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Abstract 

Simulated rangefinder data is fitted to estimate rangefinder coordinates, zero points and backprism 
offsets, and to estimate coordinates of target retroreflectors. The translation and tilt of trusses with 
retroreflectors attached are estimated from rangefinder data, for the cases of differential backup-structure 
pointing corrections and subreflector pose determination. The differential pointing technique is advocated 
for Phase I implementation early in 2000. The simulation code shown here executes faster than the data 
acquisition process being simulated, so this code is a candidate for production use. 
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1    Introduction 

A total of 20 laser rangefinders [Par97, PPB92, PP90, Cre98, Par96, PPB95] have been built to be used in 
the control system of the Green Bank Telescope. They are to be allocated as follows: 

• 12 of them are to be mounted on stable piers, arranged in a ring with 120 m radius, at about the height 
of the pintle bearing, in order to provide a ground reference for pointing the beam of the telescope 

• 4 of them are to be mounted around the Gregorian feedroom [Wel98c] in order to measure the primary 
mirror surface and to measure the position of the subreflector 

• 2 of them are to be mounted on the lower part of the feedarm [Wel98c] in order to provide the lateral 
measurement of the primary mirror 

• 2 of them are spares 

In the Fall of 1998, during discussions of rangefinder data processing strategies for generating pointing 
corrections, it was pointed out that no least-squares model-fitting software for processing such data had 
yet been built. The author decided to construct some proof-of-concept implementations in the form of 
simulations. The simulations consist of datasets generated by Perl [WCS96] code and fitted by Gaussfit 
[JFMM88] models; they are a proof-of-concept because if real rangefinder data were substituted for the 
simulated data, the models would produce analogous answers for the real GBT. As we will see, these 
model-fitting programs have turned out to execute faster than the real-time data acquisition which they 
are simulating, and so they axe not just proofe-of-concept, but could actually be practical for production 
use. 

Model fitting has a fundamental advantage over surveyor-style algorithms for rangefinder data: it can 
incorporate appropriate mathematics for modelling index of refraction variations (e.g. empirical lapse rates), 
thermal expansion effects and motion of targets. For example, the model shown in Figure 5 (p. 17) solves for 
thermal expansion and incorporates the angular velocity of the target truss structure. 

There has been some prior fitting of models to real (not simulated) rangefinder data. Cotton [Cot97] 
conducted experiments in which four prototype rangefinders measured ranges to three retroreflectors mounted 
on the backup structure of the 140 foot telescope [Par96]. Cotton's report discusses prototype data acquisition 
code which could probably still operate, because it is believed that there have been no significant protocol 
changes for the rangefinders since his work. Cotton coded his analysis implementation in Fortran 77, calling 
ODRPACK [BBRS92] subroutines to fit geometric models to the range measurements. 

A Fortran program which fits simulated noisy range data for the case of four or more GBT feedarm 
rangefinders measuring the XYZ coordinates of a GBT primary mirror retroreflector prism was built by 
F. Schwab some years ago. This work was not published, but Schwab [Sch90] did publish the error analysis 
for the problem. 

Goldman has used the STAR*NET1 surveyor's reduction program to simulate determination of the 
subreflector position and orientation; his simulations are similar to the author's Gaussfit simulations discussed 
in Section 4.3. He used the same technology to analyze the case of retrospheres [Gol96] to be mounted beneath 
the elevation bearing housings of the GBT [Gol97]. Goldman [citation?] previously simulated the use of 
the "triplet" retroreflectors around the edge of the primary mirror to aid in transferring ground coordinate 
system to the feedarm rangefinders. 

1Starplus Software, Inc., Oakland, CA 
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2    The "plane" problem 

The GBT will have 12 rangefinders mounted on stable piers, arranged in a ring with 120 m radius, at about 
the height of the pintle bearing. The piers have been installed to such accuracy that the rangefinders can be 
regarded as being in a plane, and 2-D regressions can be used instead of 3-D for modeling inter-rangefinder 
data. Currently 7 of the 12 rangefinders are operational. Of the n(n — 1) = 42 ranges which could be 
measured between 7 rangefinders, only 32 are currently unblocked. 

Ranges measured by the rangefinders contain zero-point offsets. Each rangefinder has a prism mounted in 
its baseplate which can be observed by orienting the steering mirror at 45° to the baseplate. The distance 
between the steering mirror and the reflection point of the baseplate prism can be determined, so that ranges 
to this zero-point prism can be subtracted from all other ranges to correct the zero point offset so that ranges 
will be referred to the axis-intersection point in the surface of the steering mirror. 

Each rangefinder has a retroreflector prism mounted on the back of its steering mirror; these will be referred 
to as 'backprisms'. If the mirror is oriented so that its backprism points toward another rangefinder, that 
rangefinder can measure the distance to the first rangefinder; the range must be corrected for the distance 
between the surface of the mirror and the reflection point of the back-prism. 

In practice there are several other details about the rangefinders which must be considered. The ranges are 
really phase measurements, and there is a cycle count ambiguity, with period about 10 cm. The geometry 
of each retroreflector prism has a manufacturing error which can be calibrated in the laboratory to produce 
the "glass correction". The piers have Kelvin mounts which permit interchanging rangefinders, and so the 
vector offset between the Kelvin mount and steering mirror of a rangefinder should be calibrated. These 
operational details have been ignored in these simulations. 

Three models will be simulated in this section: (1) solving for rangefinders positions from range data, (2) same 
as (1), but with unknown zero-points and (3) same as (2), but with unknown back-prism calibrations as well. 
The second and third simulations are provided to demonstrate that these calibration values can be inferred 
from internal evidence in datasets if necessary; in practice it is preferable to determine these numbers by 
precision measurements in the laboratory so that the full statistical weight of the data can be brought to 
bear on the determination of the parameters required for GBT operations. 
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2.1    Relative 2-D positions of rangefinders in a plane 

In this first simulation 7 rangefinders range on each other, and we assume that all corrections have been 
applied to the data so that the ranges represent true steering-mirror to steering-mirror distances. The 
7 instruments (ZY110, 111, 112, 101, 102, 103 and 104 as identified in Figure 2 on p.4 of [Wel98c]) are 
assumed to be 120000 mm from the pintle bearing, spaced by — = 30° in azimuth, with ZY101 5° East of 
North. Only 32 combinations of distance between them have been computed (the ones which were unblocked 
as of 1999-03-162) and Gaussian noise3 with amplitude 0.1 mm is added to the distances to produce the 
input data table: 

Simulated range data (rfsPlanel] 
rl r2 range 2 

"rang* noise ZXrang* 

mm mm mm 

110 111 62116.49 0.01 -0.08 0.00 
110 112 119999.90 0.01 -0.10 0.00 
110 101 169705.59 0.01 -0.04 -0.04 
111 110 62116.53 0.01 -0.04 0.04 
111 112 62116.49 0.01 -0.08 0.01 
111 101 119999.96 0.01 -0.04 -0.02 
111 102 169705.64 0.01 0.01 0.01 
112 110 119999.81 0.01 -0.19 -0.08 
112 111 62116.49 0.01 -0.08 0.01 
112 101 62116.53 0.01 -0.04 -0.12 
112 102 120000.09 0.01 0.09 0.02 
112 103 169705.88 0.01 0.25 0.12 
112 104 207846.11 0.01 0.01 0.02 
101 110 169705.71 0.01 0.08 0.08 
101 111 120000.08 0.01 0.08 0.11 
101 112 62116.56 0.01 -0.01 -0.08 
101 102 62116.45 0.01 -0.12 -0.09 
101 103 120000.06 0.01 0.06 0.04 
101 104 169705.57 0.01 -0.06 -0.01 
102 111 169705.53 0.01 -0.10 -0.10 
102 112 120000.20 0.01 0.20 0.14 
102 101 62116.54 0.01 -0.03 0.00 
102 103 62116.60 0.01 0.03 -0.02 
102 104 120000.09 0.01 0.09 0.03 
103 112 169705.68 0.01 0.06 -0.08 
103 101 119999.97 0.01 -0.03 -0.06 
103 102 62116.60 0.01 0.03 -0.02 
103 104 62116.66 0.01 0.09 -0.00 
104 112 207846.05 0.01 -0.05 -0.04 
104 101 169705.61 0.01 -0.01 0.03 
104 102 120000.05 0.01 0.05 -0.00 

These range data are fitted using the Gaussfit model shown in Figure 1, in order to solve for the 14 X and 
Y corrections prd[ranger,axis] to the a priori coordinates of the 7 rangefinders pr[ranger,axis].4 The 

column above gives the range residuals from the model fit, and they appear to be consistent with 'range 

the 0.1 mm RMS noise (column noise above) which was added to the distances computed for the simulated 
dataset.5 

2R.Creager private communication 
3See the fragment of Perl source code on p.29 for the algorithm which generates the noise for the simulated dataset. 
4Solving for corrections rather than for the coordinates themselves is called an 'adjustment' in surveyor parlance. 
5 In this simulation, whose noise is generated numerically, we can be certain that the range residuals have a "normal" 

(Gaussian) distribution, and that standard least-squares (a.k.a.   "Z^-norm") is the appropriate technique for fitting models. 
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/* rfsPlanelModel.gf   N rangefinders in a plane 

This model does a LS fit of inter-rangefinder measurements between 

N rangefinders in a plane without zero point errors and 

without backprism errors. 

