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Abstract 

This memo provides subreflector target location data and examines conceptual 

issues related to rangefinder metrology of the GBT subreflector surface. The fol¬ 

lowing topics are addressed: 

1. How does one use measured coordinates of subreflector range targets to 

describe spatial location and orientation of the subreflector surface? How should 

this information be made available to the subreflector servo control system, for 

the purpose of moving the subreflector to properly image from the prime focus de¬ 

fined by the main reflector surface to a secondary focus on the receiver room roof? 

2. How does one aim feed arm and ground based rangeflnders to hit subreflec¬ 

tor range target prisms, given telescope elevation and azimuth encoder readouts, 

and displacement and tilt angle readouts of the subreflector encoders? 

3. We define a geometric and linguistic format to discuss concepts and prob¬ 

lems relating to rangefinder metrology of the subreflector. In particular, we define 

a telescope-coordinate-system-related subreflector home position and use a sub¬ 

reflector state vector to designate focus track command setting for the subreflector. 

4. We compute and tabulate subreflector range target reference fiducial point 

coordinates and target prism axis direction components, with reference to both 

the subreflector and ellipsoid coordinate systems. 



1. Introduction 

1.1. Summary Of Telescope Geometry 

1.1.1. Description Of A "Geometric GBT Telescope." 

The physical embodiment of the GBT telescope focusing optics may be con¬ 

sidered to be a geometrical configuration of two surfaces: a main reflector and a 

sub reflector. As designed, the main reflector is a surface P, (located somewhere in 

physical space) which is congruent to a surface patch Ps, of a "Parent Paraboloid 

Of Revolution," Pparent- The subreflector is a surface E, (located somewhere in 
physical space) which is congruent to a surface patch Es, of a "Parent Ellipsoid 

Of Revolution," Eparent■ For the purposes of this memo, we will consider the 
subreflector and main reflector to be congruent, respectively, to surface patches 

of the parent ellipsoid and paraboloid. 

The parent ellipsoid and parent paraboloid are mathematical constructs 

which are used to describe the ideal telescope design. The location of the parent 

ellipsoid is fixed relative to the parent paraboloid. The two parent surfaces are 

allowed to move together as a rigid bound pair in an abstract Euclidean 3-space 

/23, equipped with a Cartesian coordinate system. The orientation of this pair 

of surfaces is described by two angle parameters: AZram and ELc<nni commanded 

azimuth and elevation respectively. 

The as-built surfaces E and P, for the purposes of this memo, are each 

assumed to be a rigid surface patch of a quadric. But they are allowed to move 

independently of one another. When the subreflector E, and main reflector P, lie 

with respect to one another in the same configuration as the surface patches E5 

and Ps of the parent surfaces lie for the ideal design telescope, the subreflector 

E will be said to "lie at home position" with respect to the main reflector P. 

When the subreflector does not lie at home position, its location with respect 

to the main reflector will be described by means of three translation parameters 
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together with three rotation parameters, which we will describe subsequently. 

There is some complexity associated with the definition and concept of a "home 

position" of the subreflector with respect to the main reflector. We discuss this 
below. 

When the tipping structure of the as-built (physical) telescope is at or near to 

the telescope rigging elevation, the main reflector geometry will be close to that of 

the parent paraboloid, which has a 60 meter focal length. Near rigging elevation, 

the home position for the subreflector will be such that the symmetry planes of 

the subreflector and main reflector coincide, the Fq (prime) focus point associated 

with the subreflector will lie at the focus of the main reflector paraboloid, and the 
line containing the two subreflector foci will make an angle (3 = 5.570° with the 

paraboloid axis. An initial reference set of six subreflector actuator lengths will 

be measured during initial subreflector control system calibration, and will then 

define the control system state vector to bring the subreflector to its home posi¬ 

tion for rigging elevation. We note that the subreflector home position conceived 

in this manner will probably not be the subreflector position which will properly 

carry the telescope focus from prime focus (common to both reflector and subre¬ 
flector) to the receiver room feed (the desired Gregorian focal point). To achieve 

proper focus, the receiver room must be aligned properly with respect to both the 

main reflector and subreflector surfaces at rigging elevation. However, a telescope 

with an initially misaligned receiver room at rigging elevation can be brought to 

focus by steering the subreflector. One changes the subreflector actuator lengths 

from their reference values for home position to values which best focus the tele¬ 

scope. We demand here that the subreflector home position will be defined for 

arbitrary telescope elevation, and will depend only on the relative positions of the 

primary and subreflector surfaces for each elevation, and will be independent of 

the position of the feed room and the mounting of the Stewart actuator platform. 

When the telescope is driven to depart significantly from its rigging elevation, 

the main reflector's shape will be re-formed to a best fit paraboloid appropriate to 

the new elevation. The best fit paraboloid's focal length will depart from 60 me¬ 

ters, and the rotation of its axis will differ from the rotation of the elevation axle. 

The tilt of the Stewart platform supporting the subreflector, will change with re¬ 

spect to the telescope backup structure. The initial reference set of six actuator 

lengths will not then represent a subreflector position that has any telescope- 
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optical significance with respect to the main reflector. We wish, in principle, to 

define a home position for the subreflector at arbitrary telescope elevation. This 

home position should be defined to correspond to a geometric configuration of the 
telescope reflectors which is optically meaningful. Freedom of choice is available 

in making this definition. 

