus offset [m] */
/* second-focus offset [m] */

enum srFT.MODE mode, /* srFT.DEFAULTIsrFT_N0EXTRA */

double sub_trans[], /* XYZ subrefl backup [in] */
double sub_tiltsQ, /* xyz subrefl tilts [deg] */
struct node_data

greg_feed, / feed coords/tilts wrt BFP */

double *dS12, /* PFP->feed - 11m [m] */
double *extra_tilt, /* extra tilt subrefl [mr] */
double SCI, /* subreflector optical vertex Cin] */
double EG) /* vertex tilt angles [rad] */

const int

greg_feed_id = 40700, subr_center_id = 50005;

int

greg_feed_index,

status;

struct node_data

double

thermal_factor,

FocalLength,

SemimajorAxis,

rx,

S12,

subr_center_index,

subr_center;

/* 1+eps [dimensionless] */

/* focal length of _aluminum_ ellipsoid [m] */

/* _aluminum_ ellipsoid [m] */

/* tilt of BFP axis [rad] */

/* distance from PFP to Greg feedhom [in] */

dxyc[3], vxyz[3], fl, dxyz[3], xyz0[3], f2angle;

double /* temp vars for Schwab inversion algorithm: */

calpha, salpha, talpha, csalpha, c2alpha, s2alpha,

cthx, sthx, cthy, sthy, cthz, sthz;

VECTOR.VS(S_to_center); VECTOR.VS(center.adjust);

VECT0R_VS(feed_at_elev);

VECTOR.VS(greg_feed_tilt); VECTOR.VS(greg_feed.delta);

VECTOR.VS(pfp.at.elev); VECTOR.VS(pfp.delta);
VECTOR.VS(pfp.to.feed); VECTOR.VS(pfp.feed.unit);

6 Page GBT Gregorian Focus Tracking in C GBT Memo 183

VECTOR.VS(vertical); VECTOR.VS(sideways);
VECTOR.VS(downward); VECTOR.VS(C);
VECTOR.VS(dxyc.permuted); VECTOR.VS(dxyc.rotated);
VECTOR.VS(feed_pfp.unit); VECTOR.VS(ellipsoid.axis.unit);
MATRIX.MS(pfp.rotate); MATRIX.MS(greg.feed.rotate);
MATRIX.MS(EllipseidRotation); MATRIX.MS(EllipsoidRotlnv);
MATRIX.MS(ActuatorRotation);
MATRIX.MS(Rotator); VECTOR.VS(S.center.rotated);
VECTOR.VS(sub.diff);
VECTOR.VS(center.target); VECTOR.VS(center.at.elev);
MATRIX.MS(VertexTilt); MATRIX.MS(VertexTiltlnv);
MVM.PRIVATE.VARIABLES; /* (used only by mathVectorMatrix.h macros) */

Step 1 Get ellipsoid optical parameters

The ellipsoid subreflector backup structure is made of aluminum, unlike the paraboloid
reflector backup structure and the other trusses of the GBT. Therefore its focal length scales
differently with temperature from the seeding of the focal length of the paraboloid and the
feedarm. The subreflector is attached at its center, and therefore scales about this point. The
vector from the vertex to the center S_to_center[] given below has been computed by solving
the equations y = — (z + 2e) tana (axis of feedhom) and (z + e)2/a2 + y2/&2 = 1 (ellipse) for
the vector from Fi to the intercept point at the center of the ellipsoid and subtracting the
vector from Fi to the vertex; the result has been adjusted by « 1.5 mm to make it agree with
the grid coordinates used in Model 95b.

thermal.factor - (1. + ALUMINUM * (temp - RIGGING.TEMP));
FocalLength = GBT.GREG.FL * thermal.factor; /* [m] */
/* a=e/eps ft e=f/2: */
SemimajorAxis = ((0.5 * FocalLength) / GBT.EPS) * thermal.factor; /* [m] */

/* S.to.center, as computed: */

VECT0R_INIT(VS, S.to.center, 0.000, -182.699, -60.957); /* [in] */
/* Model 95b adjustment: */
VECT0R_INIT(VS, center.adjust, 0.000, +0.031, -0.056); /* [in] */
VECT0R_ADD(VS, S.to.center, VS, S.to.center, VS, center.adjust);
VECT0R_SCALE(VS, S.to.center, thermal.factor, VS, S.to.center); /* [in] */

Step 2 Get the positions of Gregorian feed and subreflector center

We get the displaced nodes expressed in "BFP" coordinates. The BFP coordinate system
has the axis of the homologously-deforming paraboloid as its Z axis and the prime focal point
as its origin. This coordinate system, which is rotated relative to the coordinate system
of the tipping structure model, is convenient for optical calculations. The function calls
return the "grid" (undeflected) positions expressed in the BFP coordinate system and the
gravitational deflections (both translation and tilt), also expressed in the BFP system. The
deflected positions of the nodes are the sums of the grid positions and translation components
of gravity deflection. Note that, because the origin of the BFP system is at the prime focal
point [PFP], the resulting node positions are the vectors from the prime focal point [PFP] to
the feedhom and center if the focal point offsets are zero.

if ((status = smGetNodeWrtBfp((greg.feed.index = smGetIndex(greg.feed.id)),
elev, greg.feed)) != 0) return(status);

VECT0R_ADD(VS, feed.at.elev,
VC, (double)greg.feed->grid,
VC, (double)greg.feed->at.elev.delta); /* [in] */

if ((status= smGetNodeWrtBfp((subr_center_index=smGetIndex(subr.center.id)),

GBT Memo 183 GBT Gregorian Focus Tracking in C Page 7

elev, ftsubr.center)) != 0) return(status);
VECT0R_ADD(VS, center.at.elev,

VC, (double)subr.center.grid,
VC, (double)subr.center.at.elev.delta); /* [in] */

Step 3 Get the BFP axis-tilt

The BFP axis-tilt rx [WK95a] is needed in order to rotate the focal point offset vector
F2^deltaQ.

smParaboloid(elev, vxyz, ftrx, ftfl, dxyz, xyzO); /* [d,in,rad,in,in,in] */

Step 4 Add Fl_delta[] offset to PFP position

The vector Fl_delta[], which is in prime focal plane coordinates [m], is rotated «450 to BFP
coordinates and is added to the PFP position vector (which is identically zero because it is
the origin of the BFP coordinate system).

