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Abstract 

Metrology measurements have been proposed to provide initial estimated pointing 
coefficients for the Green Bank Telescope (GBT) before astronomical observations 
can be made. The measurements are made by laser ranging from ground-based 
rangefinders to targets on the antenna structure, using 2-axis tiltmeters on the 
alidade and tipping structures, and a hydrostatic leveling system on the azimuth 
track. Algorithms and equations are given for the conversion of metrology data 
into pointing coefficients. The pointing coefficients include contributions to correct 
for deflection of the GBT local gravity vertical from the geodetic zenith. 



0.1. Introduction 

Pointing of the Green Bank Telescope will be guided by the azimuth and eleva¬ 
tion pointing series described by Condon [Con 92]. If a reasonable initial set of 
estimates for most of the pointing coefficients appearing in these series is provided 
before astronomical measurements are made, then in principle valuable time can 
be saved during GBT commissioning. 

A measurement program was proposed by Hall et al. [HGPP 98] to charac¬ 
terize the GBT by metrology methods. These include laser ranging, tiltmeters, 
accelerometers, and other instrumental techniques. As part of this program, mea¬ 
surements would be made to provide a-priori estimates for most of the coefficients 
defined in [Con 92]. A description of the proposed program, schedule, and mea¬ 
surements is given in a draft memo [PG 98]. 

Earlier documents have appeared which discuss the use of metrology meth¬ 
ods to obtain pointing coefficients: [Gol 97], [Wei 98], [PG 98]. The present 
memo reviews and extends those discussions, and gives detailed analysis to pro¬ 
cess measurement data to provide pointing coefficients. In particular we analyze 
contributions to the pointing series coefficients which are due to tilt of the azimuth 
track and collimation of the elevation axis, that is departure from perpendicular¬ 
ity of the elevation and azimuth axes of the telescope. We define and measure 
four parameters which describe the track tilt and elevation axis collimation and 
analytically derive the expected pointing series coefficient contributions to be ex¬ 
pected in terms of these parameters. We also discuss corrections to be expected 
due to the deflection of the local gravity vertical from local geodetic zenith. 

A major goal is to use available metrology tools to isolate specific defects in the 
telescope structure. This is accomplished by measuring the telescope structure 
and using the results of each measurement to decouple defects which collectively 
are represented by single terms in the traditional pointing model. We begin by 
using the hydrostatic leveling system to measure the azimuth track (see [Pel 92; 
Pel 93] for information about the Pellissier Model H5 hydrostatic level and [MR 
98] for a description of the Green Bank system). These measurements will be able 
to determine the average tilt of the azimuth track independent of the alidade or 



tipping structure. Next, two 2-axis tiltmeters placed below the elevation bearings 
on the alidade will provide a model of the azimuth track. Unlike hydrostatic level 
results, defects in the alidade structure, including problems in the wheels, etc. 
should be present in the data. Then, if necessary, additional measurements can 
be designed and made subsequently, based on the results. Last, laser rangefinder 
measurements from the ground to targets on the alidade, box structure, and feed 
arm will measure the elevation axis collimation (see [Par 97] for a comprehensive 
review of the GBT laser metrology project). Defects in the azimuth track and 
alidade will necessarily be included in the analysis of the laser rangefinder data. 

Pointing coefficients expected to be important for the GBT are reproduced 
from [Wei 98], and appear in Table 1. (A typographical error in [Wei 98] Table 
1 has been corrected: a^f and 6^f were interchanged; the source code is correct, 
however.) The double subscript notation is that which appears in the GBT's 
monitor and control system source code software. 

In this memo we assume the following convention: The azimuth and elevation 
variables A and E which appear in the pointing series are geodetic azimuth and 
elevation respectively of the radio object to be observed at a given local apparent 
sidereal time. Correction terms A A and A E are computed using the pointing 
series. The angles A + AA and E -f Ai? are then the commanded beam position 
azimuth and elevation angles respectively for the telescope drive system. The 
telescope is driven so that the encoder output angle readings are equal to the 
respective commanded angles at the specified time of observation. 



Table 1:   A Comparison Of Pointing Formula Notations. 

A A cos E    (Azimuth Pointing Series Terms) 

Condon SeriesQ                             | 

Coeff         Term Meaning Con92 vH93 Stu72 Mur92 Cla.74a NeiQe" 

do,o      1 Hor. Col. Ci P* Pi c9 A Pf 
60,1      sin E El. Ax. Col. C3 Pz Pz c8 A P3 

(io.i     cos E Az Zero c2 Pe P2 c5 A7 P-L 

b^i      cos A sin E Zen £-Tilt c4 P2 PA ce A, Pi 
altl     sin A sin E Zen iV-Tilt c5 Pi P5 Cr A, Ps 
€2,1      sin 2 A cos E Az Track 

AE     (Elevation Pointing Series Terms) 

Condon Series () 

Coeff   Term         Meaning Con92 vH93 Stu72 Mur92 Cla74 Nei96 
dofl     1           Elev Zero Ce PA Pi Cx Ds Pic 

01,0      sin A    Zen .B-Tilt cA P2 PA Cz D1 PA 

dhQ     cos A    ZenN-Ttilt a Pi Ps C2 D2 Ps 
60,1      sinE    Asym Gravity Ps DA "G" 



a The VL A formula for  A A cos E includes terms A3 cos A cos E and 
A4 sin A cos E which correspond to inactive GBT terms dj j    and cj 1 '.  These 
terms represent "azimuth encoder centering error" and are of period one turn. 
The analogous terms in elevation have the same form as the two gravity bending 
terms. 

Some VLA antennas are known to exhibit significant 3/1 terms in their pointing 
(VLA antennas have three azimuthal support points), but these are not imple¬ 
mented in the VLA pointing formulae because high frequency operations are now 
done by frequent reference source offsets; that procedure automatically corrects 
for those terms [Ken Sowinsky, private communication]. 

6 Neidhofer [Nei 96] includes Stumpff's P6 terms in the current Effelsberg 
100-meter telescope implementation of A A cosE and AE with amplitude of or¬ 
der ±10/x-radians. (See. discussion in section 6 of [Wei 98].) 

c Neidhofer [Nei 96] calls this term P10 and gives a formula for it which in¬ 
cludes Pi plus terms for daily empirical zero-point-corrections, receiver offset, 
and polarization effects. He gives analogous formulae for P2 and P7. He states 
that these are the formulae which are implemented on the Max Planck Institute 
100 meter instrument. 



0.2. Metrology Equipment 

The following resources and data should be available to carry out the proposed 
pointing coefficient measurements: 

• At least seven operational and calibrated ground-based laser rangefinders. 
It is expected that twelve rangefinders will be available at the time of mea¬ 
surement. Functioning temperature, pressure and humidity instrumentation 
to correct range data for atmospheric refraction must be available. 

• High accuracy 2-axis tiltmeters. These instruments are placed on the alidade 
structure, near each end of the elevation axle. 

• A water level measuring system which can measure over distances of 60 me¬ 
ters. This system has had extensive development at NRAO Green Bank. 
The water level system provides a way to determine the alidade track el¬ 
evation profile and mean alidade track plane, independent of the alidade 
structure. It provides essentially the same information as the tiltmeters, 
but requires more extensive setup and measurement time. 

• Ball retroreflector targets. Two ball targets are mounted under each ele¬ 
vation bearing's weldment platform. Additional targets are mounted under 
the lower comers of the box structure, at the end of the horizontal feed arm, 
and on the vertical feed arm. 

• Survey control coordinates for the ground-based rangefinders. These must 
be obtained by an a-priori control survey, and a reduction and adjustment 
of the survey data. 

• Ground rangefinder aiming coordinates for the GBT retroreflector targets. 
These are generated from a data base table of retrotarget reference point 
coordinates (in the main- reflector or alidade reference frame, as appropriate 
for the retrotarget referenced to the telescope's 50.8° rigging elevation an¬ 
gle), together with transformation equations to obtain ground rangefinder 
platform local aiming coordinates as functions of telescope azimuth and el¬ 
evation. The accuracy required of the coordinates supplied for aiming will 
generally be significantly less than the accuracy of the range measurements. 



• Operational software to reduce rangefinder measured phase to range distance 
between rangefinder scan reference point and retrotarget fiducial reference 
point. 

• Operational software to adjust range distances for trilateration determina¬ 
tions, to obtain ground coordinates of targets on the telescope. 

• A North-South direction survey reference fiducial. This is a survey mon¬ 
ument pair defining a horizontal reference line along a near North-South 
direction. The precise bearing of this reference direction line from astro¬ 
nomical North is measured by surveying its bearing angle from Polaris, and 
making appropriate ephemeris corrections for the position of Polaris at the 
time of survey. The detailed procedure is described in [Kav 96]. The ground 
coordinate system's Y-axis is chosen to be horizontal and directed to local 
astronomical North, as consistent with the direction of the surveyed ref¬ 
erence line. Both geodetic and astronomic azimuths of this line will be 
specified. The geodetic azimuth of this line is also determined, by making 
a horizontal Laplace correction [Lei 90]. 

• Control software to aim the rangefinders to retroreflector targets mounted 
on the GBT alidade and tipping structures. 

• Operating telescope azimuth and elevation encoders, with available encoder 
readout supplied to the metrology system ZIY-computer. 

• Functioning analytical code software to data base the rangefinder and tilt- 
meter measurement data and to analyze this data to generate pointing co¬ 
efficients. 



0.3. Metrology Measurements And Analysis 

0.3.1. Hydrostatic level measurements of the azimuth track 

Level measurements of the azimuth track will be made by the Green Bank hy¬ 
drostatic level to define the mean plane in which the GBT moves in azimuth. The 
normal to this plane is the zenith vector, W, of the GBT which can deviate from 
the local vertical. By measuring the deviation of the telescope zenith from verti¬ 
cal, one can obtain an a-priori pointing correction due to alidade track tilt. Tilt 
of the mean alidade track plane is measured directly, independent of the alidade 
structure, by this method. 

Fig. 1 shows the geometry. Unit orthogonal basis vectors X,Y^ Z define 
a fixed ground-based reference frame for describing the telescope geometry. A 
ground based Cartesian X, y, Z coordinate system with its axes respectively par¬ 
allel to those frame vectors has its origin at the intersection point of the telescope 
azimuth axis at the mean alidade track level. The unit frame basis vector Z is 
directed along the local upward gravity vertical at the coordinate system origin. 
The vector Y is directed horizontally along local astronomical North, at the co¬ 
ordinate system origin. The vector X is defined by the relation: X = Y x Z. 
X is horizontal and points eastward in a positive sense. The telescope's alidade 
track is initially approximated by a geometric plane, the "Mean Alidade Track 
Plane.". Unit vector W is the normal to this plane; it is the zenith vector of the 
GBT. Angle Qr is the angle between the zenith vector and gravity vertical. The 
horizontal bearing of the telescope's zenith vector relative to Y is given by QT- 

Level measurements of track elevation versus azimuth are used to determine a 
physical plane which best embodies the Mean Alidade Track Plane, in some least 
squares sense. 