The choice that we make is to define the subreflector home position (at any 

given commanded elevation) with reference to the geometric telescope geometry 

which corresponds to the design telescope configuration at the commanded eleva¬ 

tion angle! Location of the subreflector is measured by prescribing its transla- 

tional and rotational departures from the home position defined for the geometric 

telescope. We describe the general configuration of the subreflector by giving 

its position and orientation with respect to the main reflector reference frame of 

the design telescope, again at the given commanded elevation angle. The deci¬ 

sion to reference the description of the physical telescope's configuration to the 

geometric design telescope configuration at commanded elevation angle is consis¬ 

tent with the subreflector control dynamics described in GBT Memo 183 [Wells-2]. 

An appendix: "The Reference Optical Telescope," originally in [Goldman-1], 

is included with this memo. It describes the geometry of the subreflector and its 

relation to that of the main reflector, for an ideal design telescope. The geometry 
of the geometric telescope's optics is illustrated in Figures 1 through 4. 

1.1.2. Subreflector Motion Of The Geometric GBT Telescope. 

The intrinsic geometry of the subreflector E is described by the "ellipsoid 

reference frame." This frame is characterized by three mutually perpendicular 

basis vectors: Xce, Yce, Zce of unit length, and a frame origin point CE which is 

the center of the subreflector's ellipsoid. We attach to this frame a right-hand 

Cartesian coordinate system whose origin is at CE and whose coordinate axes lie 

in the directions of the frame basis vectors. The ellipsoid system coordinates of 

a point P are designated to be Xce(P), Yce(P), Zce(P). The reference ellipsoid is 

assumed to be embedded in real space so that its surface patch Ps coincides with 

the subreflector surface. 

There exists a distinguished point embedded in the subreflector surface, the 
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subreflector reference point Ii- This point acts as an optical axis point for the 

ideal design telescope. That is, the central ray of the ray bundle leaving the prime 

focus of the ideal design telescope passes through Ii and arrives at the Gregorian 

focus (which both lies at a feed horn flange center on the receiver room roof and 

also lies at a focus of the subreflector for the ideal telescope). The coordinates of 

this point are well defined. Referring to the design geometry illustrated in Figure 

1, the coordinates of /j may be shown to be: 

(l-la) Xce(I\) = , a = 9.736366 meters 

Jl + (- tana:)2 

(1.1b) Yce(h) — -^ce(^i) • tana = 3.144573 meters, 

(1.1c) Zce(Ii) = 0.0 meters. 

It is necessary to also use another reference frame and coordinate system 

to describe position of the subreflector structure when it moves through ordinary 

3-space. This is the "subreflector" reference frame. The subreflector frame is 

described by three mutually perpendicular unit length basis vectors: Xs. Ys. Zs. 

The (Xs, y5)-plane is the plane of symmetry of the geometric telescope and the 

Zs vector is perpendicular to this symmetry plane and directed towards the man- 

lift side of the telescope. The origin of the subreflector coordinate system is at 

the ideal (design) subreflector reference point /i. The Xs, Ys, Zs coordinate axes 

point respectively along the Xs, Ys, Zs axes. That is: 

(1.2) *,(/,) = 0, Y.ih) = 0, Z^h) = 0. 

The directions of the basis vectors Xs, Ys with respect to the ground reference 

frame of the telescope are well-defined functions of AZcorn and ELc<mi and are 

given explicitly later. 

The subreflector frame is (together with its associated coordinate system) 

is used to describe motions of the subreflector when it is driven by its control 

system. Coordinate calculations tied to this reference frame are made by the tele¬ 

scope control system to generate Stewart platform actuator lengths, to position 

the subreflector. Computations referred to this frame are embedded in the tele¬ 

scope control system. 
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The subreflector frame orientation is tied nominally to that of the main reflec¬ 

tor frame associated with the parent paraboloid and its surface patch Ps, for a 

geometric telescope at the commanded elevation. The main reflector frame basis 

vectors Yr and Zr span a plane of symmetry of Ps. The vector Zr is directed 

along the axis of the parent paraboloid. The subreflector frame is oriented, by 

definition, so that the (Xs, Kg)-plane is the same as the (Yr} Zr)-plane and the 

basis vector Ys is rotated by precisely 36.7° = 0S from Zr. 

To describe subreflector drive motions D. Wells makes use of an additional 

drive axis, a "nutation axis," denoted by Xnut, which passes through the subre¬ 

flector reference point and points in the direction of the unit vector Xnut which is 

defined in equations (1.3) below. 

The unit vectors for the subreflector frame are expressed in terms of the unit 

basis vectors for the ellipsoid frame (Figure 7) by the relations: 

= Ssce'X ce Csce " Yce > 

Vs = csce ■ X ce ~l~ $see * ^ce 5 

^^5 — y wheie 
(1.3) 

Ssce = sin(e,+l3) = sin(42.270°) = 0.6726251, 

Cace = cos(d3 + fi) = cos(42.270o) = 0.7399833, and 

Xnut = Cs • Xs — Ss • Yg , with Cs = cos 0S and Ss = sin 0S . 

The basis vectors for the subreflector frame are expressed in terms of the basis 

vectors for the main reflector frame by the relations: 

Xs = Cs-Yr + Ss-Zr, 

(1.4) Ys = -S, -K + C.-Zr, 

Zs = xr . 

The subreflector's location relative to its home position is described by giv¬ 

ing three angle deviations and three coordinate increments of displacement from 

home position. The subreflector home position corresponding to given telescope 

commanded elevation and azimuth is specified as follows: The main reflector ref¬ 

erence frame is well-defined for the geometric telescope at arbitrary commanded 

elevation and azimuth. At home position, the subreflector parent ellipsoid is 

positioned so that the main reflector coordinates of the ellipsoid focus point Fq 
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are: Xr(Fo) = 0, Yr(Fo) = 0, Zr(Fo) = 60meters; the ray FiFq connecting the 
subreflector foci intersects the Zr-axis at the angle /? = 5.570°, and lies in the 

(Yr, Zr)-plane; the symmetry plane of the subreflector, which is the (Xce, Yce)- 

plane, coincides with the (K, Zr)-plane. 