The sum of the corrections to rangefinder coordinates is constrained 

to zero, and rotation of the solution is constrained to zero. 

This rfsPlanelModel.gf was generated Hon Apr 5 17:40:00 EDT 1999 

*/ 

constant 

parameter 

data 

observation 

pr[ranger,axis]; 

prd[ranger,axis]; 

rl, r2; 

range; 

mainO 

variable i, sum, rad, naxes-2; 

vairiable nr, lrl[30], prdsum[2] , found; 

nr * 0; prdsum[0] = 0; prdsum[l]=0; 

while (import O) { 
sum = 0.0; for (i = 0; i < naxes; i = i + 1) 

sum - stun + ((pr[rl,i]+prd[rl,i]) - 

(pr[r2,i]+prd[r2,i]))"2; 

rad = sqrt(sum); 

export(range - rad); 

/* accumulate sums of prd[,] over rangers: */ 

found = 0; for (i = 0; i < nr; i = i + 1) { 

if (rl == lrl[i]) { found = 1; } 

} 
if (found == 0) { 

IrUnr] = rl; 

nr = nr + 1; 

for (1=0; i < naxes; i = i + 1) 

prdsum[i] = prdsum[i] + prd[rl,i]; 

} 

} 
for (i = 0; i < naxes; i = i + 1) 

exportconstraint(prdsum[i]);    /* delta-XY translation */ 

exportconstraint(prd[110,1]-prd[104,1]); /* 110—>104 rotation */ 

Figure 1: Gaussfit model for the rangefinders-in-a-plane case 
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The model shown in Figure 1 solves for the 14 parameters prd [ranger, axis]. The independent variables 
("data" declaration in Figure 1) of the regression are rangefinder indices rl and r2, and the dependent 
variable ("observation") is range. The while loop reads the data table shown above by calling function 
import(), which sets rl, r2 and range. The algorithm sums the squares of the coordinate differences 
between the two rangefinders and takes the square root to get the computed range. It then calls function 
export () with the difference between the observed and computed ranges; this is the equation-of-condition 
formed from the observation, and Gaussfit will adjust the prd[,] parameters until the sum of the squares 
of the these O-C differences is minimized.6 

It is necessary to supply three constraints on the 14 unknowns prd[,], because the input range data 
is consistent with any arbitrary translation and rotation of the set of rangefinder coordinates. The 
implementation shown here constrains translation by forming the sums of the prd [, axis] values and then 
calling function exportconstraint () to assure that the means of the coordinate corrections will be zero.7 It 
constrains rotation by calling function exportconstraint () with the difference between the corrections to 
the Y-coordinates of the two rangefinders which are farthest apart in X.8 Even with these constraints, there 
are still four possible X and Y mirror-symmetry solutions to the coordinate corrections; Gaussfit delivers 
the one which is near the initial parameter values. In practice the absolute positions of certain monuments 
and the true azimuth between several monuments will be known by geodetic calibrations, and these values 
can be used as the necessary constraints instead of the arbitrary constraints used in this simulation. 

The parameter values produced by this fit are the prd column in the table below: 

Rangefinder coordinates (rf sPlanel) 
ranger axis pr 

mm 
prq 
mm 

prd 
mm mm 

110 0 -119543.36 0.0 -0.00 0.14 
110 1 10459.69 -1.0 -0.21 0.05 
111 0 -98298.25 0.0 -0.13 0.05 
111 1 68829.17 0.0 0.75 0.06 
112 0 -50714.19 0.0 -0.41 0.02 
112 1 108756.93 0.0 0.94 0.07 
101 0 10460.69 -2.0 -2.39 0.03 
101 1 119543.36 0.0 1.25 0.07 
102 0 68827.17 2.0 1.71 0.03 
102 1 98303.25 -5.0 -3.37 0.05 
103 0 108755.93 1.0 1.06 0.07 
103 1 50715.19 -1.0 0.86 0.06 
104 0 119543.36 0.0 0.17 0.12 

Note that prd[104,1] has the same value as prd[110,1]; this is the rotation constraint on the solution. The 
(Tprd values are the formal uncertainties of the correction parameters; they are fairly uniform and symmetrical 
across the array of rangefinders (e.g., the X coordinate formal errors of both ZY104 and ZY110 are larger, 

However, real datasets often contain wild "outlier" values. In the case of the rangefinders and their cycle ambiguity, it is 
entirely possible for ranges to be wrong by about 10 cm. Gaussfit is able to cope with these non-Gaussian-statistics situations, 
by enabling one of its "robust estimation" ("Huber-type") modes, which automatically pay less attention than would least- 
squares to observations with large residuals; see [JFMM88, Section 2.4 "Robust Estimation"] for the details and environment 
file options. 

6 In this section the author concentrates on the least squares model language; in Section 4.3 (p.22) the author illustrates the 
shell command, the environment file and multiple parameter files for a Gaussfit modeling problem. 

7Early versions of this code set the X and Y coordinate of the first rangefinder to nominal values. This worked but biased 
the distributions of residuals and formal errors. 

8A more elegant, but more complicated, technique for constraining rotation of the solution would be to compute the net 
moment of the X-Y correction vectors about the centroid of the distribution of rangefinders, and export that quantity as the 
constraint. 
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exactly what one would expect after inspecting the geometry). In general, the formal errors of the parameters 
are comparable to or smaller than the noise (100/im) in the range data. 

The prq [ranger, axis] values above are perturbations which were applied to the pr[,] values so that we 
could simulate solving for unknown coordinates. I.e., ranges were computed with true values, but the starting 
values used for the model fit were perturbed by random numbers. The perturbations are Gaussian with a 
of 2 mm, and they have been truncated to integers. The reader can see that the prq and prd columns are 
correlated, but the X and Y values are offset because means of the prd are constrained to zero, and that 
depends on whatever happens to be the mean of the prq values. Presumably the prd[,] and prq[,] values 
are related by a 3-term linear transformation (the author has not checked this), representing the fundamental 
uncertainty about absolute translation and rotation which is inherent in surveying. I.e., we are able to solve 
for 14 numbers which can reproduce the observed ranges with RMS of order lOO^m (see the Arange column 
of the table on p.4), but the real information content of the 14 numbers is only their relative values. 

The fourteen parameters which have been estimated by fitting this least-squares model to simulated range 
data are related. The logic is inescapable: if the coordinates of one rangefinder are perturbed, range data 
connecting that rangefinder to another rangefinder will imply that the coordinates of the second rangefinder 
must also be perturbed. Range data connecting the second rangefinder to a third rangefinder will imply that 
it too must be perturbed. Therefore it is not surprising that each of the fourteen parameters is correlated 
with almost every other parameter: 

prd prd  prd prd prd prd prd prd prd prd prd prd prd prd 
110,1 104,1 111,0 101,0 112,0 102,0 103,1 101,1 112,1 102,1 103,0 104,0 111,1 110,0 

prd [110,1] 100 100  -34 -41 34 -8 49 -79 -80 -24 62 91 -12 -91 
prd [104,1] 100  -34 -41 34 -8 49 -79 -80 -24 62 91 -12 -91 
prd[lll,0] 100 7 -38 32 -25 47 43 50 -48 -52 -65 27 
prd[101,0] 100 -17 -5 -46 41 44 -5 -45 -43 22 42 
prd[112,0] 100 -9 12 -31 -36 -17 24 34 23 -38 
prd[102,0] 100 -17 2 5 57 -23 -18 -25 -5 
prd[103,1] 100 -59 -66 -12 82 48 -26 -62 
prd[101,1] 100 66 11 -69 -79 -8 81 
prd[112,1] 100 6 -71 -79 1 82 
prd[102,1] 100 -26 -30 -50 9 
prd[103,0] 100 59 -1 -72 
prd[104,0] 100 6 -87 
prd[lll,l] 100 18 

Note that the correlation of prd[110,1] with prd[104,1] is 100%; this is simply the rotation constraint on 
the two Y coordinates. However, this constraint causes the two X coordinates prd[110,0] and prd[104,0] 
to be about 90% correlated with the Y coordinates and to be almost 90% correlated with each other. 
Experience shows that correlations less than about 80% are not serious difficulties in this type of least 
squares problem. If all 12 rangefinders were available, so that there would be multiple independent chains 
of ranges from station to station, many of these correlations would be significantly reduced. 

The simulation in this section (determination of rangefinder positions with zero points and backprism offsets 
known) is one of the real problems which we will want to solve in the GBT. However, sometimes we may 
wish to reduce datasets even though the rangefinder calibration is incomplete. In the next two sections we 
will demonstrate how the Gaussfit model can be extended to solve such problems in this case of rangefinders- 
in-a-plane. 