The hydrostatic level data provides a set of track level heights as a function 
of azimuth, H = H(AZ). It is assumed that astronomical North has been pre¬ 
viously measured, and a control network of survey markers has been established 
so that the ground frame axis directions are known relative to the ground survey 
control network. The measured heights are relative track elevations along the 
direction of the local gravity vertical, Z. The heights are measured relative to a 
fixed bench mark (not loaded) near the GBT center. The height profile data is 
least-squares-fitted to a sinusoid with an amplitude Hi and an azimuth ^min of 
minimum height. The pair of angles (CT^T) are then given by: 



(3.1.01) tan(Cr) = -g    and 

(3.1.02) $T = $min 

where R is the radius of the track in the same units as Hi.   Appendix A de¬ 
scribes an algorithm which can be used to fit a sine wave. 

The design radius of the track center line is: R = 1260.0 inches. On 24 Octo¬ 
ber 1992 the track was set and was recorded to be level to ±0.015 inches. On 23 
June 1993 the track was grouted, cured, and 70% rechecked. The level to ±0.015" 
was found to still be true [Mor 97]. A slope of 0.015" per 1260" corresponds to 
2.46 arc-seconds angle. It is to be expected a-priori that £T will not significantly 
exceed this tilt, assuming that the track has not significantly deformed or moved 
since 1993. 

Hydrostatic level measurements are too labor and time intensive to be used 
to provide information on the "fine structure" of the azimuth track.. They are 
however suitable to give an estimate for the track tilt terms in Table 1. These 
pointing coefficients can be expressed in terms of the azimuth track tilt parame¬ 
ters £r and <&T by either using spherical trigonometry or rotation matrices. For 
example, the tilted track in Fig. 1 can be described as two small rotations about 
the orthogonal axes X and Y. [Con 92] has derived the coefficients in terms of 
tilted angles to the north AN = CT • cos($r) and the west AW = —Cr * sin^r). 
Using Eq. (5) of [Con 92] yields: 

(3.1.03) a^ = <45L) = CT • cos($r)        and 

(3.1.04) -b$z) = c%L) = CT • sin($r) . 



0.3.2. Tiltmeter measurements at the elevation axle 

A 2-axis tiltmeter will be placed at each end of the elevation axle, near the 
bearing (see Fig. 2). Instrument leads will be run to the alidade room and will 
terminate at a GPIB instrument bus and the readouts sent to a dedicated com¬ 
puter used for the measurement program. 

When the telescope moves in azimuth, deviations or bumps in the track can be 
detected. The readout of each tiltmeter is measured versus the encoder reading 
for telescope azimuth, AZenc. Measurements will be made at c^ 1° increments of 
azimuth. The two tiltmeters measuring tilt perpendicular to the elevation axle 
are averaged, and least-squares-fitted to a sinusoid to yield CT 

and ^T (see be¬ 
low). These results should agree with the hydrostatic level system's calculations 
of the track tilt. The tilt component residuals left after removal of the sinusoid 
can then be used to produce a track model. Further measurement and analysis 
can be pursued if the amplitude of the tilt component residuals is significant. For 
example, there may exist higher harmonic terms as a function of azimuth such as 
the track terms in Table 1. 

Finding the mean alidade track plane and track model by tiltmeters depends 
upon the fact that the alidade structure is almost rigid during azimuth rotations. 
The tiltmeter pairs at the two bearing ends are initially levelled when the tele¬ 
scope is at zero azimuth and rigging elevation angle (as recorded by the telescope 
axis encoders). If the alidade track is plane and the alidade structure rigid, the 
like-oriented tiltmeter pairs at the two ends of the alidade should read the same 
at every azimuth. A significant departure from equality would indicate alidade 
deformation, assuming that no significant temperature change of the structure oc¬ 
curred during the alidade rotation. Alidade structure bending would be imphed 
for differences in the axially oriented tiltmeters; torsion would be implied by a 
difference in the tiltmeters oriented perpendicular to the elevation axle. Mean 
readings of the tiltmeters oriented in each direction would be used to obtain the 
mean alidade trade plane angle parameters and the track model. The readings of 
the tiltmeter pairs oriented parallel to the elevation axis and those perpendicular 
to that axis should independently lead to the same trade angle parameters. 



Derivation of the track tilt parameters CT 
an<i 3>T in terms of tiltmeter data 

can be simplified by introducing the "alidade coordinate system". The alidade 
structure is assumed to be a rigid structure with an embedded Xa, Ya} Za coordi¬ 
nate system and mutually orthogonal unit frame vectors Xa, Ya% Za. Let $ be the 
rotation angle of the alidade structure about telescope zenith from the position 
of zero azimuth encoder readout. If the azimuth encoder readout is linear then 
$ = AZgnc. We will use $ rather than AZ^c as our azimuth angle variable, to 
allow for the possibility of later accounting separately for azimuth encoder non- 
linearity contributions to the pointing series. 
The alidade coordinates can then be expressed in terms of the ground coordinate 
system (see Appendix B). 

Tiltmeters are used to find track parameters CT and §T by the following pro¬ 
cedure. The telescope is driven to commanded elevation EL com = ELrig = 50.8° 
(the telescope rigging angle) and commanded azimuth AZcom = 0°, which we refer 
to as the telescope reference position. The tiltmeters are supported on levelling 
screws which are set initially so that all tiltmeter readings become zero. That is, 
offset reference position reading angles of the tiltmeters are initialized to zero. The 
telescope is stepped in azimuth in 1° increments, and tilt readings are recorded. 
These readings give incremental tilt components of the elevation axis of the tele¬ 
scope with respect to its tilt position at the telescope reference position. As the 
telescope rotates in azimuth, the mean of the two axial tiltmeter readings for each 
tilt component varies to first approximation as a Fourier series. 

The tiltmeter readout angles are given by Tye and Txe for tiltmeter orientation 
parallel to and perpendicular to the elevation axis, respectively. Calculations to 
analyze the tiltmeter measurements are given in Appendix C. They give the fol¬ 
lowing result: 

(3.2.01) Txe($) = —Cr • cos $r + CT • cos $T • (cos $) + CT * sin $T • (sin $)  ,    and 

(3.2.02) Tye($) =   -CT • sin $r + CT • sin <I>r • (cos $) - CT • cos $r • (sin $) 

Tilt profiles Txe($) and Tye($) are least-squares-fitted by a three-term Fourier 
series to obtain track parameters Cr and $T • The residuals produced from the 
difference between the model fit and the data provide a track model. Algorithms 
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for computation of Fourier coefficients are given in Appendix A. 

We comment here on a particular feature of the measurements. The measure¬ 
ments, as just described, require that the tiltmeters always be levelled at standard 
azimuth as an initial condition. It is further implied, if not explicitly stated pre¬ 
viously, that the alidade is thermally stable during the measurements, that is, it 
remains rigid. If those two conditions are fulfilled, the measurements will deliver 
the track parameters, independent of the actual alidade shape. If the alidade 
were to be heated non-uniformly before starting new measurements (so its shape 
departed from its earlier shape) tiltmeter readings at standard azimuth would 
depart from their previous level readings, and would thereby indicate a change 
in orientation of the elevation axle. New measurements, made with re-levelled 
tiltmeters, would deliver correct track parameters provided that the alidade were 
to maintain its new shape during the new measurements. (This however would 
be unlikely when alidade temperature was non-uniform or unstable). 
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0.3.3. Laser rangefinder measurements of targets on the box structure 
and feed arm 

Ball retroreflector targets have been mounted under the box structure and 
on the horizontal and vertical feed arms. One or more ball retroreflectors have 
been positioned to he on or close to the telescope's.right-left plane of symmetry. 
When the tipping structure is moved in elevation, such a target should move ac¬ 
curately in a plane which can be determined by rangefinder measurements from 
the ground. Right-left deformations of the telescope (e.g. bending deformation 
of the elevation axle) should be near-symmetric and should not cause a midplane 
target's trajectory curve to depart significantly from planarity. (If trajectory mea¬ 
surements were to indicate a lack of planarity, they could be analyzed to provide 
additional pointing correction. Such a program will not be discussed in this doc¬ 
ument). 

At a fixed azimuth the telescope will be stepped in elevation, typically in 1° 
increments. The unit normal vector to the target's plane of motion determines the 
direction of the elevation axis. The direction of the elevation axis, together with 
the alidade track tilt parameters, allows computation of the collimation pointing 
errors. 

We may accurately determine the direction of the elevation axis with respect 
to the ground reference frame at an arbitrary alidade position (as indicated by 
AZenc), as follows (see Fig. 3). A ball target on the telescope tipping structure 
is tracked by ground rangefinders as tipping structure elevation is varied. After 
the range measurements have been reduced and least-squares adjusted by stan¬ 
dard codes, the displacement vector between successive positions of the target's 
fiducial reference point (denoted by D in Fig. 3) .is computed and normalized 
to unit magnitude. A sequence of unit target displacement vectors is generated 
as the target is tracked. Each of these unit displacement vectors lies in a plane 
perpendicular to the elevation axis of the telescope. The vector cross product of 
any two of these displacement vectors will be a unit vector in the direction of the 
elevation axis. By making multiple measurements on several targets one has a 
large set of measurement samples of the elevation axis unit vector, X^AZ^r), 
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corresponding to the telescope azimuth during the measurements. 

The geometry of the tipping structure of the GBT is described with reference 
to a "main reflector frame" having orthogonal unit basis vectors Xri Yri Zri and 
carrying a right-hand Cartesian coordinate system with coordinates Xr,YriZr. 
This is a mathematical abstraction without specific reference to physical 3-space. 
To make the abstraction useful and unambiguous we must somehow embed the 
frame and coordinate system in physical space and have it carried along with the 
tipping structure as that structure moves in space and is driven in azimuth and 
elevation. To each azimuth and elevation of the telescope there must correspond 
unique direction cosines of the main-reflector-frame basis vectors with respect to 
the ground frame of the telescope. 