Displacements of the subreflector from its home position are specified by 

the position of its optical reference point. We use the symbol Ii to denote the 

subreflector reference point at home position. We use the symbol I to denote the 

subreflector reference point when the subreflector is at a location other than at 

home position. Translation of the subreflector is then specified by the coordinates: 

XS(I), YS(I), ZS{I). Rotations of the subreflector about the nutation axis Xnut 

and Ys and Zs axes are used to describe angular deviations of the subreflector 

from home position. The respective rotations of the subreflector are 6nut, 6y} Qz, 

and are assumed to describe successive rotations about these axes, in the order 

given. 

It is useful to describe the subreflector's general position by a "state vector" 

of the subreflector. We do this by defining the state vector to be list of eight 

quantities: 

(1.5.1) S = (AZC^ ELC(ytn, XS(I), YS(I), ZS{I), 0nuU 0y> 0Z) . 

In general, the state vector and its components are functions of time. In this 

memo, we will deal only with the geometry of the subreflector as a stationary 

object and ignore its explicit time variation. 

The subreflector state vector corresponding to subreflector home position 

for arbitrary commanded angles of tipping structure elevation and azimuth is: 

(1.5.2) Sup(AZC(7m, ELcam) = (AZcam, ELcorn, 0, 0, 0, 0, 0, 0). 

The subreflector reference frame unit basis vectors corresponding to the config¬ 

uration of the geometric design telescope oriented at azimuth AZccnn and elevation 

ELcarn are defined to be: 
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• 
sE ' sin AZcom ^sE ' COS AZcom —CsE " X ' 

(1.5.3) Y. = CsE ' AZcorn GsE * cos AZcorn SsE ♦ Y 

zs 
COS AZcom sin AZcom 0 z 

in terms of the ground frame basis vectors, and where 

(1.5.4) Sse = sm(ELcam + 9S) , CsE = cos(ELcom + 6S) where 6S = 36.7°. 

The basis vectors defined by (1.5.3) are also considered to be the subreflector 

frame basis vectors, and the subreflector frame origin point is considered to be 

at the reference point Ii independent of the values of 0nut, 0y, 6Z for the above- 
commanded azimuth and elevation angles. That is we require by definition, that 

the subreflector reference frame and coordinate system depend only on the com¬ 

manded orientation of the telescope's main reflector surface and do not depend 

on the subreflector's commanded tilt angles. 

1.1.3. Subreflector Reference Points. 

The mounting geometry for the rangefinder retroreflector targets on the subre¬ 

flector is illustrated in Figure 6. A cube corner prism target, j, is referenced by 

its fiducial point, Tj, having coordinates Xre(Tj), Yce(Tj), Zce(Tj) in the parent 

ellipsoid coordinate system. These coordinates are constants which are indepen¬ 

dent of the telescope motions, to the extent that the subreflector surface is rigid. 

We assume this to be the case. A target is also characterized by its corner ver¬ 

tex point and its pedal point PPj which is the foot of the perpendicular from 

the vertex point to the opposite prism face, the ray entry face. The prism axis 

is the line passing through both the vertex and pedal points. Reference point 

Tj lies on the prism axis, at a distance —- from PPj, where Dj is the prism 

depth and n ~ 1.527077 is the ratio of the group speed of light of BK7 prism 

glass to that of air. Point Tj is the effective range target point for rangefinder 

metrology. We give the name Nj to the unit vector along the direction of the 

prism axis of target j, in the sense directed from PPj into the subreflector inte¬ 

rior. We name the direction cosines of Nj with respect to the Xce, Yce, Zce-Bxes 

respectively: Nxce, NyCe, Nzce. 
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There is a unique surface point of the subreflector ellipsoid associated with 

each target fiducial point. We call Qj the unique point on the subreflector sur¬ 
face which is associated with target j. Point Qj is the intersection point of the 

prism axis with the subreflector surface. We give the name n(Qj) to the unit 
vector normal to the ellipsoid surface at Qj, in the sense directed from Qj into 

the subreflector interior. We name the direction cosines of ny with respect to the 

Xce) Yce, Zee-axes respectively: nxce, nyce, nzce. 

In general, points PPj and Qj could be distinct, with a distance Dpoj be¬ 

tween them. However the targets have been designed and mounted into the sub¬ 

reflector structure so that the prism pedal point coincides with the subreflector 

surface point, so that PPj = Qj, and Dpoj = 0. 

The prism axes have been rotated from the surface normals to improve viewing 

by feed arm rangefinders. Care was taken to mount the targets so that the axis 

of target j lies in the plane generated by point Qj and the Xce-axis. The surface 

normal Qj, the ellipsoid major Xce-axis, and the prism axis are all co-planar. The 

direction of Nj is rotated from that of n(Qj) by an angle , which was selected 

to give good target visibility from the feed arm rangefinders. Prism offset angles 

and depths are given in Table 2. A copy of the prism mount construction drawing 
[Taggart-l] is included with this memo. 

The Unit Surface Normal Vector At A Subreflector Surface Point. 