2.2    Relative 2-D positions and zero points of rangefinders 

Suppose that the zero point calibrations of the rangefinders are not known; is it still possible to solve 
for the rangefinder positions from range data? The answer is yes. We simply define 7 more parameters 
zero [ranger], and subtract them from the ranges computed in the model, as shown in Figure 2. The total 
number of parameters is 2 x 7 — 3 + 7 = 18; as long as we have more equations of condition than parameters, 
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/*  rfsPlane2Model.gf   N rangefinders+zero_points in a plane 

This model does a LS fit of inter-rangefinder measurements between 
N rangefinders in a plane with N zero point errors and 
without backprism errors. 

The sum of the corrections to rangefinder coordinates is constrained 
to zero, and rotation of the solution is constrained to zero. 

This rfsPlane2Model.gf was generated Mon Apr 5 17:40:01 EDT 1999 
*/ 

constant 
parameter 
data 

pr[ranger,axis]; 
prd[ranger,axis], 
rl, r2; 

zero[ranger]; 

observation range; 

variable i,  sum,  rad, naxes=2; 
variable nr,  lrl[30],  prdsum[2],  found; 

nr = 0;  prdsum[0]   = 0;  prdsum[l]=0; 
while   (import())  { 

sum * 0.0;  for  (i = 0;   i < naxes;   i = i + 1) 
sum = sum +  ((pr[rl,i]+prd[rl,i])   - 

(pr[r2,i]+prd[r2,i]))~2; 
rad = sqrt(sum)   - zero[rl]; 
export(range - rad); 

/* accumulate sums of prd[,]  over rangers:   */ 
found = 0;  for  (i = 0;   i < nr;   i = i + 1)  { 

if  (rl == lrl[i])  { found = 1;  } 
} 
if  (found == 0)  { 

lrl[nr]  = rl; 
nr - nr + 1; 
for  (i = 0;   i < naxes;   i = i + 1) 

prdsum[i]   = prdsum[i]   + prd [r 1,1]; 
} 

} 
for  (i = 0;   i < naxes;   i = i + 1) 

exportconstraint(prdsum[i]); /* delta-XY translation */ 
exportconstradnt(prd[110,1]-prd[104,1]);   /* 110—>104    rotation */ 

Figure 2: Gaussfit model for the rangefinders-in-a-plane+zeroes 
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least squares problems of this type can be solved.9 In this case we have almost twice as many observations as 
unknowns. Of course in solving for zero points we are spreading the weight of the data more thinly to cover 
more unknowns, and so the formal errors of the rangefinder coordinate parameters are somewhat larger: 

Rangefinder coordinates (rf sPlane2) 
ranger axis 

mm 
prq 
mm 

prd 
mm mm 

110 0 -119543.36 0.0 -0.44 0.24 
110 1 10455.69 3.0 1.33 0.15 
111 0 -98297.25 -1.0 -1.79 0.09 
111 1 68829.17 0.0 -1.46 0.10 
112 0 -50716.19 2.0 1.02 0.06 
112 1 108755.93 1.0 0.04 0.16 
101 0 10457.69 1.0 0.04 0.05 
101 1 119543.36 0.0 -1.04 0.16 
102 0 68827.17 2.0 1.25 0.07 
102 1 98297.25 1.0 0.36 0.10 
103 0 108754.93 2.0 1.48 0.11 
103 1 50714.19 0.0 -0.58 0.10 
104 0 119544.36 -1.0 -1.56 0.21 

As before, the prq values are perturbations of the a priori coordinates by quantized 2 mm RMS noise; 
although the prq and prd columns are correlated, the X and Y values are offset because means of the prd 
are constrained to zero, and that depends on whatever happens to be the mean of the prq values. The formal 
errors of the 7 zero point parameters zero [ranger] are comparable to the 100/im noise in the range data: 

Zero points (rf sPlane2) 
ranger zeroq 

mm 
zero 
mm mm 

110 0.00 0.14 0.12 
111 1.00 1.07 0.10 
112 2.00 2.25 0.10 
101 5.00 5.11 0.09 
102 0.00 0.17 0.09 
103 0.00 0.19 0.10 

The zeroq values are the quantized 2 mm RMS perturbations of zero point which were used in the 
computation of the simulated range data. Note that the least-squares model has recovered these zero points 
with good accuracy. 

2.3    Relative 2-D positions and zero points and backprism offsets 

Suppose that, in addition to not knowing the zero point prism calibrations, we don't even know the backprism 
offsets; can this problem be solved? Again the answer is yes, except that numerical experiments have shown 
that we must impose one more constraint on the solution. The explanation for this is that the same ranges 
will be observed if an arbitrary constant is added to all zero points and subtracted from all backprism offsets. 

9The exceptions to this assertion are the pathological cases; for the "plane" problem being considered here the obvious 
pathological case would be the seven rangefinders almost in a line, so that positions orthogonal to the line would be indeterminate. 
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/*  rfsPlane3Model.gf   K rangefinders+zero_points+backprisms in a plane 

This model does a LS fit of inter-rangefinder measurements between 

N rangefinders in a plane with N zero point errors and 

with N backprism errors. 

The sum of the corrections to rangefinder coordinates is constrained 

to zero, and rotation of the solution is constrained to zero. 

The sum of the backprism corrections is constrained to zero. 

This rfsPlane3Model.gf was generated Mon Apr 5 17:40:02 EDT 1999 

*/ 

constant pr[ranger,axis]; 

parameter prd[ranger,axis], zero[ranger], back[ranger]; 

data rl, r2; 

observation range; 

variable i,  sum, rad, naxes=2; 
variable nr,  lrl[30],  prdsum[2],  found; 
variable backsum,  zerosum; 

nr = 0; prdsum[0]   = 0; prdsum[l]=0; 
backsum = 0;  zerosum = 0; 
while  (import())   { 

sum = 0.0;  for  (i = 0;   i < naxes;   i = i + 1) 
sum = stun +  ((pr[rl,i]+prd[rl,i])   - 

(pr[r2,i]+prd[r2,i]))"2; 
rad = sqrt (sum)   - zero[rl]   - back[r2]; 
export(range - rad); 

/* accumulate sums of prd[,]   over rangers:   */ 
found = 0;  for  (i = 0;   i < nr;   i = i + 1)  { 

if  (rl == lrl[i])  { found - 1;  > 
> 
if  (found == 0)  { 

lrl[nr]  = rl; 
nr = nr + 1; 
for  (i = 0;   i < naxes;   i = i + 1) 

prdsum[i]   = prdsum[i]   + prd[rl,i]; 
backsum = backsum + backfrl]; 

} 
} 
for  (i = 0;  i < naxes;   i = i + 1) 

exportconstraint(prdsum[i]); /* delta-XY translation */ 
exportconstraint (prd [110,1]-prd [104,1] ) ;   /* 110—>104    rotation*/ 
exportconstraint(backsum); 

Figure 3: Gaussfit model for rangefinders-l-zeroes+backprisms 
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In Figure 3 we see that the zero point and backprism parameters are subtracted from the computed ranges, 
and that the sum of the backprism offsets is constrained to zero. We now have 2x7 — 3 + 7 + 7—1 = 24 
parameters, and even with the blocked lines-of-sight the current array of 7 rangefinders has more equations- 
of-condition than parameters. However, the uncertainties in the parameters get rather large for such a 
dataset. Therefore, to make this simulation more interesting, we will do it on the assumption that we have 
all 12 rangefinders and that they can all see each other, so that we have 12 x 11 = 132 equations of condition 
for the 24 parameters. We get: 

Rangefinder coordinates (rf sPlaneS) 
ranger axis pr 

mm 
prq 
mm 

prd 
mm 

tfprd 

mm 
101 0 10457.69 1.0 1.33 0.04 
101 1 119543.36 0.0 0.01 0.09 
102 0 68828.17 1.0 1.40 0.06 
102 1 98299.25 -1.0 -0.92 0.08 
103 0 108755.93 1.0 1.47 0.08 
103 1 50714.19 0.0 0.10 0.06 
104 0 119545.36 -2.0 -1.55 0.09 
104 1 -10458.69 0.0 -0.01 0.03 
105 0 98298.25 0.0 0.48 0.07 
105 1 -68830.17 1.0 0.98 0.06 
106 0 50717.19 -3.0 -2.61 0.05 
106 1 -108753.93 -3.0 -2.95 0.08 
107 0 -10457.69 -1.0 -0.61 0.04 
107 1 -119543.36 0.0 -0.04 0.09 
108 0 -68830.17 1.0 1.38 0.06 
108 1 -98299.25 1.0 0.92 0.08 
109 0 -108755.93 -1.0 -0.67 0.08 
109 1 -50717.19 3.0 2.99 0.06 
110 0 -119543.36 0.0 0.52 0.09 
110 1 10458.69 0.0 -0.01 0.03 
111 0 -98298.25 0.0 0.46 0.07 
111 1 68829.17 0.0 -0.06 0.06 
112 0 -50712.19 -2.0 -1.60 0.05 

Note that the formal errors of the coordinate corrections are significantly less (often 2 —3x) than the noise in 
the simulated range data; this is due to the averaging that occurs with more than 5x as many observations 
as unknowns. The X and Y values in the prq and prd columns are offset, as in the two previous simulations, 
because means of the prd are constrained to zero, and that depends on whatever happens to be the mean 
of the random prq values. 