This presents a conceptual problem which must be resolved. The tipping 
structure is not rigid. It deforms because of varying gravity moment torques as 
elevation is varied. When the elevation axle of the telescope is rotated in elevation 
by a specified angle, the axis of the "main reflector paraboloid" does not rotate by 
exactly the same angle. The main reflector may be a paraboloid at the start and 
finish of the elevation motion, but will not necessarily be the same paraboloid. 
The surface actuators may or may not be driven, which further comphcates the 
conceptual problem. The elevation reference frame must somehow be embedded 
analytically into a deformable 3-dimensional continuum, that is a 3-dimensional 
differentiable manifold. This presents the problem. It can be uniquely stated 
and solved, however, provided that a finite element deformation model for the 
telescope is accepted. The orientation of a main reflector frame relative the to 
the ground frame of reference of the telescope is obtained as the tipping structure 
moves in elevation and azimuth. The ground reference frame of the telescope, as 
determined by physical surveying methods, is considered to be invariant. 

A method of doing this is given by [Wei 98] and [Gol 97]. One embeds a ref¬ 
erence frame and coordinate system in physical space, to describe the deformable 
tipping structure's geometry in the following way: 

• The main reflector surface is physically set to conform to the design shape 
of the parent paraboloid when the elevation encoder output reads 50.8°, the 
"rigging elevation angle" of the telescope. 

• The telescope is assumed to move as a rigid structure when it is driven 
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only in azimuth. 

By convention, the Xr frame vector and Xr-axis of coordinates point along 
the elevation axis of the telescope; unit frame vectors Yr and Zr are per¬ 
pendicular to the elevation axis. The origin of the Xr,Yr,Zr main reflector 
coordinate system lies equicUstant from the two elevation bearing centers. 
The elevation axis of the telescope is, then, a reference direction which de¬ 
fines the line of the main reflector coordinate system's Xr-axis. We note 
that if the alidade structure is rigid, and if one represents the unit vector 
Xr as a linear sum of alidade frame vectors: Xr = Ci • Xa + C2 • Ya -f C3 • Za, 
then the coefficients are independent of the alidade's azimuth angle. 

When the telescope is moved in azimuth only, motion of the embedded 
Xr, Yr, Zr frame and coordinate system in physical space is described in the 
following manner: 

The main reflector frame is considered to be rigidly embedded in a rigid 
rotatable alidade structure resting, to first approximation, on a slightly tilted 
plane: the "Mean Alidade Track Plane (MATP)." The direction cosines 
describing the orientation of this plane are physically determined by means 
of fluid level measurements of track height or by tiltmeter measurements. 
The unit upward normal to this plane, W, is a fixed vector in physical 
3-space, the "zenith vector of the GBT." 

The Xa,Ya,Za "alidade coordinate system" is rigidly embedded in the 
alidade structure. Its origin lies in the track plane (at the center of the 
annular alidade track). The Za-axis points along the fixed zenith vector W. 
(The physical track is actually bumpy. To deal with this, it is assumed to 
be plane but elevation corrections are added later using the track model 
obtained from track tilt residuals). Alidade rotations are described by the 
angle parameter $ (0 < $ < 27r) the rotation in azimuth of the alidade 
structure. Unit vectors Xo(^), ^(^ parallel to the mean track plane are 
defined so that X0($), y^($), and W form a right-hand orthogonal triple 
and also, Xa($ = 0) • Y = 0. 

Telescope azimuth is defined by the following requirement: When the al¬ 
idade encoder output reading is zero, the Xa vector's projection onto the 
horizontal (local horizontal plane at the center of the azimuth track) has no 
component along Y. 
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The departure of the elevation axis orientation from that of an ideal telescope 
can be described in terms of two small-angle parameters (see Fig. 4). For a rigid 
alidade structure and a plane alidade track, when the alidade has been rotated to 
an azimuth angle <£, about the telescope zenith axis, the direction of the elevation 
axis will be: 

(3.3.01) Xr(*)   =  Xa(*) • jl-Pl-ll +  £(*) ' (7el)  "   Za{*) ' (fa) . 

Here fa and 7e/ are small angular deviations of the elevation axis direction from 
the alidade frame vector directions. They are assumed to be constant during 
telescope motions. Angle fa represents a deviation of the elevation axis from per¬ 
pendicularity to the normal, Za, to the alidade track plane. The sign convention 
used is that the angle between the positive Xr-axis and the positive Za-axis is 
TT 
—t~fa - Angle ^fei is a deviation of the positive ^Cr-axis from the positive J£0-axis, 
A ^^ 
towards the +Ya direction. 

The direction vector of the elevation axis is expressed in terms of components 
relative to the ground reference frame, by substituting equations (B.01) and (B.10) 
into (3.3.01). This gives long, compUcated expressions. For our purposes we need 
only first order approximation of these components. After extensive manipulation 
and reduction we get, to first order: 

(3.3.02) Xr($)     =      X-[(cos$) + (7ei)-(sin$)] 

+ ?«[(- sin $) + (7^) • (cos $)] + 

+ Z - [(-PJ) + (CT) • (cos $T) • (sin *) + (-C) • (cos $)]. 

This relation is a 4-parameter expression for Xr($). Measurement data for Xr($) 
is least-squares-fitted to give the four parameters. If track bumpiness is small, 

(3.3.03) (f) - (Z) - (Xr(0o) + Xr(1800)) ~ fa, 

(3.3.04) (|) - (?) - (Xr(0°) - Xr(lS0o)) ~ 7ez, 
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The measured small angles fa and 7ej correspond directly to the elevation 
axle collimation error and the azimuth zero, respectively (see [Wei 98] and the 
derivation in Appendix E). Explicitly, 

(3.3.05) 6^z)  = -faLl and 

(3.3.06) 4AiZ) = IEL. 
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0.4. Derivation of Pointing Corrections 

After measuring telescope parameters: CT, $rj fa, lei we wish to compute the 
azimuth and elevation pointing series' which will be generated by non-zero values 
of these parameters and four additional parameters which we will define. Our 
goal is to generate "mechanical" pointing coefficients which can be used to give 
initial estimates for pointing series coefficients which are due to specific stable and 
long-term causes. The purpose of this program is to provide estimates of pointing 
coefficients before astronomical operation begins. It is expected that as the tele¬ 
scope begins its astronomical observations, and astronomical pointing coefficient 
determination starts, the a-priori coefficients will aid initial pointing and lead to 
small residues for the astronomically determined coefficients. 

We next discuss how to generate the "mechanical" elevation and azimuth 
pointing series. We model two telescopes. Model-1 is an ideal design telescope. 
In Model-2 we introduce conceptual deviations from the ideal telescope. 

We make the temporary assumption that telescope zenith coincides with the 
local upward gravity vertical direction. Ground coordinate frame vector directions 
X, y, Z coincide, respectively, with astronomical East, astronomical North, and 
astronomical Zenith. (We later modify this to include deflection of local grav¬ 
ity vertical from geodetic zenith). Under this initial assumption, the spherical 
polar sky coordinates assigned to a direction in sj>ace are the same as the spher¬ 
ical polar ground coordinates with respect to the X,?, Z ground reference frame. 

Let us assume that the telescope is set to standard position, so the azimuth 
encoder reads AZ^c = 0 and the elevation encoder reads rigging elevation angle 
ELrig. We first assume that the GBT construction is perfect: alidade and tipping 
structures are rigid and invariant in shape and size, the main reflector surface is 
a region of a 60 meter focal length paraboloid, aligned so that the paraboloid's 
axis points to the X direction and to elevation ELrig with respect to the ground 
reference frame. When the telescope observing program requests that the tele¬ 
scope move to sky coordinates (AZ9ky, ELsky)J the telescope commanded track, 
for this ideal telescope, will request motor drives to move to commanded tele¬ 
scope coordinates ELcom = EL8ky and AZcom — AZsky- After the alidade and 
tipping structure arrive at their requested positions, the azimuth encoder output 
reads AZenc = AZcom and the elevation encoder reads ELenc — ELcom. The main 
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reflector is still a paraboloid of 60 meter focal length. Its axis points to the sky di¬ 
rection (AZgkyj ELgky)' This describes the behavior of our Model-1 ideal telescope. 

For telescope Model-2 we introduce changes. Starting from the ideal telescope 
at standard position, we assume the following. The alidade is still rigid and has 
the ideal dimensions. The alidade track is still plane but is now tilted consistent 
with track parameters Cr *&& $T« The elevation axle is twisted by the small 
angle $& about the Ya direction and by the small angle Te/ about the Za direction, 
leaving its midpoint fixed. The main reflector surface is still a region of a 60 me¬ 
ter focal length paraboloid when the telescope is at standard position (telescope 
azimuth encoder reads zero and the telescope elevation encoder reads ELrig). 

For the Model-1 ideal design telescope we have assumed that the main reflec¬ 
tor paraboloid has been initially adjusted so when it is at standard position, its 
axis points in the direction:   Qo ^=^ (AZSky = 0, ELSkv = ELTig). 

For the Model-2 telescope we now assume that the main reflector paraboloid 
has been initially adjusted as built so when at standard position, its axis points 
in the direction: PQ -$==> (AZ8ky = Ao, ELsky = ELrig + -Eo)- Here AQ and EQ 

are small angles, typically less than 10 arc-minutes. We temporarily neglect the 
deviation of local gravity vertical from geodetic zenith. In principle, AQ and EQ 

could be directly measured by laser rangefinder determinations of the paraboloid 
shape and orientation with respect to the ground reference frame of the telescope. 

For the Model-2 telescope we make the following assumptions about the shape 
and orientation of the main reflector surface when the tipping structure is driven 
to change its elevation: The telescope elevation axis remains straight and unbent. 
The main reflector surface is always a patch on a paraboloid of revolution. As 
tipping structure elevation changes the reflector surface remains paraboloidal but 
is no longer rigid. Focal length becomes a function of elevation (as read out by the 
elevation encoder). The angle that the axis of the instantaneous paraboloid makes 
with the elevation axis is fixed; that is, the paraboloid axis can be considered rigid 
and welded solidly to the rigid elevation axis. We also make a peculiar assump¬ 
tion: when the tipping structure is driven from encoder elevation ELenc = ELrig 
to encoder elevation ELenc ~ ELcotm the main surface paraboloid's axis direction 
rotates about the elevation axis not by incremental angle (ELcom — ELrig), but 
instead by the incremental angle (ELcom ~ ELrig + Egrm), where Egrav is assumed 
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to be a known function of EL^c. 