The direction cosines of the unit normal vector to the subreflector ellipsoid at 

a surface point Qj are computed as follows. From the equation of the ellipsoid, 

X2 Y2 -I- 72 

(1.6.1) -f+ cel ce-l=0 , 
az bz 

one can derive the equation of the tangent plane at Qj: 

/, *ce • XjQj) Vce • ^ • ZJQ,) 
^ ■' a2 62 62 ' 

which can also be written in terms of the direction cosines of the unit surface 

normal vector at Qj, with respect to the ellipsoid frame coordinate axes, as: 
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(1.6.3) Xee • TlxceiQj) "t" ^ce * nyce(Qj) ~l~ ^ce ' nzce{Qj) 1 — 0 

Comparing terms, and using the fact that the sum of the squares of the direction 

cosines is one, and choosing the sign appropriately so that the vector points to¬ 

wards the ellipsoid's interior one gets: 

(1.6.4a) nIC„iQ,) = . 
a4 

'xUQi) + (^)(>m) + zUQi)) 

(1.6.4b) nyJQi) = 

ycj) ■ xUQi)+(Yc\m+zim) 

(1.6.4c) nzce(Qj) = , 4 
z<x(Q}) 

' XUtQi) + (YZiQi) + Zl(Qj)) 

The Unit Vector Along The Axis Of A Target Prism. 

Here we calculate (in the ellipsoid coordinate system) the direction cosines of a 

unit vector Nj pointing outwards from the pedal point of subreflector target prism 

j along the direction of the prism axis. The relevant geometry is shown in Figure 

6. We start from the defining relations in terms of direction cosines, 

(1.7.1) Nj = A/a-ce • Jcce + JVyre - Yce + Nzcc * Zce , 

(1.7.2) n(Qj) = nxce - X ce ^yce ' -^ce "J- ^zce ' ^ce • 
The surface normal vector and the prism axis unit vector at Qj both lie in the 

plane defined by point Qj and the Xce-axis, which is the ellipsoid major axis. In 

that plane Nj lies at ^ angle to h(Qj). We note that the vector 

(1.7.3) uj = ^ce >< 

Xce x n{Qj)\ 

is a unit vector which is J_ to the plane of Qj and the JCce-axis. Thus 

(1.7.4) n{Qj)' Uj = 0 and Nj • Uj = 0 . 
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We express Uj in terms of ellipsoid frame basis vectors. 

(1.7.6) Uj = Uxj ' Xce "l" U'yj ' ^ce "I- Hzj ' ^ce * 

Computing Uj explicitly from (1.7.3), one gets 

W'zc.p, Tlyce 
(1.7.7) uxj = 0 , Uyj = . = , uzj =  . 

\Jyce + «L + 

We generate A/j by rotating n(Qj) about an axis along Uj by a right-hand 

angle, tyj. Using n(Qj) • Uj = 0 we get 

(1.7.8) Nj = (cos^j) ■ n^Qj) 4- (sin^j) • (n(Qj) x w,-) . 

Using the abbreviations 

(1.7.9) C* = cos ^j- and ^ = sin ^ 

and the identity n£ce + tiJcc + n^ce = 1, we get, after manipulation of (1.6.7) 

and (1.6.8): 

Nxce (C*!' • f^xce) "I- ('^'*1' " ^/l ^xce) ' 

i/rp I C*I/ " Hiir/> 
s*- T^xce ' Tlyce 

2 
xce 

Tlxce ' Hzce 

-1' t/ce I ^ ^ ' "yce /  
(1.7.10) V ^ 

Nzce j Cv}/ • TLzce /  

V vA3 

Numerical values are given in Table 2. 
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1.2. Symbols 

Definitions of symbols used in this memo are given in Table 1. 

Table 1: List Of Symbols. 

Symbol Meaning 

Tj Fiducial reference point of target j. 

MT,) Ground coordinate of target j. 

YWi) Ditto. 

Z(Tj) Ditto. 

a, 6 Parent ellipsoid semi-axes (a>b). 

Fo, Fi Foci of parent ellipsoid. 

h Reference point of parent ellipsoid. 

Vv Vertex point of parent paraboloid. 

Fv Focal point of parent paraboloid. 

y3 = 5.570 lFiFoVp for design telescope. 

a ee 17.899° IFqFiIi for design telescope. 

7 - 36.127028° LFqI\Fi for design telescope. 

es = 36.7° Tilt of subreflector frame to main reflector frame. 

CE Center point of parent ellipsoid. 

I Image of /i under subreflector translation. 

Mi) Translation components of the 

n(/) subreflector reference point 

Zs(I) from home position. 

Xfiut Nutation axis (in subreflector frame). 

Gx — Ofiut Subreflector tilt about nutation axis. 

Oy Subreflector tilt about the Vg-axis. 

0z Subreflector tilt about the Zs-axis. 

■AZccnn Commanded telescope azimuth. 

F Lcom Commanded telescope elevation. 
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Symbol Meaning 

Xce(Tj) Ellipsoid frame coordinates 

Yce(Tj) of fiducial reference point 

ZceiTj) of the prism retro target j. 

MTj) Subreflector frame coordinates 

Ys(Ti) of fiducial reference point 

UTi) of the prism retrotarget j. 

Nxce i^j ) Direction cosines of normal 

Nyce {j ) to prism entry face 

NtceU) for retrotarget j. 

% Offset angle of prism axis to surface normal. 

CS1SS Cs = cos#5, Ss = sin #s, 6S = 36.7° 

Cp, Sp Cp — cos/?, Ss — sin/3, (3 = 5.570° 
c wsce> '-'see Csce = cos(Qa + (3), Ssce = sin(0s + 0) 

GsE j 'S'sE CsE cos(£/Z/com -j- ^5), Sgg; s'm(ELCOTn -}- 0s) 
V Arrow denotes a vector. 