ANGLES_2_MATRIX(MS, pfp.rotate,
X, -GBT_PF_AXIS_TLT*DTR,
NOP,NOP, NOP,NOP, NOP,NOP, NOP, NOP)

MATRIX_VECTOR_MULT(VS, pf p.delta, MS, pf p.rotate, VC, Fl.delta); /* [in] */
VECTOR_SCALE(VS, pf p.delta, M2I, VS, pf p.delta) ; /* [m] */
VECT0R_FILL(VS, pfp.at.elev, 0.); /* at origin */
VECT0R_ADD(VS, pfp.at.elev, VS, pfp.at.elev, VS, pfp.delta); /* [in] */

Step 5 Add F2jdelta[] offset to feedhorn position

The vector F2jdelta[], which is in Gregorian feedhom coordinates [m], is rotated to BFP
coordinates and is then added to the feedhom position vector [in]. The two angle symbols
used here are defined in the file gbtOpticalConstants.h which is included by sr Include, h.

f 2angle = ((-GBT.ALPHA.ANGLE + GBT.BETA.ANGLE) * DTR + rx) ;
ANGLES_2_MATRIX(MS, greg.feed_rotate,

X, f2angle,
NOP,NOP, NOP,NOP, NOP,NOP, NOP, NOP)

MATRIX_VECTOR_MULT(VS, greg.feed.delta, MS, greg.feed.rotate, VC, F2_delta);
VECTOR_SCALE(VS, greg.feed_delta, M2I, VS, greg.feed_delta); /* [in] */
VECT0R_ADD(VS, feed.at.elev,

VS, feed.at.elev, VS, greg_feed.delta); /* [in] */

Step 6 Get S12 and dS12

S12 is the distance [in] from the PFP (origin) plus the first offset to the Gregorian feed plus
the second offset. AS12) is the change of separation between the PFP and the Greg feed wrt
E=RIGGING-ANGLE.

VECT0R_SUB(VS, pfp.to.feed, VS, feed.at.elev, VS, pfp.at.elev); /* [in] */
S12 = VECTOR_LENGTH(VS, pfp.to.feed); /* [in] */
*dS12 = (S12 * I2M) - FocalLength; /* [m] */

Step j] Get orientation of the GregFeedt->-PFP line

8 Page GBT Gregorian Focus Tracking in C GBT Memo 183

This is a unit vector pointing from the feedhom to the PFP. We also obtain the reciprocal
unit vector.

VECTOR_SCALE(VS, pfp.feed.unit, (1./S12), VS, pfp.to.feed);
VECTOR_SCALE(VS, feed.pfp.unit, -1., VS, pfp.feed.unit);

Step 8 Compute the optimum tilt of the ellipsoid

Tilting the ellipsoid by the optimtun tilt will minimize the spherical abberation and coma
(see [Wel98b, Section 6]). The srFT_NOEXTRA option is provided to test this minimization
empirically.

switch (mode) {
case (srFT.DEFAULT):

♦extra.tilt = srEllipsoidBestRms(*dS12 * E3); break; /* [mr] */
case (srFT.NOEXTRA):

*extra_tilt = 0.0; break;
default:

return(EXIT.FAILURE);
}

Step 9 Get the center-point-ofFset dxyc[]

We need this quantity [in] to produce stigmatic imaging from the PFP to the Feed:

srEllipsoid((*dS12 * E3) , *extra_tilt, dxyc) ; /* [mm, mr, mm] */
VECTOR_SCALE(VC, dxyc, (M2I / E3), VC, dxyc); /* [in] */

Step 10 Get new axes of ellipsoid system

We can compute orthogonal unit vectors for the axes of the desired ellipsoid orientation by
taking cross-products of various vectors. We generate a vertical vector and compute the cross-
product of it with the pf p_to_f eed vector to get a "sideways" vector. The cross-product of
sideways with the pfp_to_f eed vector produces a vector orthogonal to both, which we call
"downward" (actually, it points sideways when the GBT points to the zenith!) These vectors
will be used below to define the rotation matrix for orienting the subreflector. The choice of
downward used at this step implies that the current algorithm cannot "roll" the subreflector
whenever the Ya rotation is non-zero; such a roll might potentially be used to minimize spillover
changes without affecting the stigmatism of the imaging.

VECTOR.INIT(VS, vertical, 0., 0., 1.);
VECT0R_CR0SS(VS, sideways, VS, feed.pfp.unit, VS, vertical);
VECT0R_UNIT(VS, sideways, VS, sideways);
VECTOR.CROSS(VS, downward, VS, feed.pfp.unit, VS, sideways);
VECT0R_UNIT(VS, downward, VS, downward);

Step 11 Compute the optimum center point

We want the vector sum of the bisector point of the Feedt-^PFP line plus the optimum offset
for the ellipsoid center (see Figure 3). The point C is the bisector of the line. Vector dxycG
is multiplied by the three unit vectors computed above, and the result is subtracted from C.