We introduce function Egrav(ELenc) to serve the following purpose. The tele¬ 
scope's tipping structure is not rigid. The main reflector surface must be re¬ 
adjusted to remain paraboloidal as tipping structure elevation changes, according 
to a schedule which is theoretically calculated (using the current Finite Element 
Model of the tipping structure). As elevation changes, the axis of this instan¬ 
taneous paraboloid does not follow the rotation as indicated by the elevation 
encoder, but lags or leads by an angle increment which can be calculated as a 
function of encoder readout angle. The calculational program has been carried 
out by D. Wells [Wei 98]. 

The gravity elevation function, in the notation of Wells, is written: 

(4.01) rx(EL) = d^ + d^-cos EL + ftgf • sin EL. 

Explicit values for this function are given in [Wei 98]. It takes value zero at 
EL — ELrig. At present it is not appropriate to use the df^ notation for the 
above coefficient names, because we have not yet demonstrated that they are, in 
fact, Condon model pointing coefficients. 

We prefer to write (4.01) as: 

(4.02) ELgr^ELenc)  = p0   +  pc ' COS ELenc   +  Ps ' SIR ELenc , where 

(4.03) PQ + Pc ' cos ELrig + Pa ' sin ELrig = 0,     which gives 

(4.04) ELgr^ELenc)  = Pc' (COS ELenc - COS ELrig) + p8' (smELenc — sin ELrig). 

We will later use first order approximations 

(4.05) SmELgr^ELenc)   =   ELgrav^Lenc) ,      COS ELgrav(EL^)   =   1. 

We have defined two telescopes, and specified their initial pointing at stan¬ 
dard position. Pointing at arbitrary commanded azimuth and elevation depends 
upon four measured parameters CT, 3>T, Pel, 7ei discussed previously, together 
with additional parameters ELrig, AQ, EQ, pc, ps. We next compute the pointing 
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when the telescopes are commanded to move to arbitrary encoder coordinates 

(AZcom j   ELCom)' 

To do this we first rotate the initial paraboloid axis vector, JPQ I about the 
tilted elevation axis (see Fig. 5) 

(4.06) Xr($ = 0) = X + Y • bei) + Z. [-A, + (-CT) • (sm$r)], 

by the angle: 

(4.07) Rott  -  ELcom-ELrig+ ELgrav(ELcom). 

This carries the paraboloid's axis direction from PQ to a new direction, Pi. 

We then rotate vector Pi about the telescope zenith W, by the angle Rot2 = 3>. 
($ = AZcom when the azimuth encoder is linear). The paraboloid axis then ar¬ 
rives at the direction P. The deviations in azimuth and elevation of the direction 
of P from the commanded azimuth and elevation gives the required pointing cor¬ 
rections. The corrections appear as harmonic series in commanded azimuth and 
elevation. The coefficients in these series are functions of the eight parameters 
mentioned above. Term coefficients are of first order in small angle parameters. By 
identifying harmonic coefficients of the "mechanical" pointing series (obtained by 
carrying out the algebra for the above rotations) one-to-one with Condon's series 
coefficients, we obtain a set of a-priori estimators for the pointing coefficients. Fi¬ 
nally, we will compute additional contributions caused by track bumpiness (using 
track model residues) and by departure of local gravity vertical from astronomical 
zenith. 

We carry out the algebraic computation of direction P and express the result 
in spherical polar coordinates in the ground reference frame, in Appendix E. The 
rotation geometry is shown in Fig. 5. When ground frame Cartesian components 
of P are available, computation of the pointing series is straightforward, and pro¬ 
ceeds as follows. 

One compares the computed components of P with those expected for succes¬ 
sive rotations of an ideal telescope, (ELcom — ELrig) in elevation and AZcom in 
azimuth, of unit direction vector Qo - Vector QQ has polar coordinates (0, ELrig) 
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with respect to the ground frame. It is carried by the two rotations to a unit 
vector whose polar coordinates are (AZCOm, ELCom) with respect to the ground 
frame. The Cartesian ground frame coordinates of the two-fold rotated vector, 
Q , are (sin AZcom * cos ELCom, cos AZcom ' cos ELcom, sin ELcom)- These would 
be the Cartesian coordinates of P if the telescope were ideal. As-built telescope 
imperfections, described by non-zero first order parameters, cause PQ to arrive, 
after successive rotations about canted axes, at a direction whose ground frame 
coordinates are: 

(4.08) Px = sin AZ -cos EL,    Py = cos AZ • cos EL ,    Pz = sin EL , 

where AZ and EL are spherical polar coordinates of P relative to the ground ref¬ 
erence frame. If the Cartesian ground coordinates of unit vector P are changed by 
small incrementsdPx, dPy, <£Pz,then its ground-frame-related polar coordinates 
change by increments d AZ, d EL. Differentiating (4.08), the small increments in 
the Cartesian coordinates of P are related to changes in its polar coordinates by 

(4.09) d Px = (cos AZ) • (cos EL) • d AZ - (sin AZ) - (sin EL) - d EL , 

(4.10) d Py = -(sin AZ) - (cos EL) • d AZ - (cos AZ) • (sinEL) - d EL , 

(4.11) dPz = (cos EL) -dEL, 

(4.12) PxdPx + PY'dPy + Pz-dPz = 0, which give 

(4.13) d EL = (sec EL) • d Pz , 

(4.14) (cos EL) - d AZ = (sec AZ) • d Px -f (tan AZ) • (tan EL) - d Pz . 

If the as-built telescope were perfect and all first order parameters vanished, 
the coordinates of P would be: 

(4.15) Px = sin AZcom • cos ELcom = Qx , 

Py   =  COS AZcom'COS ELcom   =  QY ,       Pz   =  SmELCOm   =  Qz- 
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The deviations dPx, dPy, dPz, of the components of P (for the as-built tele¬ 
scope) from those of Q are computed in terms of the telescope parameters, in 
Appendix E. The shifts in elevation and azimuth of P from those of the perfect 
telescope are then given by: 

(4.16) d EL = (sec ELcom) 'dPz, 

(4.17) (cos ELCom) • d AZ = (sec AZcom)  dPx-h 

+ (tan AZcom) - (tan ELcom) • dPz . 

The right hand sides of equations (4.16) and (4.17) turn out to be linear sums 
in products of sines and cosines of the harmonics of AZcrnn with those of ELCOm • 
These give our mechanical pointing series in elevation and azimuth. The negatives 
of those shifts are the pointing corrections. That is: 

(4.18) A EL = -(sec ELC(nn) 'dPz, 

(4.19) (COS ELcom) 'AAZ   =   -(sec AZcom) 'dPx + 

- (tan AZcom)' (tan ELcom) • dPz . 

The explicit computations are given in Appendix E. The results are given in 
Table lb. The results do not include the correction for the deviation of local 
gravity vertical from the local normal to the geodetic azimuth. That correction 
is given separately in Appendix F. 
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Table lb.   Estimated Pointing Coefficients. 

(Not including geodetic corrections) 

A A cos E   (Azimuth Pointing Series Terms) 
Coeff Term Meaning Estimated Value (radian) 

4Aoz) 1 Hor. Col. — AQ « COS ELrig — Jel ' COS ELrig 

-{-Pet - sin ELrig + (T ' SUl $T - Sin ELrig 

b^! 
sinl? El. Ax. Col. -Pel 

$ 
cos E Az Zero lei 

.(AZ) cos A cos E AzJEnc See Appendix D 
cia sin A cos E Az_Enc See Appendix D 
b(Az) 
Di,i cos A sin E Zen £-Tilt —Qr' sin QT 
a(AZ) 
al,l sin A sin E Zen JV-Tilt QT - cos $r 

4^ sin 2 A cos E Az Track See Appendix D 

AE     (Elevation Pointing Series Terms) 
Coeff Term Meaning Estimated Value (radian) 

j(EL) 
^0,0 1 Elev Zero —EQ — CT * COS$T 

+pc. cos ELrig + ps. sin EL^ 

Cl,0 sin A Zen jE7-Tilt CT * sin $r 
.(EL) 
ai,o cos A Zen TV-Ttilt CT • cos $r 

<> sin E Asym Gravity -Ps 
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0.5. Least-squares Analysis Of Metrology Data 

The algorithm for finding the track zenith and azimuth is given in Appendix A. 
It is basically the same as has been used for reducing laser rangefinder data, and 
provides good accuracy. The algorithm is easily extended to examine the track 
fluid level and tiltmeter data for significant higher harmonic terms. A similar 
algorithm for second harmonic terms can be apphed to the orientation data for 
the sub-bearing target balls to look for the presence of significant azimuth track 
sin2A • cosE and cos2A • cosi£ coefficients and azimuth track terms of higher 
harmonic content. 

The reduction of ball trajectory position data to find the best fitted plane 
for the measured trajectory points is a standard statistical problem. The desired 
plane is that which minimizes the sum of the normal distances squared of the 
measurement sample points to a general plane. The unit normal vector to this 
least-squares-fit plane is the elevation axis. The normal distance residuals of the 
sample points from this plane can be examined as a function of elevation, to see if 
there is a statistically significant trend indicating that the axis may be changing 
with elevation. 
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0.6. Summary Of Pointing Coefficients 

The pointing coefficients are listed below, with a summary of their determina¬ 
tion by metrologic means: 

d^ o      1    Horizontal Collimation        —AQ - cos ELrig — lei - cos ELrig 
-{-Pel - sin ELrig + CT • sin $r • sin EL 

This coefficient contains offsets due to track tilt, elevation axis horizontal off¬ 
set, and paraboloid surface initial horizontal offset. Determination of all parame¬ 
ters except AQ is discussed in the text or appendices. The main reflector offset AQ 

can, in principle, be measured as follows. The antenna is brought to standard po¬ 
sition. Feed arm laser rangefinders are located by ranging from the ground. Main 
reflector surface points locations are then determined by trilateration from the 
feed arm rangefinders. To accomplish this, surface retroreflector target locations 
are corrected to give surface point locations. The surface is then least-squares- 
fitted to a 10-parameter quadric, a paraboloid. The axis of this paraboloid is then 
computed, and referenced to the ground coordinate frame to give parameters AQ 

and i£o- Practically, this coefficient is easily found by astronomical pointing. Its 
determination by measurement of the main reflector surface is not usually needed, 
and is of some complexity. 

bi i      sin E   Elevation Axis. Collimation       -Pel '0A 

The elevation axis collimation term is due to tilt of the elevation axis from 
the horizontal caused by non-perpendicularity of the elevation and azimuth axes 
of the telescope. The coefficient is measured by determining the normal vector 
to the mean plane generated by a midplane ball retroreflector, ranged from the 
ground. 