The simulated range data were perturbed by zero points and backprism offsets with quantized 2 mm RMS, 
as in the previous section: 
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Zero points (rf sPlaneS) 
ranger zeroq 

mm 
zero 
mm 

backq 
mm 

back 
mm mm 

Ozero 

mm 

101 0.00 0.01 0.00 -0.01 0.07 0.08 
102 0.00 0.05 -2.00 -2.02 0.07 0.08 
103 0.00 0.11 0.00 0.05 0.07 0.08 
104 0.00 0.09 3.00 3.05 0.07 0.08 
105 0.00 0.07 0.00 0.04 0.07 0.08 
106 2.00 1.98 -4.00 -4.09 0.07 0.08 
107 0.00 0.01 0.00 0.03 0.07 0.08 
108 0.00 0.08 3.00 3.06 0.07 0.08 
109 0.00 0.07 2.00 2.07 0.07 0.08 
110 0.00 -0.02 -1.00 -1.07 0.07 0.08 
111 2.00 1.91 -2.00 -2.07 0.07 0.08 

The regression has recovered the zero point and backprism offsets with good accuracy and with formal error 
comparable to the range noise. 

In summary, the rangefinders-in-a-plane problem is completely soluble, even including unknown zero points 
and backprism offsets. The author has presented these simulations of the zero point and backprism solutions 
mainly as an intellectual exercise, because these unknowns are susceptible to fairly straightforward laboratory 
calibration, whereas independent field measurement of numerous 60 to 240 m distances between rangefinders 
with 10-6 relative precision would be difficult and tedious. However, it will be interesting to see if 
the laboratory calibrations of zero points and backprism offsets can be confirmed using these regression 
techniques. 
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/* rfsCubeslModel.gf   Model for N known rangefinders and M unknown cubes 

This model does a LS fit of measurements between an array of N 

rangefinders with known positions and H retroreflector targets. 

This rfsCubeslModel.gf was generated Wed Mar 31 10:15:18 EST 1999 

*/ 

constant 

parameter 

data 

observation 

pr[ranger,axis]; 

pc[cube,axis]; 

r, c; 

range; 

mainO 

{ 
variable i, sum, rad, naxes=3; 

while (import()) { 

sum - 0.0; for (1*0; i < naxes; i = i + 1) 

sum = sum + (pc[c,i] - pr[r,i])~2; 

rad = sqrt(sum); 

export(range - rad); 

} 

Figure 4: Gaussfit model for known rangefinders and unknown retroreflectors 

3    The "cube" problem 

Suppose that we have determined the locations of the ground-based rangefinders by inter-rangefinder 
measurements as discussed in Section 2.1. We can now lock those rangefinder coordinates (by using the 
"constant pr [ranger, axis]" declaration in Figure 4), and use ranges measured from them to determine 
the positions of various retroreflector cubes, if we have also calibrated the relative Z coordinates of the 
rangefinders with the water-level system10 [Pel94]. This regression (LS model fit) is simple, and is shown in 
Figure 4. 

10If the water-level is not available, the procedure for determining the relative Z coordinates is to observe a number of 
retroreflectors, in the manner discussed in this present section, and allow the Z coordinates of the rangefinders to be parameters. 
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For this simulation we use 7 rangefinders and 2 retroreflectors at the approximate locations of the retrospheres 
[Gol96] to be mounted beneath the elevation bearing housings of the GBT [Gol97], about 48 m above the 
level of the rangefinders: 

Rangefinder coordinates (rf sCubesl) 
ranger axis 

mm 

110 0 -119543.36 
110 1 10458.69 
110 2 0.00 
111 0 -98298.25 
111 1 68829.17 
111 2 0.00 
112 0 -50714.19 
112 1 108756.93 
112 2 0.00 
101 0 10458.69 
101 1 119543.36 
101 2 0.00 
102 0 68829.17 
102 1 98298.25 
102 2 0.00 
103 0 108756.93 
103 1 50714.19 
103 2 0.00 
104 0 119543.36 
104 1 -10458.69 

The simulated data assume that all 7 rangefinders can see both retroreflectors: 

Simulated ranges (rfsCubesl)         | 
r c range 

mm 

'2 
•'rang* Arang* 

mm 

110 1 129512.40 0.01 0.08 
110 2 133153.20 0.01 -0.07 
111 1 118763.24 0.01 -0.07 
111 2 142823.40 0.01 0.04 
112 1 110811.63 0.01 -0.01 
112 2 149077.30 0.01 0.07 
101 1 108563.57 0.01 -0.07 
101 2 150722.20 0.01 0.02 
102 1 112948.81 0.01 0.15 
102 2 147464.66 0.01 -0.07 
103 1 122200.45 0.01 -0.04 
103 2 139893.78 0.01 -0.08 
104 1 133153.26 0.01 -0.04 
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Fitting this model to these data produces estimates of the X-Y-Z coordinates of the retroreflectors: 

Retro coordinates (rfsCubesl) 
cube axis pc 

mm mm 

1 0 -0.03 0.05 
1 1 22860.15 0.10 
1 2 48260.07 0.13 
2 0 -0.01 0.06 
2 1 -22860.13 0.11 

Note that the formal errors of determination of the retroreflector coordinates are roughly comparable to 
the sigma of the ranges (100/xm). In this simulation we have allowed all of the 7 rangefinders to range on 
the two cubes; in reality the ±65° conical (130° full angle, 0.577 x 2w steradian) visibility capability of the 
retrospheres [Gol96] would prevent many of these paths from producing ranges. The formal errors would 
be larger if the impossible ranges were eliminated from the dataset. Goldman [Gol97, App.II,p.l6] discusses 
the idea of two retrospheres back-to-back with their centers precisely 0.25 m apart, which would double the 
azimuth coverage of the retrospheres. A slightly more complex Gaussfit model could simultaneously solve for 
the rangefinder coordinates from inter-rangefinder measurements and solve for the retroreflector coordinates 
from rangefinder-to-cube data. The input data would consist of ranges measured from rangefinder t to target 
j, and an if-statement would test j to decide which formula to use for computed ranges. The model could 
incorporate the two 0.25 m distances as a constraint on the coordinates of the four retrospheres. Goldman 
[Gol97, p.17] has done a STAR*NET simulation equivalent to this in his "ELBEBALL" analysis. 

This simulation has only six parameters, 
exceptions: 

The correlations between them are zero or small, with two 

pc   pc   pc   pc   pc   pc 
1,0 2,1 2,0 1,1 1,2 2,2 

pc[l,0] 100                   11    11 
pc[2,l] 100    14                  86 
pc[2,0] 100                   16 
pc[l,l] 100   73 
pc[l,2] 100 

The two correlations of order 75% are due to solving for Y and Z of the cubes using ranges measured only 
from rangefinders with Y > 0 (which makes the major axis of the error ellipsoid of the solution point roughly 
midway between the Y and Z axes); if we had ranges from the rest of the "ring of fire", as Goldman assumed 
for ELBEBALL, these two correlations would be essentially eliminated. 
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4    The "truss" problem 

The GBT is a set of interconnected truss structures. A truss is a collection of nodes (joints) which are joined 
by rods; force vectors associated with the rods are assumed to be coUinear with the rods (i.e., no bending 
moments). The forces are assumed to change the rod lengths according to Hooke's Law of springs but, for 
the purposes of the present discussion, we will ignore the distortions of the GBT trusses due to gravity and 
wind and thermal gradients, and will regard them as rigid. 

We will assume that several retroreflectors are attached to different nodes of a truss. The relative positions 
of these retroreflectors can be determined with the procedure simulated in Section 3. In the simulations 
discussed in this section, several rangefinders measure distances to several such retroreflectors. The relative 
coordinates of both the rangefinders and the retroreflectors are locked (except for a temperature term), and 
we solve for parameters describing the translation and tilt of the truss relative to the ensemble of rangefinders. 

4.1    The static truss 

Consider the GBT with its elevation and azimuth locked, but with a set of retroreflectors mounted around the 
edges of the primary reflector backup structure [BUS]. The ground-based rangefinders can measure ranges 
to these retroreflectors to determine their relative coordinates, which we can lock. Now we can measure 
those ranges again and ask how the set of retroreflectors has translated and tilted with respect to its former 
position. This is not a theoretical problem of academic interest only-it is precisely the problem to be solved 
in the differential pointing technique which has been suggested frequently as an interim operational mode for 
the GBT. 