GBT Memo 183 GBT Gregorian Focus Tracking in C Page 9

feed at rig

feed at El

bisector at rig

^-- c
extra ellipsoid displacement

BFP axis

PFP of BFP

Figure 3: Center-Offset of the Subreflector [Step 11]

VECTOR_SCALE(VS, C, 0.5, VS, pfp.to.feed) ; /* [in] */
VECT0R_ADD(VS, C, VS, C, VS, pfp.at.elev); /* [in] */
/* X—>+Z, Y—>-Y, Z—>+X: */
VECTOR_PERMUTE(VS, dxyc.permuted, 2, 1, 0, 1., -1., 1., VC, dxyc);

VECT0R_INIT(VS, dxyc.rotated, 0., 0., 0.);

VECT0R_EXTEND(VS, dxyc.rotated, VS, sideways,

VECT0R_EXTEND(VS, dxyc.rotated, VS, downward,

VECT0R_EXTEND(VS, dxyc.rotated, VS,feed.pfp.unit, VS(dxyc.permuted,2))

VECT0R_SUB(VS, C, VS, C, VS, dxyc.rotated); /* [in] */

VS(dxyc.permuted,0))

VS(dxyc.permuted,1))

Step 12 Compute the optical parameters

The vertex position S[] and axis tilts ED are needed for the ray trace analysis. In this
calculation we rotate the ellipsoid axis by the extra_tilt, which corrects spherical abberation
and coma, and then calculate the vertex of the ellipsoid using the distance from the center
point C (which we calculated above) to the vertex to extend the axis vector. We then convert
the three unit vectors to angles for the raytracing. The cross-product of ell ipso id-ax is junit
with vertical implies that the current algorithm does not support any extra "yaw" motions
(rotation about Y3). A future release of this code will probably include an additional function
argument delta-yaw which will be applied at this point to support moving the beam in cross-
elevation for vibration compensation.

VECT0R_C0PY(VC, S, VS, C); /* [in] */
ANGLES_2_MATRIX(MS, Rotator,

X, (*extra_tilt / E3), NOP,NOP, NOP,NOP, NOP,NOP, NOP,NOP);
MATRIX_VECTOR_MULT(VS, ellipsoid.axis.unit, MS, Rotator, VS, feed.pfp.unit);
VECT0R_EXTEND(VC, S,

VS, ellipsoid.axis.unit, SemimajorAxis*M2I); /* [in] */
/* OK, we have SG (ellipsoid vertex point), now to get E[] (tilts). */
/* We must recompute unit vectors with extra.tilt included (the

previous set of unit vectors were used for application of dxycD). */
VECTOR.CROSS(VS, sideways, VS, ellipsoid.axis.unit, VS, vertical);

10 Page GBT Gregorian Focus TVacAing in C GBT Memo 183

VECTOR_UNIT(VS, sideways, VS, sideways);

VECTOR.CROSS(VS, downward, VS, ellipsoid.axis.unit, VS, sideways);

VECTOR_UNIT(VS, downward, VS, downward);

MATRIX_INIT(MS, EllipsoidRotation, /* compose matrix from unit vectors */

VS(sideways,0), VS(downward,0), VS(ellipsoid_axis_unit,0),

VS(sideways,1), VS(downward,1), VS(ellipsoid.axis.unit,1),

VS(sideways,2), VS(downward,2), VS(ellipseid.axis.unit,2));

MATRIX_2_SMALL(VC, E, MS, EllipsoidRotation); /* [r] */

Step 13 Get subreflector "center" translation

Using the optical parameters as input, compute required displacement of subreflector in
subreflector coordinates, by computing difference wrt deflected center of home position of
subreflector. Note that the last statement of this step introduces a reflection in the Ys axis;
the direction sense of this axis as given in [KM93] is contradicted by the conceptual drawing
in Figure 1 of [Wel98a], and it appears that the latter definition corresponds to the derivation
of [Nan91], which is the basis for the implementation of function srDisplacementToLengthO
[WeI98a].

MATRIX_TRANSPOSE(MS, EllipsoidRotlnv, MS, EllipsoidRotation);
MATRIX_VECTOR_MULT(VS, S.center.rotated,

MS, EllipsoidRotlnv, VS, S.to.center); /* [in] */
VECT0R_ADD(VS, center.target, VC, S, VS, S.center.rotated); /* [in] */
VECT0R_SUB(VS, sub.diff, VS, center.target, VS, center.at.elev); /* [in] */
ANGLES_2_MATRIX(MS, Rotator, X, (+GBT_SR_AXIS_TLT * DTR),

NOP,NOP, NOP,NOP, NOP,NOP, NOP,NOP);
MATRIX_VECTOR_MULT(VC, sub.trans, MS, Rotator, VS, sub.diff); /* [in] */
/* Change (+X_bfp,+Y_bfp,+Z_bfp) to (+X_s,-Y_s,+Z_s): */
VECTOR_PERMUTE(VC, sub.trans, 1, 2, 0, +1., -1., +1., VC, sub.trans);

Step 14 Get rotation matrix of the required subreflector tilts

We must compute differential tilts. First we take out the 5.57° tilt of the ellipsoid axis3

which compensates the cross-polarization of the off-axis system. Then we multiply the
rotation matrix of the target ellipsoid differential orientation by the transpose (inverse4) of
the gravitational deflection rotation matrix to get matrix Rotator. We then permute Rotator
from the axis order of tipping coordinates to the axis order for subreflector coordinates.
The last operation of the step is to "rotate" the axes of Rotator by the 36.7° tilt of the
subreflector focussing axis. This is done by starting with an identity matrix in the subreflector
coordinates, rotating to tipping coordinates, multiplying by Rotator and finally rotating back
to subreflector coordinates to get ActuatorRotation.5

AB0UT_X(MS, EllipsoidRotation, (+GBT_BETA_ANGLE * DTR));
ANGLES_2_MATRIX(MS, VertexTilt,

X, (double)subr.center.at.elev.t ilt[0],
Y, (double)subr.center.at.elev.tilt[1],
Z, (double)subr.center.at.elev.tilt[2],
NOP,NOP, NOP,NOP);

3GBTJBETAJIIGLE, defined in gbtOpticalConstants.h.
4 The tilts are small (a few milliradians), so the small angle approximation applies: the inverse could be approximated by

the simple negation of the angles. Indeed, the structural model computes the tilts on the assumption that the small angle
approximation is valid. At this step of the algorithm, numerical errors will cause displacements of the second focal point. The
lever arm is roughly ten meters, and the author's dimensioned tolerance for this work is 0.1 mm, so 10—5 radian is significant,
a value slightly larger than the likely error committed. The author chooses to do explicit inversion at this step as a reminder
that it is mathematically correct.