d^ j '    cos E   Azimuth Zero       7ei + ^ * tan<£ 

The parameter 7 is found by determining the normal vector to the plane gen- 
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erated by an orthogonal distance regression fit to the locations measured for a 
midplane ball retroreflector ranged from the ground, as telescope elevation is var¬ 
ied. An additional contribution to the commanded pointing appears: the horizon¬ 
tal Laplace correction, required to shift commanded pointing from astronomical 
reference to geodetic reference. The value of parameter 77 is given in Appendix F. 
Parameter (f) is the geodetic latitude of the alidade track top center of the GBT, 
and is also given in Appendix F. 

b(iAiZ)    cos A sin E    Zenith E-Tilt        -Crx - *) = -Cr • sin $T - q 

This coefficient is due to two independent contributors: track tilt and astronomical- 
to-geodetic frame correction. The latter correction behaves as an additional track 
tilt, together with a constant azimuth shift (the horizontal Laplace term). The 
term i) is a constant (for the GBT) which is the "prime vertical" component of the 
gravity deflection of astronomical zenith relative to geodetic zenith at GBT. Its 
value is given in Appendix F. The track component of the coefficient is obtained 
by least squares fit of fluid level measurements of track elevation to a 3-term 
Fourier series. It is also obtained independently by a similar fit of tiltmeter mea¬ 
surements. The value in radians is used. 

a^Z)    sin A sin E    Zenith N-Tilt       Crr + £ = CT - cos $T + £ 

This coefficient is due to two independent contributors: track tilt and astronomical- 
to-geodetic frame correction. The latter correction behaves as an additional trade 
tilt together with a constant azimuth shift. The parameter £ is a constant (for 
the GBT), the meridian component of the gravity deflection relative to geodetic 
zenith at GBT. Its value is given in Appendix F. The value in radians is used in the 
coefficient. The track tilt contribution for this pointing coefficient is obtained by 
least squares fit of fluid level measurements of track elevation to a 3-term Fourier 
series. It is also obtained independently by a similar fit of tiltmeter measurements. 

C2,i      sin 2 A cos E    Azimuth Trade 

d^j      cos 2 A cos E    Azimuth Track 

These coefficients are due to trade deviation from planarity. They can be ob¬ 
tained from a least squares fit of second harmonic terms of the track rotation 
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angle versus azimuth encoder readout derived from measurements of a reference 
line direction defined by four alidade target balls under the bearing platforms. 
The nature of the series term is discussed in [Con 92] and Appendix D. The de¬ 
tailed values will be derived in a later note. 

dj 0 '    1    Elevation Zero        —Eo-{-pc' cos ELrig 
  -{-ps - sin EL^ — CT * cos $T 

This coefficient contains offsets due to track tilt, gravity elevation offset to ini¬ 
tialize the gravity deformation to be set to zero at the rigging elevation, paraboloid 
surface initial elevation offset. Its determination is by the same procedure as for 
dj) 0 ' Practically, it is easily found by astronomical pointing. Its determination by 
measurement of the main reflector surface is not usually needed, and is of some 
complexity. 

C^Q      sin A    Zenith E-Tilt        Crx + V = CT • sin 3>T + V 

The value of Crx is obtained by a three term least squares Fourier series fit 
to track fluid level elevation data or tiltmeter data. The value of t) is given in 
Appendix F. 

dffi*    cos A    Zenith N-Tilt        Crr +£ = CT- cos^r + £ 

The value of Crr is obtained by a three term least squares Fourier series fit 
to track fluid level elevation data or tiltmeter data. The value of £ is given in 
Appendix F. 

bp i      sin E    Asymmetric Gravity -P* 

This coefficient was computed by D. Wells [Wei 95], based on the Finite Ele¬ 
ment Model of the GBT tipping structure. (It requires recomputation, however, 
to correct for the change of elevation rigging angle to 50.8°, from the value of 
44° assumed in 1995). It depends on appropriate reshaping of the main reflector 
surface with elevation and is not directly measurable. It is however possible to 
verify or correct the F.E.M. gravity deflections which determine the coefficient. 
This can be done by an analysis of the midplane ball trajectory position data 
measured by ground rangefinders when the tipping structure elevation is varied. 
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di.i      cos E   Symmetric Gravity -Pc 

See remarks above relating to b^i 
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Appendix A.    Hydrostatic Level Analysis Of The Azimuth TVack 

An algorithm useful to fit a sine wave to a set of n elevation samples hj(<t>j), 
2ir • 7 

((frj = j j = 0, • • •, n — 1), uniformly spaced about the track is: 
71 

(A.01)       (h)av = (I) ■ ± Ch)    , 

(A.02)       A = (-) ■ £ (fc, - (h>«) • cos(^)    , 

(A.03)       B = (i) • § (fc, - <fc> J • rin(^)    ■ 
^n/     j=0 

(A.04)       i/j = Q) - v/A2 + £2 , 

(A.05)       $f„ih = -tan-1d) . 

Here, $min is the fitted azimuth of minimum track elevation found for the data 
samples. For the track data fit, ^min = 3>T- 

To fit higher harmonics to sampled data one can use: 

n-l 

(A.06)       Am = (i) • £ (fc, - (A) J • cos(m • <t>j)    , 

(A.07)       Bm = (i).§(&,-(fc><1.).ain(m.^)    . 
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Appendix B.    Alidade Coordinate System. 

The telescope zenith vector is a fixed vector having spherical coordinates 
(Cr, 3>r) relative to the ground reference frame of the telescope. In the Cartesian 
ground frame coordinate system it has representation: 

(B.01)    W = X • [sin CT • sin $T] + Y • [sin CT ' cos $T] + Z • [cos CT] • 

The alidade reference frame vector Za is fixed, and 

(B.02)        Za($ = Q)=W. 

When the telescope azimuth is zero (as read out by the azimuth encoder) we 
choose arbitrarily: $ = 0 and AZgnc = 0. At zero azimuth, the frame vector 
Xa($ = 0) is determined by the conditions that it is JL to W and has no compo¬ 
nent towards North. That is, we choose arbitrarily: 

(B.03)       Xa($ = 0) • W = 0 ,   and   Xa($ = 0) • Y = 0 . 

The second of these implies that we can write 

(B.04)  xa($ = o) = x/r=T?-x -c-z 

where C is small and to be determined. The first condition then implies 

(B.05)        y/l — C2 • (sinCr * sin^r) — C * (cosCr) = 0,   which gives 

(B.06)        ~-7=s = tan CT-sin ST. 
VI-c 

Because track tilt CT is small, we can use first order approximation, and with 
negligible loss of accuracy set: 

(B.07)        C = Cr-sin^r. 

Frame vector Ya($ = 0) is determined by the orthogonality relation 
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+ 

(B.08) Ya($ = 0)  =  Za($ = 0) X Xa($ = 0). 

Expanding the vector product gives 

(B.09)    Ya($ = 0) = X • [(-C) • (sin CT) • (cos $r)] 

Y • [(C) • (sin CT) • (sin $r) + (cos $r) • x/T^] + 

Z • [(- sin CT) • (cos *T) • x/T^] . 

At arbitrary azimuth, $, the unit frame vectors are: 

(B.lOa)        Xa($) = Xa($ = 0) • cos $ - Ya($ = 0) • sin $ , 

(B.lOb)        ?.($) = Xa($ = 0) • sin $ + K«($ = 0) • cos $ , 

(B.lOc)        Za{$) = W. 

Substituting (B.08) and (B.09) into equations (B.10) ^ves: 

(B.lla)    *«($) = X- [y/T^C- (cos$) + (C) • (sinCr) • (cos$r) • (sin$)] 

+ y ' [(-C) * (sin CT) ' (cos $r) • (sin $) - y/T^ • (cos Cr) • (sin $)] + 

+ Z • [(sinCT) • x/l^^C7 • (cos $T) • (sin$) - (C) • (cos $)] . 

(B.llb)    ya($) = X . [x/T^C1' (sin$) + (-C) • (sinCT) • (cos$r). (cos $)] 

4-f • [(C) • (sinCr) • (cos$T) • (cos$) + y/T^C1 - (cosCr) • (cos$)] + 

4- Z • [(- sin CT) • v/T^? • (cos $T) • (cos $) + (-C) • (sin $)]. 
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To first order: 

(B.12a)    Xa($) = X • [cos$] 4- Y • [-sin$] + 

+ Z • [(Cr) * (cos $r) • (sin $) + (—Cr) • (sin $T) • (cos $)]. 

(B.12b)    ?«($) = X - [sin$] + Y • [cos$] 4- 

4- Z - [(-CT) • (cos$T) • (cos$) 4- (-CT) * (sin$T)(sin$)]. 

(B.12c)    Za($) = X- [(Cr) • (sin$T)] 4- Y • [(Cr) • (cos$r)] 4- Z . [1] 
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Appendix C. TVack Model And Tilt Parameter Determination 

Four tiltmeters will be placed on the alidade bearing platforms, two near each 
elevation axle. For small tilts, each behaves as an ideal 1-axis tiltmeter, which is 
a frictionless mechanism of the following nature. A base plane (considered to be a 
rigid plate) has two perpendicular lines on it. One of these is defined to be the axis 
of a pendulum. The other is defined to be the direction axis of the instrument. 
At their intersection a joint is attached which allows a pendulum weight bob, 
suspended on a line of fixed length, to oscillate freely in a plane perpendicular to 
both the base plane and the pendulum axis. It does not however allow motion 
perpendicular to that plane. The deviation angle of the bob's support line from 
the normal to the base plane is the observed tilt angle (with a suitable chosen 
sign convention).When the base plane is near horizontal, the observed tilt angle 
gives an accurate estimate of the inclination angle of the instrument's direction 
axis to horizontal. The tilt angle is, however, insensitive to the inclination of the 
pendulum axis to the horizontal. 

Tiltmeter orientations are shown in Fig. 2. Instrument Ti is oriented to be 
sensitive to elevation rotations of the alidade, and is located with J£r(Ti) > 0. 
Tiltmeter T3 will also be oriented to be sensitive to elevation rotations of the ali¬ 
dade, but is placed at the opposite bearing, X^Ts) < 0. Tiltmeter T2 is oriented 
to be sensitive to rotations about a horizontal line perpendicular to the eleva¬ 
tion axis, and is located at the same bearing as Ti, Xr(T2) > 0. Tiltmeter T4 has 
the same orientation as T2 and is located at the same bearing as T3, so X^T*) < 0. 