U Carat denotes a unit length vector. 

Qj Surface point associated with target j. 

hj Unit normal to ellipsoid surface at Qj. 

D3 
Depth of prism retrotarget j. 

PP3 
Pedal point of retrotarget j. 

Nj Unit normal to prism face at PP. 

fixj XceiTj) - Xce(Il) 
6yj YceiTj) - Y^h) 

Szj Zce{Tj) — Zce{Ii) 

s Subreflector state vector. 
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Symbol Meaning 

Subreflector system coordinates 

>W(S) for retrotarget reference point Tj , 

Zzsi(S) with subreflector at state vector S. 

N^iS) Prism axis direction cosines to 

NysAS) subreflector coordinate system 

AU(S) axes, subreflector at state vector S. 

A Integer used to index target triples. 

7', (-4), T2(A), T3(A) Triple of subreflector retrotargets. 

F(A),G(A),H(A) Barycentric target coordinates. 

for subreflector reference point I 

for a given retrotarget triple. 

KT
si 

Prism axis direction cosines to 

Nhp- vys.7 subreflector coordinate system 

axes, subreflector at home position. 

XsnATj) Subreflector system coordinates of 

XShv(Tj) retrotarget reference point Tj , 

for subreflector at home position. 

fxs(-A), pxs(/l), hxs(A) Barycentric coordinates of Xs , 

/ys(^)j h'ys(A) barycentric coordinates of Ys , 

fzM), gzs(A), hzs(A) barycentric coordinates of Zs , 

for a given retrotarget triple. 

112(A) Unit vector directed from T\(A) to 72(A). 

113(A) Unit vector directed from Ti(A) to Ts(A). 

tcp(A) Unit vector _L to ii2(A) and £13(A). 
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1.3. Subreflector Prism Target Description 

Computed values for the parameters describing the subreflector range prism 

targets, as mounted, are given in Table 2. 

Table 2: Subreflector Prism Target Parameters (As-built). 

0) Subreflector XceiTj) (m) Yce(Tj) (m) ZceiTj) (m) 

Target NXCe(Qj) NyceiQj) NzceiQj) 

ZSG305 Uppermost (#1) 03.8° 10.372578 0.912271 0.103002 
-0.982329 -0.185979 -0.020998 

ZSG312 Upper Left (#3) 20.1° 9.335102 2.609955 -2.962032 
-0.636790 -0.509739 0.578502 

ZSG313 Upper Right (#8) 20.1° 9.332404 2.614406 2.964014 

-0.636315 -0.510296 -0.578534 

ZSG316 Lower Left (#9) 32.1° 7.323294 5.276288 -3.450458 

-0.137510 -0.828977 0.542114 

ZSG317 Lower Right (#6) 32.1° 7.325431 5.271887 3.454404 

-0.137770 -0.828455 -0.542845 

ZSG321 Lowermost (#5) 37.2° 5.923326 7.287701 0.083961 

0.117971 -0.992951 -0.011440 

Coordinates in Table 2 are those of the retroprism target fiducial reference 

points as mounted, calculated from photogrammetrically measured surface point 

coordinates given in Table 3, and measured prism depth and mounting offset an¬ 

gle The direction cosines of each prism's axis are computed using the prism 

offset angle and direction cosines of the associated surface point's normal vector 

given in Table 3. 

Target reference point coordinates were computed using a measured prism 

depth D = 0.7403 inches for each of the six subreflector targets. The target range 
1 

correction constant corresponding to this prism depth is: Pc = —Din ) = 
n 

—0.6457 inches = —0.016401 meters. 
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Computed values of distance between subreflector reference points are given 

below. 

Table 2b: Computed Distances Between Subreflector Reference Points 

Fiducial Fiducial Distance D(P1, P2) 

Reference Point PI Reference Point P2 (meters) 

h ZSG305 2.3234777 

h ZSG312 3.0365219 

h ZSG313 3.0380324 

h ZSG316 4.7194051 

h ZSG317 4.719214 

h ZSG321 5.6313256 

ZSG305 ZSG312 3.6541647 

ZSG305 ZSG313 3.4877816 

ZSG305 ZSG316 6.4007697 

ZSG305 ZSG317 6.2867527 

ZSG305 ZSG321 7.7744653 

ZSG312 ZSG313 5.9260486 

ZSG312 ZSG316 3.3756872 

ZSG312 ZSG317 7.2315503 

ZSG312 ZSG321 6.5421402 

ZSG313 ZSG316 7.2296325 

ZSG313 ZSG317 3.3660996 

ZSG313 ZSG321 6.4619034 

ZSG316 ZSG317 6.9048640 

ZSG316 ZSG321 4.3009080 

ZSG317 ZSG321 4.1700467 

Distances in Table 2b are calculated from the ellipsoid frame coordinates 

Xce(Tj), YceiTj), Zce(Tj), of the retroprism target fiducial reference points as mounted, 
calculated from photogrammetrically measured surface point coordinates given in 

Table 3, and measured prism depth and mounting offset angle tyj. The coordinates 

assumed for the subreflector reference point are theoretical values calculated 

from the design equations (1.1). 
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Table 3: Measured Subreflector Surface Point Coordinates (meters), 

and Surface Point Normal Vector Direction Cosines. 