5The author is grateful to Fred Schwab for his advice on this step.

GBT Memo 183 GBT Gregorian Focus Tracking in C Page 11

MATRIX_TRANSPOSE(MS, VertexTiltlnv, MS, VertexTilt);
MATRIX_MULT(MS, Rotator, MS, EllipsoidRotation, MS, VertexTiltlnv);
MATRIX_PERMUTE(MS, Rotator, 1, 2, 0, MS, Rotator);
/* 'Rotator' is now permuted to subreflector axis order */
MATRIX_INIT(MS, ActuatorRotation, 1.,0.,0.,0.,1.,0.,0.,0.,1.);
AB0UT_Z(MS, ActuatorRotation, (-GBT_SR_AXIS_TLT*DTR));
/* 'ActuatorRotation' now in tipping system, same as 'Rotator': */
MATRIX_MULT(MS, ActuatorRotation, MS, ActuatorRotation, MS, Rotator);
ABOUT.Z(MS, ActuatorRotat ion, (+GBT_SR_AXIS_TLT*DTR));
/* 'ActuatorRotation' is now back in subreflector coordinates. */

Step 15 Get subreflector tilt angles from computed rotation matrix

The matrix computed in the previous step now needs to be inverted to get the tilt angles to
command. As discussed previously by Wells [Wel98a, Section 1.1], the three angles which are
passed to function srDisplacementToLengthO to tilt the subreflector are defined to rotate
about a skewed set of axes; the equivalent rotation matrix is computed as the product of five
rotations, not three. An analytic inversion is not possible. The iterative inversion algorithm
used here was derived in 1997 by F.Schwab using a Mathematica program. It is interesting that
the algorithm only uses three out of the nine cells of the rotation matrix. This implementation
consists of a macro which is defined and then invoked three times. Numerical experiments
show that three iterations will converge to less than l^r (0.2 arcsec).

VECT0R_INIT(VC, sub.tilts, 0., 0., 0.);
calpha = cos(GBT_SR_AXIS_TLT*DTR);
salpha = sin(GBT_SR_AXIS_TLT*DTR);
talpha = salpha / calpha;
csalpha = calpha * salpha;
c2alpha = calpha * calpha;
s2alpha = salpha * salpha;

♦define ITERATE_SR_TILTS(TT,T,TA,A) \
cthx = cos(TT(T,0)); sthx = sin(TT(T,0)); \
cthy = cos(TT(T,l)); sthy = sin(TT(T,l)); \
cthz = cos(TT(T,2)); sthz = sin(TT(T,2)); \
TT(T,0) -= (TA(A,1,2) + calpha*cthy*sthx \

- sthy*(csalpha*cthx - csalpha)) / calpha; \
TT(T,1) -= ((talpha*(TA(A,l,2) + calpha*cthy*sthx \

-sthy*(csalpha*cthx - csalpha))) \
-(TA(A,0,2) + cthy*salpha*sthx \

-sthy*(c2alpha + cthx*s2alpha))); \
TT(T,2) -= (TA(A,0,1) -cthz*(csalpha*cthx - csalpha) \

+sthz*(cthy*(c2alpha + cthx*s2alpha) + salpha*sthx*sthy));

ITERATE_SR_TILTS(VC, sub.tilts, MS, ActuatorRotation);
ITERATE_SR_TILTS(VC, sub.tilts, MS, ActuatorRotation);
ITERATE_SR_TILTS(VC, sub.tilts, MS, ActuatorRotation); /* [r] */
VECT0R_SCALE(VC, sub.tilts, (1. / DTR), VC, sub.tilts); /* [deg] */

return(EXIT.SUCCESS);
}

3.1 Optimum focus tracking of gravity-induced deflections

Table 1 gives the optical prescription computed by srFocusTrackingO as a function of elevation, expressed
in a coordinate convention consistent with the ray package [Wel98c], in which the X-axis is coincident with

12 Page GBT Gregorian Focus Tracking in C GBT Memo 183

ASy
(mm)

30

1 1 1 I I I

$ 0O

20 - I
10 -

1
0 /

-10 f -

-20 i -

-30

1
-

-40 i -

-50

1
-

-60 J -

-70

/

-

-80 / -

-40 -30 -20 ■10 0 10

ASX (mm)

20 30 40

Figure 4: Focus tracking 'center' trajectory in ray-tracing coordinates (Table 1) [1:1 scale]

GBT Memo 183 GBT Gregorian Focus Tracking in C Page 13

E
PF *-* Fi line Feedhorn Subreflector Main

ALx2 A0 AWX AWy AS* ASy A^ AF
deg mm mr mm mm mm mm mr mm

0 -30.3 -2.5 29.3 -12.0 2.6 23.6 3.4 4.6
10 -24.7 -2.1 22.6 -22.7 2.7 24.9 3.9 2.3
20 -18.2 -1.5 15.8 -25.5 2.4 22.2 3.7 0.7
30 -11.0 -0.9 9.1 -20.3 1.6 15.6 2.7 -0.2
44 -0.0 -0.0 -0.0 0.0 -0.0 -0.0 -0.0 -0.0
50 4.9 0.4 -3.6 13.1 -0.9 -8.7 -1.6 0.6
60 13.0 1.1 -9.1 40.2 -2.8 -25.5 -4.6 2.2
70 21.1 1.7 -13.8 73.3 -5.0 -44.8 -8.2 4.5
80 28.8 2.3 -17.5 111.2 -7.4 -66.1 -12.2 7.5
90 36.0 2.9 -20.2 153.0 -10.2 -88.7 -16.5 11.0