All tiltmeters are simultaneously levelled when the telescope is brought to the 
standard position defined by: ELenc = ELrig, AZenc = 0, $ = 0. Tiltmeter 
pairs will be placed on suitable base plates and calibrated in the Green Bank op¬ 
tical calibration laboratory so that their orientations and orthogonality and zero 
tilt calibration are well-determined in the laboratory. The tiltmeters may subse¬ 
quently be installed on the GBT with accurate alignment along and perpendicular 
to the elevation axis. Each 2-axis tiltmeter will be placed in an instrument pack¬ 
age (possibly temperature regulated) which can be pinned and bolted to a bracket 
on the alidade structure near the elevation axis, together with instrumentation 
and power cables. 

33 



Each instrument package will be provided with a temporary mount for a small 
alignment telescope, to set directions of Ti and T3 parallel to the elevation axle. 

Before starting measurements, the GBT will be brought to standard position 
and all four tiltmeters will be levelled. The instrument behavior is described as 
follows. A unit vector, T^) , is associated to each tiltmeter (i = 1,2,3,4). The 
observed instrument readout gives its tilt angle, either Txe($) about the Xe($)- 
axis, or Tye($) about the y^($)-axis. The expected instrument readouts are given 
in Table 2. 

Table 2. 

Meter    Readout    Standard Position 
Angle       Direction Of 

Instrument Axis 

fi($ = 0) 

Direction Of 
Instrument Axis 

ti^X 4- tiyY -{-tizZ 

Instrument Axis 
Angle To Horizontal 

(Readout Angle) 

Ti 

T4 

Txe($) 

Tye(*) 

-Y 

-X 

-Y 

-X 

Ti(*) 

ft(*) 

f3($) 

f4($) 

yj(tixm* + (M*))' 

t2z($) 

y/(tzx(*W + (tzym2 

t4*(*) 
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Assume a plane track. For $ = 0, the instrument axis direction vectors are 
initially, 

(C.01)   TUO) = { Xa(Q) ■ [fiid) ■ X„(0)] + 

9.(0) ■ [11(0) • ?.(o)] + Za(o) ■ pUo) • za(o)]}. 

This gives: 

(C.02)    f^O)  = f,(0)  =  -Y = 

£(0) • [(-C)' (sinCT) • (sinSr) 4- (- COSCT) - y/T^C?] + 

Za(0)-[(-sinCT)-(cos$r)]. 

(C.03)   f2(0) = f4(0) =-X= {Xa(Q) • (-^/^^C*)} + 

{Ya(0) • [(C) ♦ (sinCr) • (cos$T)] 4- Za(0) - {(-smCr) • (sin$T)]} . 

After the alidade rotates about telescope zenith by angle $ the instrument axis 
direction vectors become, for the case of a plane track: 

(C.04)    fti*) = fj(*) = 

£(*)' [(-0 • (sinCr) • (sin$r) 4- (-COSCT) • x/T3?] + 

Za($).[(-sinCT)-(cos$r)]. 

(cos)  r2(^) = T4($) = xa($) • (-vT^c5) 4- 

n(*) • [(C) ' (sinCr) • (cos$T)] + Za(*) • [(-sinCr) • (sin^)] . 

These direction vectors are expressed in terms of ground frame basis vectors 
X, Y, Z by substituting expressions (B.12) for the alidade frame basis vectors. 
After some manipulation, the direction vectors, to first order in small angles re¬ 
duce to 
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(C.06)   fi(*) = f3($) = ^.[-sin$] 4- f .[-cos$] 4- 

4- Z - [(CT) * (cos $T) • (-1 4- cos $) 4- (CT) • (sin^r) • (sin$)]. 

(C.07)       f2($) = fA(^) = X • (- cos $) 4- Y - (sin $) 4- 

Z • [(-Cr) • (cos $r) • (sin $) + (CT) • (sin $T) • (-14- cos $)]. 

Computing the tilt angles to first order, using the equations of Table 2 gives: 

(C.08)    Txe($) = [(CT) • (cos$r) • (-1 +cos$) 4- (CT) • (sin$r). (sin$)]. 

(C.09)    Tye($) = [(-CT) • (cos QT). (sin $) 4- (CT) • (sin $r) • (-1 4- cos $)]. 

The tiltmeter measurement data is least-squares-fitted to (C.08) to obtain the 
track parameters. 
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Appendix D.   Range Measurements Of Alidade Structure Targets 

Pointing coefficient information may be derived by measuring trajectories of 
alidade-mounted retroreflectors as the telescope rotates in azimuth. In 1999, four 
ball retroreflector targets will be mounted underneath the elevation bearing sup¬ 
port weldments located at each end of the alidade. Distance measurements will 
subsequently be made from laser rangefinders around the telescope base to those 
targets. For any alidade azimuth, at least two lines of sight will be available on 
the right side of the alidade and two more on the left side, towards the bottom 
surface of each weldment. The midpoint of the line between the right and left side 
ball centers at each of the alidade ends defines a line which can be used to find the 
elevation axis of the telescope, independent of the tipping structure's elevation. 
In the alidade frame of reference this line is at a constant offset from the elevation 
axis. After the elevation axis direction has been determined at some reference tele¬ 
scope position (by tracking orbit planes of tipping structure targets and finding 
the common normal to this plane) and this sub-bearing line has been determined 
at the same telescope reference position, the constant vertical and horizontal offset 
angles between this line and the elevation axis become available. One may then 
track the direction of the elevation axis by observations of the sub-bearing targets 
using the ground rangefinders, without having to vary the telescope in elevation. 
It is expected that the horizontal angle of the sub-bearing line could be measured 
to 1 arc-second, and the vertical tilt of this line to 2 arc-second, and the accuracy 
of the elevation axis would be determined to the same accuracy. 

Observations of the direction of this sub-bearing line can be used to cor¬ 
rect for non-linearity of the azimuth encoder and obtain corrections for track- 
nonuniformity. The measurement procedure is analogous to that used for the 
tiltmeters. Using ground rangefinders, the direction of the sub-bearing reference 
line is measured versus azimuth encoder readout angle. It is then possible to de¬ 
rive from the measurement results the track rotation angle, $ , versus the azimuth 
encoder readout angle, AZeQc. (By definition $ = 0 when AZenc = 0). 

Let the unit vector pointing along the sub-bearing reference line(Fig. 2) be 
USb. This fine is rigidly tied to the elevation axis to the extent that the bearing 
platforms are rigidly related to one another. We may write its coordinates as 

(D.01)    ft»(») = ^1 - ^ - ft • £(*) + (7*) • ?.(*) + (-/»*) " W. 
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When the alidade is at uniform temperature, the small parameters 7a6 and P8b 

are constants. Basis vectors ^a($), Ki(^) j and W are defined by equations 
(B.ll). 

We note that, to first order, 

(D.02)   XT{*) = Usb($) 4- (7ei - 7,6) • Ya(*) + (P* -Pei)-W. 

Parameters 7s5 and psb are obtained by trilateration rangefinding of the cen¬ 
ters of the four sub-bearing balls when the telescope is at standard position, with 
AZen<. = 0. The coordinates of the midpoint between the centers of the balls under 
each bearing platform are computed using measured ball center coordinates. The 
unit direction vector along the line of centers is then computed, to give 7s6 and fij,. 

After these parameters have been obtained, one computes a table of the ground 
frame K-component of vector U8b($) versus $ using equations (D.01) and either 
(B.ll) or (B.12). For each measured value of U8b(AZenc) - Y one looks up the 
corresponding value of $. This provides us with a correction table of the measured 
track rotation angle $ versus the azimuth encoder readout angle AZenc. The 
function $(AZenc) is then Fourier analyzed to give dj^ ' and cj j   . 
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Appendix E.   Computation Of First Order Corrections. 

Computation of pointing coefficients to first order involves much algebraic ma¬ 
nipulation. To do the computations one needs efficient notation. Telescope small 
angle parameters are sufficiently small that one can simplify; they are considered 
to be "first order quantities." Rules of computation for first order quantities are 
used. 

Let u and v be first order quantities. We assume the following rules: 

(FO-1) w2 = 0,    v2 = Q,    wv = 0. 
(FO-2) sinw = w,    cosn = 1. 
(FO-3) cos(M 4- u) = cos M —u-sinM, 
(FO-4) sin(M 4- u) = sin M 4- u • sin M. 

The following quantities appear in the mechanical pointing series computations: 

fi Alidade rotation angle, 
AZcom Commanded Azimuth, 
ELcom Commanded Elevation, 
EL^ GBT Rigging Angle, 
ELgrav(ELCOm)      Gravity elevation shift, 
AQ Paraboloid axis' Azimuth Offset 

at standard position, 
EQ Paraboloid axis' Elevation Offset 

at standard position, 
CT GBT zenith angle, 
$T Alidade track azimuth parameter, 
Pel Elevation axis angle excess from 

perpendicularity to azimuth axis, 
7ej Elevation axis' horizontal azimuth 

offset from X direction is (—7^), 
ps , Pc Parameters generating ELgrav 

(ci equation B.27). 
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To simplify the computations we use abbreviated notation: 

M = ELcom CTX = Cr-sin^r 

SM = sin ELcom Crr = CT * cos $T 

CM = COS ELcom a = Pel + CT • sin $r 

S2M = sin(2- ELcom) K = A + lel 
CZM = cos(2'ELcom) e = EQ 

SnM = sin(n • ELctyrn) CnM = COs(n • ELcom) 

L = ELrig 1 = lei 

SL = sin ELrig cL = COS ELrig 

S2L = sin(2 - EL^) C2L = cos(2 • ELrig) 
G(M) = ELgrav(ELcom) 
PL = pc - cos L + ps - sin L PM = Pc - cos M 4- ps ' sinM 

To get pointing series coefficients we first calculate differences of the Cartesian 
coordinates of the as-built telescope's paraboloid axis, at the commanded beam 
angles, from the corresponding coordinates for the ideal design telescope. We then 
compute the quantities AEL and (cos ELcom * A AZ) which appear in equations 
(4.18) and (4.19). These are sums of harmonic terms in commanded elevation 
and azimuth. The terms are compared to those in Condon's series' for the same 
quantities, to get a-priori estimates for the pointing coefficients. 

We first calculate 

(E.01a)       d Px = Px - Qx = P • X - CM . Sn , 

(E.Olb)       d Py = Py - Qy = P - Y - CM - Cn , 

(E.Olc)        dPz = Pz -Qz = P. Z-Sa . 
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Condon's expressions for the pointing series' can be written: 

(E.02a)    A EL = A ELrefraction+ d$L) + 

,  Y^ \^ J    am,n   * SrnO. ' SnM   +   ^m n     Cmil ' SnM +   1 
tr v l C • S^a ■ CnM + dgg ■ Onn ■ cnM    / • 

(E.02b)    ^L^-A ^ =^z>+ 2 £ { "|| • ?"" ' ^ + g' r"1" ' J"M + 1, 
m    n    I   ^.n   * ^mil ' ^nM   +   a>m,n   ' ^mil * ^nM        J 

where all indexed quantities  a,   b,   c,   d are independent of 0 and M. 