For this simulation we will assume 12 rangefinders are available, and that 6 retrospheres are mounted around 
the edge of the BUS at 60° intervals.11 The edge of the BUS is approximated as a circle of 50 m radius 
in a plane located 63.5 m above the rangefinders. The model shown in Figure 5 holds the positions of 
the rangefinders (pr []) and the relative positions of the retrospheres (pc []) constant, and solves for the 
translations and tilts of the BUS. It also solves for a temperature change parameter: the relative coordinates 
of the retroreflectors on the truss will scale linearly with temperature due to thermal expansion/contraction, 
and we can solve for the scale factor from range data. In fact, essentially all regressions on the GBT trusses 
must solve/compensate for temperature scale factors; the factors are of order 10-5 per degree Centigrade, 
and this is one millimeter per degree in a 100 meter structure, 10x larger than the rangefinder RMS. 

The data file (72 equations of condition) for the static truss simulation is shown below; note that the time 
values are all zero: 

LIn fact the presence of the GBT feedarm will prevent us from putting the retrospheres at some of the ideal points. 
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/* rfsTrusslModel.gf   truss orientation from known rangefinders & cubes 

This model does a LS fit of truss orientation parameters to 

measurements between an array of N rangefinders with known 

positions and N retroreflector targets with known positions in the 

truss coordinate system. 

The third Euler angle (truss rotation) is constrained to zero. 

This rfsTrusslModel.gf was generated Wed Mar 31 10:15:19 EST 1999 

*/ 

constant pr[ranger,axisr], pc[cube,axisc], coefficient; 

constant eulervelocity[axisp]; 

parameter translate[axisp], euler[axisp], temperature; 

data time, r, c; 

observation range; 

mainO 

variable i, cp[3], sum, euclid, naxes=3; 

while (import()) { 

for (i = 0; i < naxes; i = i + 1) 

cp[i] = pc[c,i] * expansion(temperature,coefficient); 

about_z(cp, (euler[2]+eulervelocity[2]*time)); 

about_x(cp, (euler[1]+eulervelocity[1]*time)); 

about_z(cp, (euler[0]+eulervelocity[0]*time)); 

sum = 0.0; for (i = 0; i < naxes; i = i + 1) •( 

cp[i] = cp[i] + translate [i]; 

sum = sum + (cp[i] - pr[r,i])"2; 

} 
euclid = sqrt(sum); 

export(range - euclid); 

} 
exportconstraint(euler[2]); 

} 
about_z(v, a) { 

variable temp; 

temp = +v[0]*cos(a)  +v[l]*sin(a); 
v[l]  = -v[0]*sin(a)  +v[l]*cos(a); 
v[0]  = temp; 

} 
about_x(v,  a)  { 

variable temp; 
temp = +v[l]*cos(a)   +v[2]*sin(a); 
v[2]  = -v[l]*sin(a)  +v[2]*cos(a); 
v[l]  = temp; 

> 
expansion(temp,  tempcoeff)   { 

return (1 + temp * tempcoeff); 
} 

Figure 5: Gaussfit model for translation, tilt and temperature of a (moving) truss 
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Range data (rf sTrussl)                      j 
time r c range ■2 

<7r«ng. Arang. 

s mm mm2 mm 

0.00 101 901 99395.94 0.01 0.19 
0.00 101 902 111947.00 0.01 -0.07 
0.00 101 903 153573.84 0.01 0.06 
0.00 101 904 178843.46 0.01 -0.13 
0.00 101 905 171266.90 0.01 -0.15 
0.00 101 906 135202.25 0.01 0.02 
0.00 102 901 117033.44 0.01 0.02 
0.00 102 902 101398.19 0.01 -0.02 
0.00 102 903 132352.07 0.01 0.07 
0.00 102 904 167832.48 0.01 0.03 

(Some lines omitted to fit page) 
0.00 109 904 139473.29 0.01 -0.19 
0.00 109 905 94828.97 0.01 -0.09 
0.00 109 906 102332.67 0.01 0.02 
0.00 110 901 127511.83 0.01 0.07 
0.00 110 902 170497.78 0.01 0.06 
0.00 110 903 183691.22 0.01 -0.08 
0.00 110 904 160016.54 0.01 -0.02 
0.00 110 905 113115.17 0.01 -0.15 
0.00 110 906 90122.40 0.01 -0.03 
0.00 111 901 106578.47 0.01 0.17 
0.00 111 902 152903.13 0.01 0.13 
0.00 111 903 181528.72 0.01 0.02 
0.00 111 904 174658.66 0.01 0.10 
0.00 111 905 135960.20 0.01 -0.14 
0.00 111 906 94402.70 0.01 -0.04 
0.00 112 901 94993.76 0.01 0.13 
0.00 112 902 131628.99 0.01 -0.21 
0.00 112 903 170981.78 0.01 0.11 
0.00 112 904 181220.17 0.01 -0.01 
0.00 112 905 156647.20 0.01 0.16 

The variation of index of refraction of air with temperature is approximately 10-6, about 10 x less than 
metallic thermal coefficients. The index near the ground will be measured easily if the true distance between 
any pair of rangefinders is known, and it would be easy to incorporate an index parameter in the Gaussfit 
model and true distance(s) in a data file. 

The simulation assumes that each of the 12 rangefinders can see all 6 retroreflectors, and that the BUS is 
stationary (the eulervelocity [] values are zero). The model constrains the third Euler angle ("twisting" 
of the BUS) to zero; i.e, we are only solving for the Azimuth and Elevation of the BUS. A rangefinder can 
measure two ranges per second, so the 6 retroreflectors can be measured by the 12 rangefinders in 3 seconds, 
yielding 72 equations of condition. The results for the simulation are: 

Translations & tilts of the truss (rf sTrussl) 
axisp translate 

mm 
euler 
radian 

eulervelocity 
rad/s 

C«ttl«r 

radian 
"translate 

mm 

0 0.02 0.400000 0.000000 0.000000 0.02 
1 -0.02 -0.200000 0.000000 0.000001 0.02 

Note that the formal error of the translation parameters is more than 3x smaller than the assumed sigma 
of the rangefinders (lOO^tm); this is due to the averaging of 72 measurements by the regression. The formal 
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errors of the tilt parameters are 1/xr (0.2 arcsec) or less. This high precision of angular determination is due 
to simple geometric considerations: the radius to the retroreflectors is about 50000 mm and the range to 
them is determined to 0.1 mm, so individual range measurements imply the BUS orientation to one part in 
500000, which is two microradians, or 0.4 arcsec, and averaging of measurements improves the precision. 

The euler [0] parameter is the determination of the change of azimuth of the BUS relative to the input 
relative coordinates of the retroreflectors (0.4 radian = 22.9° in this case), and the euler [1] parameter 
is the change of elevation (—11.5°) from horizontal (the "birdbath" position). The conclusion is that 12 
rangefinders are more than adequate to determine the orientation of the BUS to microradian precision from 
only a few seconds of range measurements. 

The simulation shown here computed the simulated range data with the ambient temperature changed by 
0.20oC and it used the thermal coefficient for steel. The model solves for a temperature parameter: 

Temperature (rf sTrussl) 
coefficient 

OQ-l 

temperature 
oc 

^temperature oc 

We see that the simulated temperature change has been recovered accurately, with a formal error well 
under 0.1oC. The high precision of this temperature estimate is due to the 100 m of steel between the 
retroreflectors: with 105mm and 1.2 x 10~5C-1 we have about one millimeter expansion per degree, so that 
rangefinder precision of 0.1 mm implies temperature precision of 0.1°C, and averaging of rangefinder data 
further improves the precision of the estimate. 

The seven parameters of this model are almost perfectly uncorrelated, due mostly to our assumption that 
we have all 12 rangefinders (symmetric distribution): 

euler euler euler translate translate translate temperature 
[2]       [0]       [1]               [0]               [1]               [2] 

euler[2] 
euler[0] 100                              3                -1 
euler[1] 100                 4               10               13                    -6 

translate[0] 100 
translate[1] 100                                         1 
translate[2] 100                  -17 

This simulation (rf sTrussl) corresponds to the situation of the GBT during much of 1999: the telescope is 
immobile, not under the control of NRAO, but retroreflectors can be mounted on the BUS and measured by 
the 7 or more rangefinders which we have mounted around the telescope. It should be possible to measure 
changes of the tilt parameters as a function of time, and to show that they correspond to solar heating and 
wind forces. Such a demonstration would be a strong proof-of-concept for our goal of determining pointing 
corrections from rangefinder data. 