00 Subreflector XceiQj) YceiQj) Zce{Qj) 
Target HxceiQj) nyce{Qj) nyce{Qj) 

ZSG305 Uppermost 10.360482 0.909980 0.102743 
-0.992574 -0.120879 -0.013648 

ZSG312 Upper Left 9.327261 2.603678 -2.954909 
-0.862980 -0.334017 0.379075 

ZSG313 Upper Right 9.324569 2.608123 2.956890 
-0.862669 -0.334563 -0.379302 

ZSG316 Lower Left 7.321601 5.266080 -3.443783 
-0.642838 -0.641088 0.419243 

ZSG317 Lower Right 7.323734 5.261686 3.447720 
-0.643039 -0.640567 -0.419732 

ZSG321 Lowermost 5.924779 7.275474 0.083820 
-0.506410 -0.862236 -0.009934 

Coordinates given in Table 3 are for measured centers of photogrammetry 

targets at the subreflector surface, set to lie at the pedal points of prism retrore- 

flector targets to be inserted at the respective target locations. They are taken 

from F. Schwab's, unpublished note: "Corrected version of table," Feb. 26, 1999. 
Coordinates given in that note have been converted to meters. 

Table 4: Target Fiducial Reference Point (Subreflector System) 

Coordinates When Subreflector Is At Home Position. 

0) Subreflector XshATj) Wi) ZshpiTj) 
Target meters meters meters 

ZSG305 Uppermost 2.0797988 -1.0307164 0.1030016 
ZSG312 Upper Left 0.1257086 -0.6565264 -2.9620324 
ZSG313 Upper Right 0.1205994 -0.6555287 2.9640140 
ZSG316 Lower Left -3.2005263 -0.351788 -3.4504581 
ZSG317 Lower Right -3.1958326 -0.3531667 3.4544041 
ZSG321 Lowermost -5.6305920 -0.03531667 0.0839609 

16 



1.4. Subreflector Location From Range Target Coordinates 

Here, we present computations which give the coordinates of the subreflector 

reference point /, and the directions of the subreflector axes when the subreflector 

is no longer at home position. We assume that we possess measured values for 
coordinates of some of the subreflector retro target fiducial points. (These coordi¬ 

nates are assumed to have been obtained by laser ranging from either feed arm 

or ground rangefinders, and subsequent reduction and adjustment of the range 

measurements). The problem which we solve is to locate the subreflector, start¬ 

ing from adjusted coordinates of some of its reference target points. 

We start with measured and adjusted coordinates of at least three subreflec¬ 

tor retrotarget reference points. These are allowed to be either ground frame 

coordinates or main reflector coordinates. These coordinates are converted to 

the subreflector reference frame using the standard GBT coordinate transforma¬ 

tions. We will then compute the subreflector frame coordinates of the subreflector 

reference point /, and the orientations of the subreflector ellipsoid's axes. The 

computed displacement components XS(I), ZS(I) are three of the six local 

subreflector coordinates used to describe the subreflector displacement from its 

home position (consistent with commanded main reflector azimuth AZC(mi and 

elevation ELcorn). The subreflector tilt angles 6nut, Oy, 6Z can then be computed 
subsequently from the tilt of the ellipsoid axes. We will not carry out that involved 

computation in this memo; we will here obtain the rotated ellipsoid axes and leave 

the final computations of the tilt angles to a later document. The information 

generated in this section will locate the subreflector in space. It can be used later 

to provide the subreflector motion drive system with observed subreflector frame 

state vector components, which correspond to the actual actuator drive setpoints 

existing when the subreflector is at the measured position. 

Following these calculations (in Section 1.4) we will subsequently solve the in¬ 

verse problem (in Section 1.5); we will compute coordinates for subreflector retro- 

target reference points and their prism axis directions for a general commanded 

position of the subreflector. The latter computations will provide target reference 

point coordinates and target prism axis direction cosines needed for rangefinder 

aiming and target visibility calculations. 

17 



I.4.X. Determination Of Subreflector Reference Point Position 

The metrology problem to be addressed in this section is the following. We 

assume that we know adjusted coordinates of three or more subreflector retro- 

target fiducial points with respect to ground reference frame coordinate system. 

These are obtained by range measurements to three or more subreflector retro- 

targets. The measurements have been least-squares-adjusted. We are also given 

a set of commanded values for the six subreflector state variables, together with 

commanded values for telescope elevation and azimuth, which were set to drive 

the subreflector to the position where it was measured. By calculating (from the 

adjusted measurement coordinates of the retrotarget reference points) the location 

of the origin and the orientation of the subreflector reference frame (corresponding 

to the given commanded telescope azimuth and elevation), we can compute the 

actual existing displacement of the subreflector reference point from the subre¬ 

flector frame origin and the tilt angles of the subreflector. We can then compare 

the values of XS(I), YS(I), ZS(I), 0nut, By , 6Z derived from rangefinder measure¬ 

ments to the setpoint values for these quantities, which were commanded by the 
subreflector drive control system. 

It is possible to compute a least-squares fit of the subreflector position using 

the adjusted subreflector target fiducial point locations for all of the measured 

targets. This has been recommended (private conversation) by D. Wells. If one 

does this, one should keep in mind (in setting up this least-squares procedure) 

that the adjusted range measurements give coordinates of target fiducial refer¬ 

ence points and not ellipsoid surface points. We will now present a procedure 

which will generate the subreflector frame coordinates of reference point I from 

adjusted measurement coordinates of the fiducial reference points of three arbi¬ 

trary subreflector retrotargets. There are — 20 combinations of three targets 

whose reference point coordinates can be used to find subreflector position. We 

will give linear relations for the subreflector system position coordinates of the 

subreflector reference point /, together with the direction cosines of the rotated 

subreflector basis vectors 7l[Xs], , TZ[ZS] with respect to the ground frame 
coordinate system. 