The Cartesian coordinates of PQ are: 

(E.03a)        Pox = (sin AQ) • cos(ELrig + £<>), 

(E.03b) PQY = (cos AQ) - cos(ELrig + EQ) , 

(E.03c)        PQZ = sin(ELrig 4- EQ) • 

Expanding the trigonometric sum terms, carrying terms only to first order, and 
introducing the abbreviated notation, we obtain a first order expression for PQ , 

(EM)   PQ = X.(AQ.CL) + Y >(CL-e'SL) + Z.(SL + €.CL). 

We carry out computations to first order.   We first carry out a right hand 
rotation of PQ about the axis 

(E.05)    Xr($ = 0) = XrQ = X - (1) 4- Y • (7) + Z • (-a)    by the angle . 

(E.06)    ELcom + ELgrav-EL^ = M + G-L   to give 

(E.07)    Pi = Xo [3H> • Po] 4- [Po - ^ro [XrQ • Po)] • cos(M + G - L) 4- 

4- [^oxPoj-si^M + G-L). 
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We then carry out a left hand rotation about telescope zenith W by the az¬ 
imuth track rotation angle fi, to give 

(E.08)    P = W [W • Pi] • (1 - cosfi) -f P^cosfi) 4- [A x w] - (sinfi). 

After extensive manipulation and reduction we get, to first order: 

p1 =      X -JK - CL - a. SL -1 - CM + a • SM ] 
(E.09) 4- Y'lCM-e-SM-CSM] 

4- Z-[S'M4-6-C
,
M + G-CM] . 

Using the first order value 

(E.10)    W =X - ((Tx) + ? - ((TY) + Z - (I) 

we carry out rotation (E.08). After some reduction we get, to first order: 

(E.ll)    P = 

X 

+Y 

+Z 

CM-Sn + (K-CL-a'SL).Cil + (<;Tx)'SM 
-(C + CTY) ' SM • Sn + (a- CTX) • SM - Cn 
+(—i) - CM • CQ — G - SM • Sn 

CM-Cn + (a'SL-K.CL)'Sn + (CTY) * SM 

+(CTX -a)'SM-Sii-{- (l) 'CM'SQ 

—G • SM ' CQ, — (e 4- Crr) • SM • CQ 

SM + (Crr + c) * CM + G • CM 

+ (—CTAO • CM - Sn + (—Crr) * CM * CQ 
where 

(E.12)    G = (-pc 'CL-ps' SL)+Pc -CM+PS-SM 
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Using this result in (E.01) gives 

(E.13)   dPz= dEL-CM = -AEL-CM = 

(Crr + e) • CM + (-Pc  CL-pS' SL) -CM + PC-CM-CM 

•{-Ps * SM - CM + (—CTX) • CM - SQ 4- (—Crr) • CM - CQ - 

(E.14)   dPx = 

(CTX) • SM + («• ^L - a- &)« Cft - (e4-CTr) • SM - Sn 

4- (a - CTX) • ^ • Ca 4- (/9c • CL + Ps • •S'L) • SM ' Sa 

4- (-pc) • CM - SM- Sn-{- (-p8) - SM ' SM • Sn-^ (-7) * CM • CQ . 

Substituting (E.13) and (E.14) into (4.17) and (4.19) and combining terms gives: 

(E.15)    (CM) • A AZ = -(CM) • d AZ = 

= -(Cn)"1   dPx- (Cn)-1 • (Sn) • (CM)"
1
 • (SM) 'dPz = 

(-/c.CL4-a-5L)+(CTx-a)-S,M+(7)-CM+(-CTAr)-5,M-Cn4-(CTr)-5Af5a. 

The azimuth pointing series then becomes 

(E.16)    (CM)-&AZ = 

[(-AQ - 7*) • cos ELrig + OHi 4- Crx) • sin EL^] 4- (lei) • CM+ 

+(—A*) • ^M + (—
CTX) * CQ - SM 4- (Crr) * SQ, - SM - 
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The elevation pointing series then becomes 

(E.17)    A£L = 

[(-£o - Crr) + Pc • cos ELrig + ps - sin ELrig] + ((TX) • Sn 4- 

+ (Crr) • Cn + (-Pc)' CM 4- (-ps) • SM - 

Term-by-term comparison of the components of the above series with those of 
Condon's series then gives the coefficients listed in Table lb. 
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Appendix F.   Astronomical To Geodetic Correction. 

The pointing coefficients given earlier are used to correct the commanded beam 
position angles relative to an astronomical local horizon system, that is where the 
Z direction is the local sky zenith, the Y direction is locally horizontal and has no 
eastward component and the X, Y ,an& Z, directions are mutually perpendicular. 

Radio sky-object coordinates are given in a "star-fixed" equatorial system. 
Coordinates of the radio object in this system are tabulated declination and right 
ascension at a given epoch. These must be converted to topographic horizon co¬ 
ordinates. To accomplish this, coordinates of the object are converted to geodetic 
horizon coordinates corresponding to (geodetic) latitude and longitude of the ori- 
gin of the local topographic system. The resulting geodetic coordinates include 
corrections for precession and nutation of the rotation axis of the earth, and also 
refraction. (Geodetic coordinates are referenced to a standard rotational ellip¬ 
soidal model of the earth. The available latitude and longitude for the GBT are 
referenced to the North American datum NAD83.) 

Commanded encoder elevation and azimuth angles given relative to the astro¬ 
nomical horizon system (computed using pointing series without any astronomic- 
to-geodetic coordinate system transformation) must then be additionally cor¬ 
rected to take account of the difference in spatial orientation of the local as¬ 
tronomic and geodetic frames. This correction is time-independent. 

A service for performing these computations is provided by the National 
Geodetic Survey of the NOAA. This service is available on the Internet at address 
"http://www.ngs.noaa.gov/DEFLEC/deflec_comp.html". Geodetic latitude and 
longitude of the local coordinate system's origin are supplied by the user. The 
program "DEFLEC96" returns three angles: Xi Deflec. (arc seconds), Eta Deflec. 
(arc seconds), and Hor. Laplace (arc seconds). The sign conventions used and 
definitions of these quantities are also returned. Given the three quantities, the 
astronomic to geodetic azimuth and elevation corrections can be computed. 
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Available NAD83 survey values (deg nun sec) were entered for GBT Station 
location: 

(F.01) LAT (N) = 38 25 59.23658, LONG (W) = 79 50 23.4054. 

The DEFLEC 96 program returned 

(F.02)    C = -3.43,    T? = 1.33,    Hor. Laplace = -1.06 (arc sec). 

Converting these angle components to radians we use: 

(F.04)    C = -16-6 x lO"6,   TJ = 4-6.45 x lO"6    (radian). 

Quantities £ and TJ are defined as follows (Fig. 7). Let A be geodetic longi¬ 
tude and (j) geodetic latitude at the GBT track-top center. Let A be astronomical 
longitude and $ be astronomical latitude at the same point. Then, 

(F.05)    £ = $-0,    77 = (A-A).cos<£. 

Quantity £ is the deflection of the vertical along the meridian, 17 is the deflec¬ 
tion of the vertical along the prime vertical. 

The geodetic latitude and longitude of the GBT track-top center are: 

(F.06)    4> = +38 25 59.23658 ,    A = -79 50 23.4054   (d m s). 

Definitions of these quantities are given and discussed in [Coo 87]. 

Computation of geodetic pointing corrections proceeds as follows. We assume 
that the commanded beam angles given to the telescope are to be corrected so 
that the telescope paraboloid's axis points to geodetic azimuth Q, and geodetic el¬ 
evation M. The commanded beam azimuth and elevation angles to be given to the 
GBT drive motors are thereby assumed to be Q, 4- An and M -{-AM respectively. 
As before, we let P be a unit vector in the direction in which the paraboloid axis 
is to point. Let HE be the direction of the normal, to the earth reference ellipsoid, 
which passes through the track-top center of the GBT. Let N be the direction of 
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geodetic North and E be the direction of geodetic East at this point. 

We desire that the telescope should point in the direction: 

(F.07)    P = (CM-Sn)'E + (CM'Cn)'N + (SM)-HE. 

To achieve this we demand that the telescope paraboloid axis be brought to the 
attitude 

(F.08)    P = (CM+AM ' Sn+Aa) • X 4- (CM+AM • CQ+AQ) • Y -{- (SM+AM) • Z . 

Geodetic and astronomical coordinate frames are related, to first order by the 
relation: 

(F.09) 

HE 

1 —r} - tan <f)    rj 
rj - tan </>    1 f 
-T) -f 1 

X 

Y 
Z 

To show this we use the defining equations for these frames. Those frames are 
defined with respect to an earth reference ellipsoid centered frame: /, J, K. The 
ellipsoid unit basis vector / is directed from the ellipsoid center along longitude 
—90°, latitude 0°; J is directed from the ellipsoid center along longitude 0°, lati¬ 
tude 0° and K is directed along the ellipsoid minor axis. The geometry is shown 
in Figure 7. The defining equations of the geodetic and astronomical reference 
frame unit basis vectors are then: 
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(F.10) 

HE    =   I(-C+.Sx) + J(C4.Cx) + K(S4)t 

N —     /(—Cf+QQo • S\) 4- «/(C^+9o° • CA) + K(S4,+9(y>) , 

= 7(5'^5'A)4-J(-^.CA) + ^(C^), 

E      = NxHE = I'(-Cx) + J'(-Sx), 

Z      = /(-C* • 5A) 4- J(C* • CA) 4- K(S+) , 

Y      = I(—C^+9o° * ISA) + «/(C<£+9o<> * CA) 4- K(S^+goo) , 

= /(5*.5A) + J(-^'CA)4-F(C*), 

X     = YxZ = I'(-CA) + J'(-SA). 

By definition: 

(F.ll)    T/ = (A-A)-C^,    ^ = ^-^,    which gives 

(F.ll.i)    A^A-hr?.^1  ,    $ = <!> + (. 

For small T/, £, n • C^1, the trigonometric angle sum formulas give: 

SA    =    Sx + ri-Cf   -Cx, 

CA    =    CX — TJ-CJ,   - Sx, 
(F.12) 

o^    =    6^ 4" s * C^ , 

C/^    =    C^ — q - 04 . 