4.2    The dynamic truss (the GBT differential pointing case) 

The operational GBT will not have eulervelocity [] of zero, it will be moving. We will know the angular 
velocities with high accuracy, indeed with better accuracy than we could measure the velocities. A real 
determination of pointing error while tracking astronomical sources requires that rangefinders measure ranges 
to retroreflectors over an interval of time during which the ranges and tilts change substantially. It turns 
out that for the least-squares modeling technique which we are simulating the dynamic truss problem is no 
harder than the stationary truss problem. In fact, we can use exactly the same model (see Figure 5). 
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For our simulation of the GBT dynamic truss problem we have the same rangefinders and retroreflectors 
as in Section 4.1, but we have eulervelocity[0]=eulervelocity[l] =0.001 (one milliradian per second, 
about 13x sidereal rate, in both Azimuth and Elevation). The 12 rangefinders are assumed to measure the 6 
retroreflectors at random times during an interval of ±1.5s; i.e., no two ranges to the moving retroreflectors 
are made at the same instant (we are not trilaterating). Range data is assumed to be corrected for motion 
during integration using the precepts discussed by Goldman [Gol98a]. The simulated range data are: 

Range data (rf sTruss2) 
time r c range ■2 

Araog* 

s mm mm2 mm 

-1.30 101 901 99365.23 0.01 -0.04 
-1.16 101 902 112015.59 0.01 0.02 
-1.18 101 903 153642.34 0.01 -0.06 
-0.08 101 904 178844.72 0.01 0.11 
-0.62 101 905 171243.22 0.01 0.15 
-0.96 101 906 135138.43 0.01 -0.14 
0.60 102 901 117058.18 0.01 -0.00 

-0.18 102 902 101405.78 0.01 0.04 
0.26 102 903 132334.62 0.01 0.04 
1.35 102 904 167794.06 0.01 0.11 

(Son ic lines omitted to fit page) 
0.36 109 904 139488.77 0.01 -0.08 
1.45 109 905 94890.53 0.01 -0.05 

-0.44 109 906 102341.25 0.01 0.26 
-0.00 110 901 127511.52 0.01 -0.23 
0.25 110 902 170488.14 0.01 0.11 

-0.55 110 903 183694.03 0.01 -0.10 
0.36 110 904 160029.13 0.01 0.11 
0.98 110 905 113171.51 0.01 0.14 
1.35 110 906 90136.94 0.01 -0.04 
0.61 111 901 106557.36 0.01 -0.17 

-1.40 111 902 152975.58 0.01 -0.02 
-0.71 111 903 181545.77 0.01 0.10 
1.10 111 904 174681.35 0.01 -0.05 

-0.52 111 905 135929.64 0.01 -0.12 
0.52 111 906 94426.92 0.01 0.13 
0.34 112 901 94991.04 0.01 0.01 

-0.19 112 902 131640.33 0.01 -0.13 
-0.34 112 903 170996.07 0.01 0.09 
-1.23 112 904 181215.11 0.01 -0.06 
1.19 112 905 156707.69 0.01 0.06 

The translation and tilt parameter results for the truss are essentially identical to those in the rf sTrussl 
case: 

Translations & tilts of the truss (rf sTruss2) 
axisp translate 

mm 
euler 
radian 

eulervelocity 
rad/s 

OWl.r 
radian 

Ctranslat* 
mm 

0 -0.03 0.400000 0.001000 0.000000 0.02 
1 -0.01 -0.200000 0.001000 0.000001 0.02 

Note that these values are for time of zero, the midpoint of the three second measurement interval. We are 
able to estimate the orientation of the BUS with precision about 0.2 arcsecond even while the BUS is moving 
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a total of about 600 arcsec in each axis. Furthermore, just as before, we can estimate the temperature of 
the BUS at the same time: 

Temperature (rf sTruss2) 
coefficient 

OQ-l 
temperature 

oc 
^temperature oc 

The rf sTruss2 correlation matrix will not be shown, because it is identical to the matrix for rf sTrussl 
shown in the previous section. 

This simulation is a strong argument in favor of implementing a differential pointing solution for the GBT 
early in 2000, at or soon after 'first light'. We are near to having the rangefinders and retroreflectors in place 
and operational, and this simulation shows that we have model-fitting software nearly ready to process the 
data. There are a number of practical details which must be addressed in an operational implementation, 
such as scheduling the rangefinders and making the interprocess communication robust, and so an early start 
on developing a prototype of this concept is desirable. 

How could the euler [0] and euler [1] results be used for differential pointing corrections? The key 
technique is the act of observing a source with known celestial coordinates and empirically finding the 
position of the GBT which will maximize detected flux. The difference between this position and the 
position computed by M&C's "Commanded Track" is a zero point correction which M&C should add to 
subsequent Commanded Track computations to make the GBT point at target coordinates accurately. The 
correction will be valid for a limited period of time and over a limited patch of sky around the calibrator 
source. At the moment of such a local pointing offset observation the program which is fitting the moving 
truss model to the rangefinder data should note the difference between the euler [i] and Commanded Track, 
and should subsequently subtract this difference from the euler [i] (this difference is the offset between the 
orientation of the coordinate system of the retroreflectors and the orientation of the beam formed by the 
GBT). Subsequently any difference between the corrected euler [i] and the corrected Commanded Track 
is an indication that the BUS no longer has the orientation of the open-loop Commanded Track. I.e., it 
is an indication of thermal or wind loading changes. This pointing difference should be sent to M&C and 
added into the Commanded TVack calculation. Of course, as soon as M&C adds this correction the telescope 
will move so that our next set of rangefinder data will produce corrected euler [i] which will agree with 
Commanded Track; obviously we need to integrate the differences between the corrected euler [i] and 
Commanded Track, and send the integral to M&C. This will be a closed-loop servo which will correct 
Commanded Track for changes in thermal gradients and wind loading. The accuracy of this servo will 
gradually degrade as time passes and as the telescope moves away from the Az/El where it was initialized 
by the local-zero observation, but the servo will lengthen the time period when the local-zero observation is 
good enough, thereby improving observational efficiency. 

The accuracy and longevity of the differential correction can be improved by independently monitoring the 
elevation axle retroreflectors and inclinometers to detect thermal and wind loading changes in the alidade; 
such changes in the alidade can be converted to corrections to the traditional model pointing coefficients 
associated with the alidade, and can be transmitted to M&C so that it can compute Commanded Track 
with the revised model. The major correction of this type is the elevation axle collimation error (one alidade 
tower expanding more than the other). This technique will further improve the longevity of the differential 
pointing correction servo. 

When the closed-loop surface control becomes operational it will correct another source of degradation of the 
differential pointing servo: higher-order thermal gradient and wind loading distortions of the BUS structure. 
It will also convert the differential system into an absolute system by servoing the primary mirror into a 
specified shape expressed in a coordinate system anchored in the "triplet" retroreflectors around the rim of 
the BUS, the same retroreflectors used by the differential pointing technique.12 The concept of starting out 

12The alternative reference frame, the feedarm, is an inferior choice for two reasons: (1) the flexibility of the feedarm makes 
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with a differential pointing correction and gradually evolving into a full absolute system is very attractive 
because it means that a portion of the Phase III capability can be delivered during Phase I, even before the 
open-loop surface servo is operational. 

4.3    Fitting position & orientation of subreflector (with input files &: 4x cr-test) 

Six rangefinders will be mounted on the GBT feedarm. Six retroreflector prisms will be mounted on the 
surface of the subreflector. This is another key truss measurement problem for the GBT. In this simulation 
we will use the rangefinder and retroreflector coordinates which are tabulated by Goldman [Gol98b]. "Twist" 
(euler [2]) is not locked to zero in this model, unlike the tipping structure case. All input files plus the 
shell command will be shown for this simulation, as an aid for others who might wish to use Gaussfit for LS 
modeling. The shell command to execute Gaussfit under Unix has this form: 

gaussfit.Linux [ModelFile] [EnvironmentFUe] 

In the case of this simulation the command is 

gaussfit.Linux rfsTrussSModel.gf rfsTrussSEnv.gf >rfsTruss3Stdout.gf 

The use of gf as a file type is not required, it is merely the author's convention. The environment file 
tells Gaussfit where to find parameter and data files, tells where to send the results, and specifies certain 
operational parameters (e.g. the iteration limit for the nonlinear LS solver): 

[rf sTruss3Env. gf ] 
par ami = ' rf sTmss3Paraml. gf' 
param2 = ' rf sTruss3Parain2. gf' 

param3 = 'rfsTruss3Param3.gf * 
param4 = 'rfsTruss3Param4.gf' 
datal = 'rfsTruss3Data.gf' 

results = 'rfsTruss3Results.out' 

iters = 5 
prmat » 1 
prvar = 1 

The parameter and data files are TAB-delimited tables of ASCII text, with the column labels specified on the 
first line. Gaussfit reads the parameter files and matches the column labels with the variables in constant 
and parameter declarations in the model file. The model used in this simulation is shown in Figure 6; it is 
identical to Figure 5 except that euler [2] is not constrained. 

The data (observation) file rf sTrussSData.gf is:13 

it an inherently unstable object to use as the fundamental reference, and (2) the feedarm choice leads to an "all or nothing" 
situation in which no pointing correction at all is available until both closed-loop focus tracking and closed-loop surface control 
are operational. 

13In this report these tables have been transformed to IMfeX tabular environments by a Perl function whose calling sequence 
is: print-table (gf lie, caption, editlist, style). When Gaussfit executes it adds columns to those in the input file, and 
these new column labels have certain forms which can be matched by regular expression patterns to enable transformation of 
the labels into I^I^X mathematical symbols. In the case of the data file, the A column has been added by Gaussfit. The table 
files do not contains units declarations, but they do declare datatypes (always "double") in their second lines. 
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/* rfsTruss3Model.gf   truss orientation from known rangefinders k  cubes 

This model does a LS fit of truss orientation parameters to 

measurements between an array of N rangefinders with known 

positions and M retroreflector targets with known positions in the 

truss coordinate system. 