Rigging-Angle Values

Table 1: Focus tracking optical prescription which corrects gravity-induced deflections

the best-fitting optical axis of the paraboloid and the origin is coincident with the best-fitting focal point
of the paraboloid. This convention is a permutation of the axes of the BFP coordinates: X (e.g. ASX) is
equivalent to ZBFP, Y (e.g. ASy) to YBFP and Z to XBFP-

• AL12 is the change of the distance between the prime focal point and the feedhorn phase center from
11 meters, the focal length of the ellipsoid. This means that the ellipsoid must operate away from its
focal points whenever E ^ RIGGING-ANGLE (currently 44°), and can produce only an approximation
to stigmatic imaging. A0 is the extra_tilt which is calculated by srEllipsoidBestRmsQ at Step 8
[p.8].

• AWx and AWy} under the "Feedhorn" heading, are the gravitational displacement6 of the Gregorian
feedhorn from its position (-10.9481 m, +1.0677 m) wrt the BFP focal point and axis at the rigging
angle. These values are computed by function get_node_wrt_bfp().

• AS*, ASy and A^ are the recipe for the subreflector. The AS values are the translation of the vertex
of the ellipsoid7 from its position at the rigging angle (+4.8935 m, -0.4772 m). A<£ is the tilt of the
ellipsoid axis relative to the -0.097214 radian (5.57°) value it has at the rigging angle.

• AF is the change of paraboloid focal length as a function of elevation, relative to the 60-meter design
value.

The focus tracking prescription given in Table 1 has been ray traced. The pathlength differences of rays
across the 100-meter aperture have been fitted with Zernike polynomials, which are the third-order (Seidel)
abberations of the system. The Seidel abberation coefficients of the GBT wavefront with this prescription
for focus tracking are shown in Table 2. The algorithm presented here produces nearly zero amplitude (i.e.,
complete correction) of the curvature (focus), spherical abberation and coma terms of the system. There are
tilt and coma wavefront residuals at some elevations, but they are quite small (« 1 fir [0.2 arcsec], « 0.1 mm);
currently the author suspects that these are due to minor numerical errors in the srEllipsoidBestRmsQ

6 The symbol W is used for this displacement because the feedhom position is the "wave_point" argument of the
rayGeneratorO reference in the analysis program srFocusTrackingTablel .c, in which a spherical wave originates from the
phase center of the feedhorn.

7The central point of the GBT's off-axis segment of the ellipsoid has been called the "vertex" in some GBT discussions;
it is different from the mathematical vertex of the ellipsoid which we are discussing here. The central point is also called the
"center" in other discussions (e.g., comments and variable names at Step 13 [p.10]), but it is different from the mathematica]
center of the ellipsoid which is discussed in Section 2 of this memo.

14 Page GBT Gregorian Focus Tracking in C GBT Memo 183

E AP
Wavefront Errors

<T Curv SphAb Tilt Coma Astm

d mm mm mm Hr mm mm fim

0 -19.6 -0.0 0.0 -2 -0.0 -0.4 12
10 -19.0 -0.0 0.0 -1 -0.0 -0.3 9
20 -16.0 -0.0 0.0 -1 -0.0 -0.2 7
30 -10.8 -0.0 0.0 -0 -0.0 -0.1 4
44 -0.0 -0.0 0.0 -0 -0.0 -0.0 0
50 5.7 0.0 -0.0 0 0.0 0.1 2
60 16.6 0.0 -0.0 0 0.0 0.2 5
70 28.8 0.0 -0.0 -0 0.0 0.3 7
80 42.1 0.0 -0.0 -1 0.0 0.3 10

Table 2: Wavefront abberations produced by the focus-tracking prescription

solution [Wel98b, Section 6]. The significant residual optical error produced by the algorithm is astigmatism
(A2020P2 cos 20), with maximum wavefront amplitude A2020 « 0.4 mm.

AP is the change of mean pathlength through the telescope; this is relevant for VLBI phase corrections.
Examination of Tables 1 and 2 shows that

AP « AL12 + 2AP.

I.e., the change of pathlength through the telescope is approximately the sum of the change of separation of
between the prime focal point and Gregorian feedhorn plus twice the change of focal length of the primary
mirror. The <r column in the table is the RMS error of the fit of the Zernike polynomials to the wavefront.
The author presumes that this 12fim error is the sum of the 5th-order abberation terms which are not
included in the nearly-plane wavefront fitting procedure (rayGetPlanes () [Wel98c]). It is clear that the
GBT optics are modelled well by a S^-order analysis.

The author considers the existence of an algorithm which produces such small wavefront errors in the presence
of « 65 mm of defocus to be remarkable; the fact that this algorithm produces cancellation of both spherical
abberation and coma is a strong hint that the extra ellipsoid tilt and translation used in the algorithm must
be derivable from 3rd-order optics theory. The author expects that the derivation will involve translating
the coordinate origin from the axis of the parent ellipsoid to the "vertex" (center) of the off-axis segment of
the ellipsoid and rotating the axes by some angle, and then discovering that this substitution of variables
cancels the terms.

The author intends to correct the A2020P2 cos 26 astigmatism wavefront error of the ellipsoid by including
it in the GBT's open-loop surface servo. This should essentially eliminate variation of gain with elevation,
except for spillover changing as the structure distorts due to gravity.

Table 3 shows the subreflector actuator trajectory which will implement the optical prescription which was
shown in Table 1. The trajectory is presented in two equivalent forms, (1) six displacements and (2) six
actuator lengths. The (AXs,AYs) trajectory from this table is shown in Figure 5.