Inverting the first three equations of (F.10) gives 

(F.13) 
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/ = E.(-CA)4-iV.(^.5rA)4-S£;-(-C^.5A), 

J = E-(-SX) + N.(-S4>'CX) + HE-(C4>.CX), 

K   =    N'(C4)^HE'(S4). 

Substituting relations (F.12) into the last three equations of (F.10), and retaining 
terms to first order gives 

(F.14) 

x  =  i(-Cx + 'n'C;l'Sx) + J(-Sx-'n'C^.Cx), 

Y    =    T'(S<rSx + Z'C<rSx + ri't8.n<f>'Cx) _ 
+ J - (- S* - CA - i - C* - Cx + ri -1an <£ • 5A ) 4- K • (C, - f • S*), 

Z    =   T.(-C+-Sx+t.S+.Sx-Ti-Cx) 
+ J'(C+-Cx-t-S4.CX'-r,'Sx) + K'{S+ + t-C+). 

Substituting relations (F.13) into (F.14) gives, to first order, the astronomic frame 
basis vectors in terms of the geodetic frame basis vectors, 

(F.15) 

X    =    E-{-('n'taii(j))'N-'n'HE, 

Y    =    (-T)'tan<f))'E-{-N-('HE, 

Z    =   i.E + t-N + Hs- 
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Inversion of (F.15) gives the geodetic frame base vectors in terms of the as¬ 
tronomical frame basis vectors, which are the desired relations (F.09). Substitute 
(F.09) into (F.07) to express the geodetic pointing requirement (F.07) in terms of 
ground frame basis vectors. (The local ground frame is the astronomical frame of 
reference). 

This gives: 

(F.07b)    P = (CM - Sn) - (X - r) .tant'Y + >n - Z) + 

+ (CM • Cn) - (i? • tantf. X + Y 4-£ • Z) 4- 

+ (SM)-(-ri-X-Z'Y-{-Z),     or 

(F.07c)    P = (CM • Sn + CM • CQ • rf ■ tan<£ - q - SM) • (X) 4- 

+ (CM'Cn-CM-Sn-Ti'ten<t>-t'SM)'(Y) + 

+ (SM +1? • CM • 5ft + (- CM • Cn) • (Z) . 

Expanding the trigonometric angle srnn terms of (F.08) gives 

(F.08b)    P = 

(CM ' CAM — SM * 5AM) * (Sn * CAO 4- Cn • 5An) • X 

4- (CM • CAM — 5M * 5AM) * (Cn • CAQ — 5n • 5An) • Y 

4- (5M • CAM + CM • 5AM) * Z . 

From first order relations (FO-3), (FO-4), we get 
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(F.08c)    P = 

(CM - 5M • AM) • (5ft + Cn • An) • X 

4-(CM-5M-AM).(Cn-5n-An).y 

4-(5M + CM'AM).Z . 

Equating the components of Z in (F.07c) with those of Z in (F.08c) gives, 
after algebraic reduction: 

(F.16)    AM = (rf) - Sn 4- (f) • Cn . 

Equating components of X in (F.07c) with those of X in (F.08c) gives, after 
algebraic reduction, and substitution of (F.16): 

(F.17)    CM • AH = fo • tan <£) • CM + (-i?) • 5M • Cn 4- (0 • SM - Sn . 

The last two equations provide our geodetic pointing corrections. They appear 
as an additive track correction,together with a constant azimuth shift (the hori¬ 
zontal Laplace term) and give the following increments to the pointing coefficients: 

K12 )geodetic      =      "^ 

V   1'1    /geodetic ' ' 

(F.18)     (cC)^   =   +V^<t>, 

( (EL)\ _       , 
VC1.0   Jgeodetic       ~      ^ ' 

(dfoL)) =   H- \   1,U   /geodetic ^ 

These geodetic contributions are included in the coefficients summarized in 
Section 6. It is possible to check (F.16) and (F.18) independently by use of 
equations (6.39) through (6.42) found in Leick [Lei 90]. 

51 



References 

[Con 92]   J. J. Condon, "GBT pointing equations", GBT Memo 75, 1992. 

[Coo 87]   M. A.R. Cooper, "Control Surveys In Civil Engineering", 
Nichols Publishing Company, NY, pp. 31-41, 1987. 

[Gol 97]   M. A. Goldman, "GBT coordinates and coordinate 
transformations", GBT Memo 165, February 15, 1997. 

[HGPP 98]  R. Hall, M. A. Goldman, D. H. Parker, and J. M. Payne, 
"Measurement program for the Green Bank Telescope", 
GBT Memo 186, 1998. 

[Kav 96]   B.F. Kavanagh and S.J.G. Bird, "Surveying Principles and 
AppHcations," 4'th Ed., Prentice Hall, Englewood Cliffs NJ, 
pp. 432-443. 

[Kil 1]   R. Kilbrick, L. Robinson, and D. Cowley, "An evaluation of 
precision tilt-sensors for measuring telescope position," in Telescope 
Control Systems, P.T. Wallace , ed., Proc. SPIE 2479 pp. 341-352, 1995. 

[Kil 98]   R. Kilbrick, L. Robinson, V. WaUace, and D. Cowley, "Tests of 
a precision tiltmeter system for measuring telescope position," 
Proc. SPIE 3351 pp. 342-353, 1998. 

[Lei 90] A. Leick, "GPS Satellite Surveying," Wiley, NY, 1990, pp. 185-191. 

[MR 98]   P. Matheny, and B. Radcliff, "Hydrostatic level operation," 
GBT Archive L0472. 

[Mor 97]   H. Mortin "Measurements on the GBT," GBT Archive A0082, 
Oct. 01, 1997. 

[Pel 92] P. Pellissier, "Pellissier model H5 portable hydrostatic level/tiltmeter," 

52 



GBT Memo 116, May 1992. 

[Pel 93]  P. Pellissier, "Benchmarks for accurate leveling," GBT Memo 117, 
May 1993. 

[Par 97] D.H. Parker, "The Green Bank Telescope Laser Metrology 
Project, A Review," GBT Archive L0294, April 1997. 

[PG 98] J. M. Payne, and M. A. Goldman, "Proposal for a GBT measurement 
program", GBT Memo draft, 1999. 

[Wei 95]    D. Wells, "The GBT tipping-structure model in C," 
GBT Memo 173, January 1998. 

[Wei 98]    D. Wells, "The Condon series pointing model in C," 
GBT Memo 173, January 1998. 

53 





/\ 
Z is the local upwards gravity vertical. 
/\ 
W is the GBT zenith vector. 
/\ 

HE   is the direction of a line, through the 
track center, which is locally normal 
to the NAD83 earth reference ellipsoid. 

(**    is the tilt of telescope zenith 
T   to the local gravity vertical. 

$   is the track azimuth of 
minimum track elevation. 

Mean alidade track plane. 

/\ 
Y (Horizontal North) 

X = YxZ 
Figure 1 
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sb 
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'i^ Mean alidade 
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Figure 2. 



Trilaterate on ba 
retroreflector in 
left-right midplane 
as elevation varies, 
to generate points 
of an orbit plane 
perpendicular to 
the elevation axis. 

Dn+p x   Dn  =   ^r 

Figure 3.   Rangefinder Determination Of The Elevation Axis. 



Telescope Azimuth 

a 

Plane parallel to track plane. 

lean alidade track plane (MATP) 
Figure 4.   Elevation Axis Offset Geometry 



GBT Zenith vector   yy 
is axis of Rotg 

/  P. 
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Q ^ (AZcom, ELcom) 

P - (AZcom-AAZ, ELcom-AEL) 

1>N\\ Po=(Ao, ELrig * Eo) 
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/ 

Figure 5. X       Xr(0)     Elevation axis at standard 
position is axis of Rot1 

Rot1    = ELcom-ELrig+ELgrav(ELcom) 

Rot2 | = AZcom 



p 

p 

For left hand rotations of r about unit axis vector n 

r'   = ON ♦ NV ♦ VR 

r'   =  n (n.r) + [r - n (n«r)]cos$+ (rxn)sin<l> 

Figure 6.   Rotation Of A Vector About An Axis 



Table 3. Main Reflector Axis Orientations For Pointing Correction Calculations 

Point Associated 
Unit Vector 

Pi 

QQ Qo 

QI Qi 

Telescope Encoder 
Reading 

As-Built Telescope 

AZenc(Po) = 0 (=$0) 
ELen^Fb) — ELrig ^ 
Rotate tipping structure about Xr($ = 0) 
until elevation encoder reads ELenc = ELcom 
AZ^Px) = 0, ELenc(Pl) = ELcom 
Rotate alidade structure about telescope 
zenith direction, W, until azimuth 
encoder reads AZenc = AZcom (= 3>). 
AZenc^P) = AZcom 

ELencyP) = ELcom 

Ideal Telescope 
AZenc(Qo) = 0, ELenc(Qo) = ELri9 

Rotate tipping structure about X until 
elevation encoder reads ELcom- 

AZenc(Qi) = 0, ELenc(Ql) ~ ELcom 

Rotate tipping structure about Z 
until azimuth encoder reads AZenc = AZcom. 

AZenc(Q) = AZcom 
ELenc(Q) = ELcom 

Ground Frame 
Polar Coordinates 

AZ(P0) = Ao 
EL{Po) = EQ + ELria 

AZ(Pi), EL(Pl) 

AZ(P) = AZcom + i-AAZ) 
EL(P) = ELcon + (-A EL) 

AZ(Qo) = 0, EL(Qo) = ELrig 

AZ{Ql) = 0, EL(Ql) = ELc 

AZ(Q) = AZc 
EL{Q) = ELC 

Ideal direction vector QQ points along the design direction of the main reflector surface's optical axis as 
designed, when azimuth and elevation encoders indicate standard telescope position. Direction vector PQ 

is assumed to point in the direction of the main reflector surface optical axis, as built and aligned, when 
the telescope encoders indicate standard position. Parameters AQ and EIQ are small angle deviations of the 
as-built paraboloid axis' pointing as set initially (during surface panel aUgnment), from the ideal values 
at standard telescope position. The rotations above are computed as functions of track parameters Cr 
and $T > elevation axis parameters fid and 7^ , the Finite Element Model calculated gravity deformation 
elevation correction ELgrav(ELCom) , and the rigging elevation angle ELrig, to compute the pointing 
deviations: AAZ, AEL, to be added to the commanded values, in order to direct the (surface-actuator- 
corrected) paraboloid's axis to polar angles ELcom , AZcom with respect to the ground reference frame. 
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Figure 7.   Geodetic And Astronomic Reference Directions, 
GBT meridian plane 