This rfsTruss3Model.gf was generated Wed Mar 31 10:15:28 EST 1999 

*/ 

constant pr[ranger,axisr] , pc[cube,axisc], coefficient; 

constant eulervelocity[axisp]; 

parameter translate[axisp], euler[axisp], temperature; 

data time, r, c; 

observation range; 

mainO 

variable i, cp[3], sum, euclid, naxes=3; 

while (import()) { 

for (i = 0; i < naxes; i = i + 1) 

cp[i]  = pc[c,i]   * expansion(temperature,coefficient); 
about_z(cp,   (euler[2]+eulervelocity[2]*time)); 
about_x(cp,   (euler[l]+eulervelocity[l]*time)); 
about_z(cp,   (euler[0]+eulervelocity[0]*time)); 
sum = 0.0;  for  (1*0;   i < naxes;   i = i + 1)  { 

cp[i]  = cp[i]  + translate[i]; 
sum = sum +  (cp[i]  - pr[r,i])'"2; 

} 
euclid = sqrt(sum); 

export(range - euclid); 

about_z(v, a) { 

variable temp; 

temp = +v[0]*cos(a) +v[l]*sin(a); 

v[l] = -v[0]*sin(a) +v[l]*cos(a); 

v[0] = temp; 

} 
about_x(v, a) { 

variable temp; 

temp = +v[l]*cos(a) +v[2]*sin(a); 

v[2] = -v[l]*sin(a) +v[2]*cos(a); 

v[l] = temp; 

} 
expansion(temp, tempcoeff)  { 

return (1 + temp * tempcoeff); 

} 

Figure 6: Gaussfit model for the subreflector orientation case 
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Range data (rf sTruss3) 
time r c range ffr«ng« Arang* 

s mm mm mm 

0.00 118 601 13045.59 0.01 0.01 
q.oo 118 602 13168.62 0.01 0.00 
d.oo 118 603 15049.66 0.01 -0.03 
0.00 118 604 14861.65 0.01 0.14 
0.00 118 605 16309.04 0.01 -0.00 
0.00 118 606 15662.77 0.01 -0.08 
0.00 117 601 13094.31 0.01 -0.10 
0.00 117 602 15041.69 0.01 -0.02 
0.00 117 603 13165.68 0.01 0.04 
0.00 117 604 16307.06 0.01 -0.08 
0.00 117 605 14863.97 0.01 -0.09 
0.00 117 606 15816.34 0.01 0.07 
0.00 114 601 46007.81 0.01 0.14 
0.00 114 602 45929.90 0.01 0.07 
0.00 114 603 48156.62 0.01 -0.02 
0.00 114 604 47670.27 0.01 -0.05 
0.00 114 605 49503.05 0.01 0.00 
0.00 114 606 48837.96 0.01 -0.07 
0.00 113 601 46062.32 0.01 -0.13 
0.00 113 602 48149.33 0.01 0.23 
0.00 113 603 45924.02 0.01 -0.02 
0.00 113 604 49502.52 0.01 0.03 
0.00 113 605 47671.41 0.01 -0.06 
0.00 113 606 49032.93 0.01 -0.09 
0.00 116 601 21621.01 0.01 -0.02 
0.00 116 602 20919.48 0.01 -0.09 
0.00 116 603 23328.74 0.01 0.06 
0.00 116 604 21994.94 0.01 -0.02 
0.00 116 605 23966.56 0.01 0.11 
0.00 116 606 23212.83 0.01 -0.15 
0.00 115 601 21680.47 0.01 0.05 
0.00 115 602 23325.81 0.01 -0.15 
0.00 115 603 20907.33 0.01 0.07 
0.00 115 604 23970.33 0.01 0.15 
0.00 115 605 21991.57 0.01 0.04 

The environment file specifies four different parameter files to be read by Gaussfit. The first of these, 
rfsTrussSParaml.gf, specifies the feedarm rangefinder coordinates (which are declared constant in the 
model): 
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Rangefinder coordinates (rf sTrussS) 
ranger axisr pr 

mm 
118 0 -3848.20 
118 1 58671.10 
118 2 102596.00 
117 0 3848.20 
117 1 58671.10 
117 2 102596.00 
114 0 -15205.20 
114 1 58891.10 
114 2 71322.00 
113 0 15205.20 
113 1 58891.10 
113 2 71322.00 
116 0 -7754.00 
116 1 53722.10 
116 2 96169.00 
115 0 7754.00 
115 1 53722.10 

The second parameter file, rf sTruss3Param2. gf, specifies the subreflector retroreflector coordinates (which 
are also declared constant in the model): 

Retroreflector coordinates (rf sTrussS) 
cube axisc pc 

mm 
601 0 -101.59 
601 1 2144.70 
601 2 -1850.95 
602 0 -3443.00 
602 1 86.72 
602 2 -818.94 
603 0 3443.00 
603 1 86.72 
603 2 -818.94 
604 0 -2926.66 
604 1 -2579.31 
604 2 819.21 
605 0 2926.66 
605 1 -2579.31 
605 2 819.21 
606 0 -315.07 
606 1 -2143.69 

The third parameter file, rfsTruss3Param3.gf, specifies the subreflector translation and tilt parameters 
which are declared parameters in the model and the angular velocities, which are declared constant in the 
model: 
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Translations & tilts of the truss (rf sTrussS) 
axisp translate 

mm 
euler 
radian 

eulervelocity 
rad/s 

OWer 
radian 

^translate 
mm 

0 9.99 -0.000729 0.000000 0.003533 0.06 
1 59721.63 0.001998 0.000000 0.000015 0.15 

Finally, the fourth parameter file, rf sTruss3Param4.gf, specifies the expansion coefficient which is declared 
constant and the temperature which is a parameter: 

Temperature (rf sTrussS) 
coefficient 

oC-i 
temperature 

oc 
^temperature 

oc 

The coefficient used in this case is appropriate for the aluminum (not steel) backup truss of the GBT 
subreflector.14 The temperature change used to generate this simulated dataset was 20C; we see that it 
has been recovered with accuracy consistent with the formal error of nearly a degree. This formal error 
of temperature determination is more than 10 x larger than the formal error of determining the effective 
temperature of the primary mirror BUS simply because the baseline is about 14 x shorter and because the 
number of equations of condition is halved (36 versus 72), but the disadvantage is somewhat offset by the 
2x larger thermal coefficient of aluminum. 

The data and parameter files are used by Gaussfit for both input and output; this feature is both a blessing 
and a curse. It is a blessing in that residual and formal error columns are intimately associated with the 
data values and parameters to which they apply (which makes it possible to produce elegant tabular output 
in this memo with minimum effort). It is a curse during development of models, when bugs in the code 
cause crashes and result in NaNs (IEEE Not-a-Number floating point values) being written to parameter 
files, which prevents them from being input files on the next test run. Even the environment file is modified 
by Gaussfit: the overall a of the fit is added to it. In the present simulation application the author generates 
fresh copies of all of these files in the Perl driver program for each execution. 

Examining the third parameter file, we see that the XYZ position of the subreflector is determined with 
formal error a about 160/im. The orientation is specified by three Euler angles; the dataset was generated 
using the three values euler [0] =0.001, euler [1] =0.002 and euler [2] =0.003. Because the second angle is 
nearly zero (only two milliradians), the first and third angles are strongly correlated (solution is invariant if 
a constant is added to one and subtracted from the other), and so their formal errors are about 3 mr, larger 
than their values. Future production versions of this algorithm should be changed to solve for the tilts in the 
peculiar convention used by the subreflector actuators [Wel98b], for which these fictitious correlations will 
not occur. For the purposes of this proof-of-concept simulation it is the second Euler angle which is most 
interesting: its formal error is about 15 microradians, or about 3 arcseconds. 

Examination of file rfsTrussSResults.out (specified in the environment file) shows that the least-squares 
fit of this model is almost linear, that it converges "quadraticaUy", already reaching high enough precision 
on its second iteration. 

The prmat=l setting in the environment file causes Gaussfit to write a table of the correlations between the 
seven parameters of this simulation into a file whose name is derived from the results file name. In this 
simulation the file is rfsTruss3Results.out.corr: 

14In a production implementation of this model it would be appropriate to also solve for the (different?) temperature of the 
steel truss connecting the six rangefinders. 
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euler euler euler translate translate translate temperature 
[1]       [0]       [2]               [2]               [0]               [1] 

euler [1] 100                                     -52                -1               44                  -60 
euler[0] 100      -99                -1                21 
euler[2] 100                 1              -21 

translate[2] 100                                -69                    2 
translate[0] 100                                       2 
translate[1] 100                    6 

With the exception of the bogus -99% correlation of euler [0] and euler [2], these correlations are typical 
of those encountered in complicated models, which indicates that this is a well-posed problem. 