The direction sense of the subreflector translation coordinates is a potential source of confusion. In the
current implementation the author has flipped the Ys axis (see comment at Step 13 [p. 10]) in order to make
the commanded lengths of the actuators correspond to his intuitive sense of how the GBT feedarm deflects
as a function of elevation. At E = 0° (horizon), the vertical feedarm is horizontal and sags downward due
to gravity. This will mean that the XI and X2 actuators must shorten. The force on the vertical feedarm
will also bend the horizontal feedarm (which is vertical), and it will move in the +Zt direction, which means
that Yl, Y2, Y2 must lengthen. At E = 90° (zenith), the situation is reversed: the vertical feedarm springs
back, so XI and X2 must extend, while the horizontal feedarm sags under the weight of the vertical feedarm,

GBT Memo 183 GBT Gregorian Focus Tracking in C Page 15

E

Displacements Actuator Lengths
Translations Tilts Yl

ALo
Y2

AIi
Y3

AL2
XI

AL3

X2
AL4

Zl
ALg AXs AYs AZS A0xn A0YS A9zs

d in in in d d d in in in in in in

0 -3.772 -0.081 0.000 0.00 0.00 0.34 -0.14 0.35 0.35 -3.81 -3.81 0.25
10 -3.672 -0.358 0.000 0.00 0.00 0.34 0.13 0.63 0.63 -3.64 -3.64 0.34
20 -3.111 -0.464 0.000 0.00 0.00 0.30 0.25 0.68 0.68 -3.05 -3.05 0.33
30 -2.101 -0.392 0.000 0.00 0.00 0.20 0.23 0.53 0.53 -2.04 -2.04 0.23
44 0.001 -0.000 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 1.118 0.268 0.000 0.00 0.00 -0.11 -0.16 -0.32 -0.32 1.08 1.08 -0.11
60 3.224 0.836 0.000 0.00 0.00 -0.32 -0.49 -0.96 -0.96 3.10 3.10 -0.26
70 5.578 1.543 0.000 0.00 0.00 -0.57 -0.88 -1.69 -1.69 5.36 5.36 -0.35
80 8.111 2.371 0.000 0.00 0.00 -0.83 -1.29 -2.47 -2.47 7.80 7.80 -0.33
90 10.758 3.298 0.000 0.00 0.00 -1.11 -1.70 -3.26 -3.26 10.36 10.36 -0.18

Rigging-Angle Values

Table 3: Subreflector trajectory for gravity-correcting focus tracking

Figure 5: Gregorian focus tracking actuator trajectory (Table 3) [1:4 scale]

16 Page GBT Gregorian Focus Tracking in C GBT Memo 183

AZF3 AP
Wavefront Errors

<7 Curv SphAb Tilt Coma Astm

mm mm mm mm tir mm mm fim

0 -9.9 -0.1 0.0 2 -0.2 0.3 12
10 -11.1 -0.1 0.0 2 -0.1 0.3 10
20 -10.2 -0.0 0.0 1 -0.1 0.2 7
30 -7.3 -0.0 0.0 1 -0.1 0.1 4
44 -0.0 -0.0 0.0 0 -0.0 0.0 0
50 4.2 0.0 -0.0 -0 0.0 -0.1 2
60 12.6 0.0 -0.0 -1 0.1 -0.1 5
70 22.3 0.0 -0.0 -1 0.1 -0.2 9
80 33.2 0.1 -0.0 -2 0.2 -0.3 12

Table 4: Wavefront abberations with no extra-tilt

so Yl, Y2, Y3 must shorten. The reader can verify by inspection that these properties hold in Table 3. The
signs of AOzs in Table 3, judging by the differential motions of Yl, Y2 and Y3, also appear to be plausible.

3.2 Abberations caused by focus-tracking without "extra-tilt"

Table 4 shows the Seidel abberation coefficients which this algorithm produces if its "extra-tilt" term is
disabled. The interesting consequence is 200 microns of coma.

3.3 Comparison with previous work

There have been two prior analyses of Gregorian focus tracking:

• Enterline [Zai92, p.A2] presented a table of his "Subreflector gravity load travel range calculation." His
objectives were (1) to decide the travel range which should be supported by the subreflector actuators
and (2) to give preliminary numbers for the final alignment plan. It is not clear how his structural
model differed from the model 95B which is used in the present work. His table does not seem to have
a concept of "rigging angle". The direction sense of his Xs is flipped relative to the author's intuition.
His total travel range is significantly different from that shown here in Table 3. The most significant
problem for the author in comparing Enterline's table with the present work is that Enterline presents
his results with no explanation of his optical analysis.

• Srikanth [Sri94] showed that focus tracking can be accomplished rather well by translation alone. His
coordinate conventions are sufficiently different from those used in this work that exact numerical
comparison is difficult. In particular, his version of BFP coordinates is referred to the position of
the Gregorian feed at the rigging angle, rather than to the prime focal point as used in this work.
In addition, his BFP coordinate system is rotated so that Z is collinear with a line connecting the
vertex of the primary mirror with the secondary focal point. This is an alternative definition of a
BFP coordinate system, but it is sufficiently different that the author has hesitated to attempt exact
comparison of solutions. It appears that Srikanth's search procedure did not assure that the first focus
of the ellipsoid was nearly coincident with the PFP. Not only does this produce a tilt, it means that
abberations of the primary contribute to the optical system's properties. Srikanth's demonstration
that good solutions of this kind are possible implies that the interesting solution space is larger than
that covered by the present srFocusTrackingO algorithm.