We start with the following assumptions: 

• Ground frame coordinates of at least three subreflector prism retrotargets 

were measured by rangefinders (and the range measurements were reduced 
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and least-squares adjusted). These are the coordinates of the fiducial ref¬ 
erence points of the subreflector target prisms. The subreflector need not 

have been at home position when the measurements were made. 

• We also assume that commanded setpoint values for the three subreflector 

offset angles and three subreflector reference point displacement coordinates 

for the time of measurement are known. 

The measurement situation is static. That is, the telescope is not moving. 

We assume that the three subreflector targets have adjusted coordinates: 

.ATi, Vi, X2,r2,Z2; Xz,Y3,Z3 respectively, with respect to some right-hand 

rectangular Cartesian coordinate system, whose orthogonal unit basis vectors we 

call X, Y, Z. We will not specify which system, at the present moment. We will 

call the displacement vectors of these three targets and of the subreflector refer¬ 

ence point /, with respect to the origin of this coordinate system 

X(I) • X + Y(I) - Y + Z{I) • Z , 

Xi • X + Vi • Y + Zi • Z , 

X2 'X + r2 • Y + Z2 - Z , 

Ar3 • X +YZ'Y + Z3 • Z . 

We can use barycentric coordinates to describe the location of a reference 

point embedded in the subreflector. Those coordinates will be constants which are 

independent of the particular reference frame and basis vectors used to give point 

coordinates. For each triple: Tj, r2, T3 of measured target reference points we 

can find three scalar constants: F(Ti, T2, T3), G(T\, T2, T3), //(Tj, T2) T3) which 

give the coordinates of I in terms of the coordinates of these target points. The 

coordinates of / appear in the same coordinate system for which the coordinates 

of the target points are given! The procedure for doing this is the following. We 

write, 

(1.4.2) /= Q)(f1+f2+f3)4-F.(f2-f1)4-G.(f3-f1)4-//.(f2-f1)x(f3-f1) 

(1.4.1) 

I 

Ti 

f2 

f3 
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Expanding these vector relations in coordinates, (1.4.2) becomes 

X(I) = (f )(*! + X2 + Xz) + F. (X2 - Xi) + G- (Xs - x1)4- 

+H • [(Y2 - Yl)(Z2 - Z1) - (Y3 - Yl){Z2 - Zj)], 

(1.4.2.1) 
y(i) = (j)(n + y2 + vy + f • (r2 - yj) + g - (^ - ^0+ 

- l(Z2 - ZMXa - Xj) - (Z3 - ZMX* - XJ], 

Z{I) = (|)(Zi 4- Z2 + Z3) + F - (Z2 — Z\) 4- G - (Zs — ^1)4- 

+£r • [(X2 - XtHY* - Yi) - (X3 - XMY* - Yi)]. 

The same relations hold with the same constants: independent of 

whether we have used ground frame coordinates of these four points or have used 

their ellipsoid or subreflector system coordinates. But we know the coordinates of 
the four points in the ellipsoid system (equations 1.1 and Table 2), so we can solve 

directly for F,G,H for each triple Ti,T2,T3 of subreflector retrotarget reference 
points. 

To solve (1.4.2.1) we compute the matrices: 

(1.4.3.1) [N\ = 

xw-i-KXt+Xt + Xt) 

Y(I) - (gHVi + ^2 + Y,) 

Z{I) - (gKZi + Z2 + Z3) 

(1.4.3.2) [M] = 

Xi-Xx Xi-Xy (Y2-Yl)(Zi-Zl)-(Y3-Yl)(Zi-Z1) 

Yt-Y, Y3-Y, (^ - ZtHXj - XJ - (Z3-ZI)(X2 -xo 

Z2-Zt Z3-ZI (X2 - XMYi - Y,) - (X3 - Xt)(Y2 - Y,) 

The equation to be solved is then 

" F 

(1.4.3.3) [N] = [M] • G 
H 

which has the solution 
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(1.4.4) 

F 

G 

H 
= M"1 • [N] - 

We determine F, G, H, by substituting for the general coordinates in (1.4.3.1) 

and (1.4.3.2) the known ellipsoid frame coordinates of the three target reference 

points. That is, we make the substitutions: 

Xj-XceCTj), X2-+Xce(T2), X3 

(1.4.5) Y! KeeCTi), y2 

Z2 

Yce.iT'i), ^3 

^3 

^ ^ceCTa), 

Yce{Ti), 

Zce(Ts), Zce{Tl), Z2 —^ Zce(T2), 

in equations (1.4.3) and then compute the right side of (1.4.4). The values 

of F, G, H are tabulated in Table 5 for the various sets of target triple points. 
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Table 5: Barycentric Coordinates For Subreflector Target Triples. 

Target Target Target Triple F(A) G(A) H(A) 