Note that formal errors of parameters can be improved by extra observations, if the observational errors 
have Gaussian (normal) distributions. For normal distributions, the formal errors can be halved by 
meosurinp the data set four times.15 This fact is very important for determination of rangefinder locations 
and determination of relative truss coordinates of retroreflectors, and for determining the calibration of 
subreflector focus-tracking [Wel98a], because these are not real-time problems and so we can afford to 
acquire arbitrarily large datasets. To illustrate the effect on formal errors of repeated observations, the 
author ran the rf sTrussS simulation again with each observation repeated four times (with independent 
Gaussian noise) to demonstrate that formal errors are approximately halved (the reader should compare 
with the earlier version of this table): 

TVanslations & tilts of the truss (rf sTrussS) 
axisp translate 

mm 
euler 
radian 

eulervelocity 
rad/s 

Oeuler 
radian 

Otranslate 
nun 

0 10.01 0.000821 0.000000 0.001928 0.03 
1 59721.38 0.001984 0.000000 0.000008 0.08 

In [Gol98b], Goldman has reported results from three STAR*NET simulations whose input files are named 
SUBREF3.DAT, SUBREF5.DAT and SUBREF7.DAT. The first, SUBREF3, analyzes the geometry in a ground- 
referenced coordinate system. The latter two cases involve feedarm rangefinders measuring the subreflector 
retroreflectors in a local coordinate system. The rf sTrussS results discussed in this section correspond fairly 
well to Goldman's simulation SUBREF5; both of these simulations assume that the rangefinder locations 
are known with negligible error. Goldman's simulation solves for the locations of the six retroreflectors, 
but their relative locations are constrained. He is able to infer the angular orientation of the subreflector 
from the retroreflector locations. The author's model solves for the three rotation parameters directly. In 
addition, as discussed above, the model also solves for a differential temperature correction for the subreflector 
backup structure. Because of the differences between the assumptions of the simulations and the software 
technologies employed, only general comparison between the results is possible. For SUBREF5, Goldman 
gets XYZ (translation) RMSes of [85,175,45]//m, while rf sTrussS gets about [60,150,30]. Goldman infers 
orientation uncertainties of order 3 to 5 arcsec from the XYZ RMSes and the 3 to 4 meter baselines. The 
orientations computed by rf sTrussS are harder to interpret because they are Euler angles, and the well- 
known ambiguity for zero-tilt applies in this case as noted above. However, the key result which comes out is 
that the second Euler angle (the elevation-like tilt) has formal error about 9jir (about 1.8 arcsec), somewhat 
smaller than for SUBREF5. The pros and cons of the different assumptions used in Goldman's three SUBREF 
simulations and in rf sTrussS are debatable, of course, but the overall conclusions of the two studies are 
more or less consistent in saying that translation uncertainties of order 150/xm and tilt uncertainties of order 
2 arcsec appear to be obtainable from the rangefinder technology. 

15This assertion assumes that range residuals are independent, i.e. not correlated in time or space; this assumption is true 
only for short enough time intervals and distances smaller than the typicad convection cell size. Production implementations 
will need to solve for variations of the index of refraction. 
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The first focal point of the subreflector is roughly five meters from the origin of the subreflector system, so 
RMS orientation 10/zr (2 arcsec) is equivalent to about 5 x 106 x 10 x 10-6 « 50^m RMS at the first focal 
point, somewhat smaller than the translation RMS for the subreflector. So, the position of the first focal 
point relative to the Gregorian feedroom can be inferred to RMS precision of order 150/xm. This sort of 
RMS is ^j focus error at 3 mm wavelength. It is also an RMS pointing error of roughly 0.15/60000 « 2.5/Lir 
« 0.5 arcsec. The SUBREF5 and rf sTrussS simulations thus demonstrate that we should be able to position 
the subreflector accurately relative to the Gregorian feedroom by using the six feedarm rangefinders to measure 
the six retroreflectors mounted on the subreflector. 

5    Implementation and operational issues 

In this section the performance of the simulation software will be reviewed, and other sources of model-fitting 
software will be discussed. The algorithm for computing Gaussian noise is displayed. 

5.1    Perl & Gaussfit performance, other software options 

The reader may be wondering whether interpreted code could ever be fast enough for real-time use. In fact, 
the author assumed at the start of this project that it would be purely a demonstration project, that Perl and 
Gaussfit would be used only because they are easier and quicker to program, and that the algorithms would 
be receded in Fortran using DQED [HK87] or ODRPACK [BBRS92] called from C code for production purposes, 
analogous to Cotton's [Cot97j implementations . The first versions of these simulations were developed on 
a Sun "IPX" workstation and, as expected, were not fast enough for real-time use. However, when the code 
was tried on a state-of-the-art Pentium-II machine, it was instantly apparent that this conclusion would need 
to be revised. E.g., a 450 MHz system says:16 

One execution of rf sTruss2 took 2 sees ( 0.10 usr 0.01 sys -I- 0.29 cusr 0.08 csys = 0.48 cpu). 

The wallclock execution time is quantized to one second, and includes a number of overheads of the Perl 
system and the execution of Gaussfit which could be eliminated or reduced in a production implementation: 

• The Gaussfit dataset, parameter and environment files are being computed in this time and written to 
disk as ASCII text. 

• Gaussfit is being spawned as a subprocess under Perl 

• Output ASCII text files produced by Gaussfit are opened, parsed, and reformatted into WT$L tables 
for reproduction in this memo. 

• Unix command ttls -Ig" is spawned as a subprocess to produce a directory listing of the files associated 
with the simulation. 

It is clear that even with these overheads the implementation is significantly faster than the three seconds 
required for the rangefinders to acquire the 72 ranges which are being fitted. Considering the desirability of 
invoking M&C classes to handle operator interface and logging functions, one could certainly argue that 
coding this application in Perl would make it harder to integrate into the long-term operational system. 
However, it might be that an experimental prototype system could be implemented more quickly and easily 
in Perl. 

If this Perl program were to be expanded into a real-time application, it would need to talk over the network. 
This is not a problem, Perl can do that, in several different ways. The most obvious approach would be to 

16This Gateway GP6-450 workstation is roughly 15x faster than the Sun IPX it replaced in October 1998. 
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code the necessary RPC interface routines in C and invoke the C functions from Perl. This would make it 
possible to send commands to the rangefinders, get their data back, received "Commanded TVack" and other 
information from the M&C system and send computed pointing correction results to M&C. 

Perl is a portable language, and versions are available under Windows 9x and NT. Gaussfit is also able to 
run under 9x and NT. The author wondered whether the Perl functions which cause Gaussfit to run under 
the Perl program would be available under NT; inspection of textbook-example Perl code [Joh96, Chapter 6, 
"Launching Applications"] demonstrates that it would probably be possible to make these simulation scripts 
run under both Unix and Windows NT. In general, we can conclude that variations on the theme presented 
here are candidates to be used as standalone test tools in the native environment of the rangefinder systems, 
independent of the M&C system. 

The author expects that the Fortran subroutine package DQED [HK87] could be substituted for Gaussfit in 
all of the model-fitting applications discussed in this memo, because it supports nonUnear function fitting 
with linear constraints on parameters. DQED is used in the NRAO VLA Sky Survey [NVSS]17 to compute 
source model parameters for the survey catalog, where its nonlinear constraint capability is used to prevent 
producing source width parameter estimates smaller than the restoring beam width.18 

The Fortran subroutine package ODRPACK [BBRS92] can substitute for Gaussfit for much of the functionality 
of these simulation codes. However, ODRPACK does not support linear equality constraints, and so it is unclear 
whether it can support the models in this report which call Gaussfit's exportconstraint () function. 

5.2    Function normal (sigma) 

The function subroutine normal(), which is in library rfsPerlSubs.pl, is used by the simulation programs 
to add Gaussian noise to computed ranges. The Perl [WCS96] source is: 

# -=-=-=-=-«-«-=-«-=-=- normal(sig)   -=-«-*-=-*-=-=-=-=-=-=-=-=-=-=-=- 
# Function normal(sig)   implements the polar method for normal deviates, 
# which is Algorithm P in Section 3.4.1  (Numerical Distributions) 
# of Vol.2  (Seminumerical Algorithms)  of Knuth's   'The Art of Computer 
# Programming'   (1st Edition,   1969): 
sub normal { 

my ($sig, $s, $vl, $v2, $xl); 
$sig = $_[0]; 
$s = 2.0; 
while  ($s >= 1.0)  { 

$vl = 2.0 * randO  - 1.0; 
$v2 = 2.0 * randO  - 1.0; 

1. 
1. 

$s = $vl*$vl + $v2*$v2; 
}; 
$zl = $vl * sqrt(-2.0 * log($s)  / $s); 
return  ($zl * $sig); 

This algorithm computes normal deviates by an exact transformation of the uniform distribution produced 
by Perl library function randQ. For readers who are not familiar with Perl, this fragment of code will 
indicate many of the syntactic differences between Perl and Fortran or C for numerical work. An interesting 
fact about this code is that it appears that the Perl library function randQ is initialized with a "seed" which 
is unique for each execution of Perl. I.e., a different simulation occurs each time this code is executed. 

17http://info.cv.nrao.edu/"jcondon/nvss.html 
18B. Cotton, private communication 
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