GBT Memo 183 GBT Gregorian Focus Tracking in C Page 17

4 Sources of confusion: multiple conventions

The focus tracking function depends on and interacts with many other functions. Its computations involve
physical quantities which are expressed in several coordinate systems and units, with multiple angle and
axis-permutation conventions. These differences produce a situation in which errors (software bugs) due to
confusion of conventions, coordinates and units are likely to occur. Anyone who is going to maintain this
code, or even to attempt to understand it, must be constantly aware of these differences, which sometimes
occur in the same C statement! It is pointless to criticize or even to complain about this situation: the
problem is inherent in the fact that we are integrating a variety of subsystems and components which were
developed independently over a period of time by different people, and in the fact that we are doing this
project in the USA which has not yet fully adopted SI units conventions. Sorry about that...

• Dimensional Units

Both metric units and inches are used in the GBT project: the structural model is expressed in inches,
but the focal lengths of the optical elements are specified in meters. Conversions between these units
are pervasive in the code shown above; multiplying a number by the symbolic constant M2I (meters-
to-inches) converts it from meters to inches (e.g., Step 9 [p.8], Step 5 [p.7].)

• Temperature Units

The Centigrade versus Fahrenheit distinction is a trap set for anybody who tries calculating thermal
expansion. For example, at Step 1 [p.6] the symbol RIGGINGJTEMP is in Centigrade and has value
21.10C (not 20° as you might expect), because the GBT official project specifications give the rigging
temperature as 70° F. Expansion coefficients are given in some handbooks per degree Centigrade and in
other sources per degree Fahrenheit—caveat emptor! The author may decide to define macros C2F()
and F2C() in the future to minimize the confusion.

• Angle Units

The classic programming problem of conversion between degrees and radians pervades this code;
multiplication by the symbol DTR (degrees-to-radians) does this (e.g., see Step 5 [p.7] and
Step 15 [p.ll]). Note the radians-to-degrees conversion at the end of Step 15 [p. 11]—function
srDisplacementToLengthO wants degrees for this vector. Some small angles are computed in
milliradians for convenience; this necessitates conversion to radians by dividing by E3 (1000) in other
places (e.g., see Step 12 [p.9]).

• Coordinate Systems

The basic structural model [WK95b] is expressed in the "tipping" coordinate system [KM93], which
has Z pointing upward, Y pointing from the feedarm to the outer edge of the primary mirror and X
pointing from the GBT plane of symmetry toward the right when viewed along the Y axis. The origin
is at the pintle bearing. The "BFP" coordinate system (defined in [WK95a], not [KM93]) is similar to
the tipping system except that the origin is moved to the prime focal point and the Y and Z axes are
rotated about the X axis by a few milliradians due to the rotation of the paraboloid which best-fits
the homologously-deforming primary mirror as a function of elevation. The real confusion occurs when
we consider subreflector coordinates [KM93, Wel98a], in which the origin is at the "vertex" (center)
position of the subreflector at the rigging angle and the axes are permuted (Xt>-*Zs, Yt^X,, Zt>->Ya)
and axes Xs and Y, are rotated about Zs by GBT_SRJIXIS_TLT (36.7° [Sri90]).8 The axis convention
used by the ray package [Wel98c] is different from the tipping and BFP conventions—ray traces the
system with the optical axis parallel to the X coordinate, while the GBT optical axis is parallel to the
Zt and ZQPP axes.

8The X rotation axis of the subreflector is called An, rather than Xs, because it is perpendicular to Zt (the axis of the
paraboloid) and rotation about it accomplishes the beam "nutation" motion of the subreflector. The (Xn, Ys,Zs) rotation axes
are skewed.

18 Page GBT Gregorian Focus Tracking in C GBT Memo 183

• Rotation Angles

Confusion about the signs of rotations is inevitable in calculations of this type; the most basic case is
the question of whether we are rotating an object or rotating the axes to which the object coordinates
are referred. For rotations by sets of angles, we have two possibilities: Euler angles and small-angle
rotations. Both types are used in various places in the GBT project. For the small-angle case, if
the angles are truly small, the order of the rotations is immaterial; for example, the tilts computed
by the GBT structural model are typically of order one milliradian, so cross-product errors will be
about one microradian (0.2 arcsec), which we can take to be negligible. However, the angles of the
tilts □ argument of function srDisplacementToLengthO are not negligible—they maybe more than
one degree, so the order in which they are applied does matter. The axis permutations which were
discussed in the Coordinate Systems section above apply to rotation angles also, of course. All
of these issues arise in the conversion of rotation matricies back into rotation angles, which occurs
in several places in the code. The nasty case of subreflector coordinates is especially interesting, as
computation of the rotation matrix takes five rotations, not three [Wel98a] and its inversion must be
interative. This problem arises at Step 15 [p.ll].

5 Features expected to be added in future versions

• The rigging angle will be changed to 50.8°

• Assymetric structural models will become available

• Temperature compensation will be fully implemented

• Function output E [] will be changed to use an Euler angle convention when the ray package [Wel98c]
makes this change.

• An optimization strategy option argument will probably be added to the function. The default mode
(the current implementation) will be gain optimization. The most likely alternative strategy will be
cross-polarization minimization as a function of elevation; for Zeeman observations it might be better
to trade a coma lobe for cross-pol control.

• The author believes that the readability of the vector-matrix operations in this algorithm would be
improved by translation to C++; however, he expects that the performance would suffer, especially
if the compiler has good scalar dataflow analysis in its optimization repertoire. Currently the author
does not think that the tradeoffs favor making the language change, but this opinion is subject to
change.

GBT Memo 183

References

GBT Gregorian Focus Tracking in C Page 19

[KM93] Lee King and Greg Morris. Foci arrangement and coordinate systems for the GBT. GBT Drawing
C35102M081, NRAO, December 1993. The first sheet of this set of five drawings schematically
defines six different coordinate systems to be used in the GBT project. Sheets 2-5 define the
algebraic relationships between these coordinate systems.

[Nan91] P. B. Nanavati. Equations of motion - subreflector positioner. Loral GBT Technical
Memo 19, Loral Western Development Labs, September 1991. The "inverse kinematic" algorithm
for calculating actuator lengths from displacements is derived by both matrix/vector and
trigonometric approaches. Appendix A includes a copy of NRAO drawing B35102M007 which
specifies the "nutation" axis Xn.

[Sri90] S. Srikanth. Axial focussing. GBT Memo 49, NRAO, April 1990. "..the axis along which the
[subreflector is] to be moved (without the telescope beam shifting in the sky) for axial focussing
and the amount of movement required [are] determined..; the axis of focussing is 36.73° from the
axis of the., main reflector., [and] 24.4° from the secondary focus feed axis..".

[Sri92] S. Srikanth. Correcting for gravity induced deformations. GBT Memo 78, National Radio
Astronomy Observatory, May 1992. Deformations extracted from NASTRAN models. Note: this
memo has been (mostly) superceded by [Sri94].

[Sri94] S. Srikanth. Gain reduction due to gravity-induced deflections of the GBT tipping structure
(model 95, version B) and its compensation. GBT Memo 115, National Radio Astronomy
Observatory, September 1994. See Table 1 on page 4, "Gravity-induced deformations". See the
addendum [Sri95] to this memo; an earlier version of this memo is [Sri92].).

[Sri95] S. Srikanth. Addendum to GBT memo No. 115. Technical Report 121, National Radio Astronomy
Observatory, September 1995.

[Wel98a] Don Wells. GBT subreflector actuator functions in C. GBT Memo 175, NRAO, January 1998.
Two ANSI-C functions are described: srDisplacementToLengthO, which accepts displacements
(three linear, three angular) from the "home" position of the subreflector and computes
six actuator lengths, and srLengthToDisplacementO, which performs an iterative numerical
inversion of function srDisplacementToLengthO (i.e., it accepts actuator lengths and produces
displacements). These two functions will be used in the GBT Monitor and Control software to
transform Gregorian focus tracking outputs into actuator commands. Partial derivatives of the
actuator lengths wrt translation and tilt are tabulated.

[Wel98b] Don Wells. Imaging properties of the GBT subreflector in C. GBT Memo 179, NRAO, March
1998. The., subreflector.. images points in the neighborhood of its first focus onto points in the
neighborhood of its second focus., nearly-stigmatic imaging., can be obtained for a variety of tilts
and displacements., cases., computed by ray tracing., minimum phase error., if., ellipsoid is tilted
slightly., results., fitted with polynomials., expressed in C. (The current version of this memo is
179.2, dated 1998-04-28; the changes are that the best-RMS function is now constrained to zero
for AS 12 = 0 and that srEllipsoidBestRmsO is fitted over a wider range.).

[Wel98c] Don Wells. The "ray" ray tracing package. GBT Memo 178, NRAO, March 1998. Abstract: "The
'ray' package and program rayMain trace sets of rays (representing wavefronts) through systems
of rotationally-symmetric aspheric optical elements. The starting sets of rays can represent either
plane or spherical wavefronts, with feedhorn tapering. The optical elements can be de-centered
and/or tilted conic sections (planes, spheres, ellipsoids, paraboloids, hyperboloids) with additional
superimposed radially-symmetric aspheric terms, and they can be mirrors as well as refracting
surfaces. Both foci and nearly-plane wavefronts can be analyzed." See
ftp://fits.cv.nrao.edu/pub/gbtjiwells_ray.tar.gz (155 KB).

20 Page GBT Gregorian Focus IVacA'ing in C GBT Memo 183

[WK95a] Don Wells and Lee King. GBT Best-Fitting Paraboloid [BFP] in C. GBT Memo 131, NRAO,
June 1995. Abstract: The gravitational displacements of the GBT actuators have been fitted
with a paraboloid. The parameters of the paraboloid for various elevations have been fitted
with polynomials and expressed as C code which computes the parameters of this best-fitting-
paraboloid [BFP] as a function of elevation. The BFP will be used by the control software modules
for the pointing, focus-tracking and active-surface subsystems of the GBT. We give a description
of this C-code version of the BFP and two examples of its application to practical problems. We
also give a function in C which fetches node data from the structural model and transforms it to
a coordinate system tied to the BFP. The predicted gravitational term of the GBT's traditional
pointing model and the predicted prime focus focus-tracking formula of the GBT are given. See
ftp://fits.cv.nrao.edu/pub/gbt_dwells_doc.teir.gz for the current revision of this memo
(131.5 as of 1998-04-20).

[WK95b] Don Wells and Lee King. The GBT Tipping-Structure Model in C. GBT Memo 124, NRAO,
March 1995. Abstract: The finite element model of the GBT tipping structure has been
translated into executable code expressed in the C language, so that it can be used by the
control software modules for the pointing, focus-tracking, quadrant detector, active-surface
and laser-rangefinder subsystems of the GBT. We give a description of this C-code version
of the tipping structure model and two examples of its application to practical problems. See
ftp://f its.cv.nrao.edu/pub/gbt_dwells_doc.tax.gz for the current revision of this memo
(124.3 as of 1997-06-23).

[Zai92] J. Zaine. Mechanical analysis S/R positioner. Loral GBT Technical Memo 46, Loral Western
Development Labs, October 1992. This comprehensive report discusses operational, peak
operational and survival loadings, required motor torques, lost motion (backlash) of the U-joints
and possible structural interference and U-joint angle problems of the subreflector actuators.
Portions of Loral Interoffice Memorandum 3WL110-DLE-107, by D. L. Enterline and titled
"NRAO 100m GBT Prime Focus Feed & Subreflector Positioner Gravity Correction Travel
Requirements", are included in Appendix A (pp.Al-A13). The asymmetric structural model which
was used enabled calculation of the required out-of-plane Zg translation ±0.83in.