Ti(A) Tt(A) Tz(A) Index 

ZSG305 ZSG316 ZSG317 A = 01 -0.1182720 -0.1360649 0.0206087 

ZSG312 ZSG321 ZSG313 A = 02 -0.3000071 0.1493778 0.0206087 

ZSG305 ZSG312 ZSG317 

00 
o

 II 0.0173785 -0.0493599 0.3112280 

ZSG312 ZSG316 ZSG313 

o
 H 

1^ -0.2787017 0.1710119 0.0324327 

ZSG316 ZSG321 ZSG305 A = 05 -0.0697924 0.3757362 0.0274621 

ZSG321 ZSG317 ZSG312 A = 06 0.2777942 0.3730633 0.0249293 

ZSG317 ZSG313 ZSG316 A = 07 0.6133501 0.0997308 0.0278935 

ZSG313 ZSG305 ZSG321 

00 
o

 11 0.4013787 -0.0451674 0.0340463 

ZSG305 ZSG312 ZSG321 A = 09 -0.2917471 -0.0616690 0.0315572 

ZSG312 ZSG316 ZSG317 A = 10 -0.7102323 0.0995950 0.0278708 

ZSG316 ZSG321 ZSG313 A= 11 -0.6465230 0.3783516 0.0244175 

ZSG321 ZSG317 ZSG305 A = 12 -0.3626068 0.3936161 0.0288911 

ZSG317 ZSG313 ZSG312 A = 13 0.1072620 0.1713523 0.3254250 

ZSG313 ZSG305 ZSG316 A = 14 0.0439371 -0.0427824 0.0321185 

ZSG305 ZSG312 ZSG313 A= 15 0.2260442 0.2299329 0.0526120 

ZSG312 ZSG316 ZSG305 A= 16 0.3449679 0.7217923 0.0914053 

ZSG316 ZSG321 ZSG312 A = 17 0.4381853 1.1762942 0.0438282 

ZSG321 ZSG317 ZSG316 A = 18 0.8185636 0.7889015 0.0450851 

ZSG317 ZSG313 ZSG321 A= 19 1.2054385 0.4719987 0.0454301 

ZSG313 ZSG305 ZSG317 

o
 

<N II 0.8046592 0.3960635 0.1010776 
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The computation of coordinates of reference point I by substitution of the 

coordinates of a measured target triple into (1.4.2.1) is neither a full nor a best 

solution. It does not use all of the information available from target range mea¬ 

surements and does not properly take into account measurement standard errors 

of One may possess range measurement adjusted coordinates for more 

than three subreflector targets (including their adjustment standard errors). If 

this is so, one may extend the solution procedure, and make use of all available 

subreflector target coordinate information, in the following way. 

Choose three subreflector targets for which adjusted fiducial point measured 

coordinates are available together with their coordinate standard errors. Obtain 

approximate coordinates of I by substituting the adjusted coordinates of these 

three chosen points into (1.4.2.1). Use the coordinate data available for all mea¬ 

sured subreflector target fiducial points, together with the approximate coordi¬ 

nates of I just obtained, as input data for approximate coordinates and standard 

errors for a standard least-squares adjustment routine (for example STAR-NET 

or GAUSSFIT). Also enter the known distances between pairs of reference points, 

adjusted for thermal expansion of the subreflector as entry data into the least- 

squares adjustment routine, along with their standard errors computed in ad¬ 

justment of the subreflector surface photogrammetry measurements. (The latter 

adjusted distances have standard error of approximately 0.2 millimeters). Use a 

moderately large value, a few centimeters for example, as the a-priori estimated 

standard error for the coordinates of /; this is done to avoid a false tight con¬ 

straint on our prior knowledge of this point's location. Distances between pairs of 

target reference points and distances between target reference points and point I 

are known with good accuracy and provide tight constraints on the position of I. 

The distances have already been computed from the subreflector photogrammetry 

results (without correction for temperature change and thermal expansion), and 

are given in Table 2b. 

The least-squares adjustment routine's output will include adjusted coordi¬ 

nates for subreflector reference point I and for the prism targets providing input 

to the adjustment, together with adjustment standard errors. 
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1.4.2. Determination Of Subreflector Orientation. 

We again assume that measured adjusted subreflector frame coordinates are 

available for three subreflector target reference points: Ti (A), T2 (A), T3 (A), where 

A is an integer used to index the triples of retrotargets. (The target triples indexes 

are given in Table 5). We do not assume that the subreflector is at home position. 

The origin and orientation of the subreflector reference frame are well-defined 

functions of commanded tipping structure elevation and azimuth only, and do 

not depend at all upon the location of the subreflector; the subreflector system 

coordinates of the six retrotarget reference points are determined, however, by the 

subreflector location relative to home position. We wish, here, to compute the 

subreflector orientation relative to home position when the subreflector system 

coordinates are given for the subreflector when off home position. This will be 

accomplished by providing a rotation matrix, [7£], which specifies the rotation of 

the subreflector structure when moved from its home position. The three tilt an¬ 

gles of the displaced subreflector as it sits in space can then be found analytically 

(with some difficulty) from the elements of the rotation matrix [7?-] . 

We directly compute three unit vectors which are obtained from the triple of 

target points. Corresponding to the target triple indexed by the integer A we 
define 

The subreflector system coordinates of these unit vectors can be computed di¬ 

rectly from the given subreflector system coordinates of the three chosen target 

reference points. 

As before, we denote the unit basis vectors for the subreflector frame at the 

commanded elevation and azimuth by Xs, Ys, Zs. These basis vectors are related 
to the basis vectors for the ellipsoid and main reflector reference frames by equa- 

tions(1.3) and (1.4). Let us assume that copies of these unit vectors are rigidly 

attached to the subreflector structure at the reference point /j, when the subre¬ 

flector is at home position. When the subreflector is moved from home position 

to an arbitrary commanded position (assuming the commanded tipping structure 

elevation and azimuth are not changed), the rigidly attached copies of these basis 

vectors will be translated and rotated. The rotated copies of the subreflector ba- 
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sis vectors will be related to the original basis vectors by an orthonormal linear 

transformation. Let this linear transformation be denoted by TZ and the rotated 

basis vectors be denoted by 7Z(XS),7Z(YS),7Z(Zs). 

The vectors 7Z(XS), 71 {YS),TZ (Zs) may be expressed as coordinate-independent 

linear combinations of £ 12, £13, tq,. 

^ = fxs 112 9xs t 13 "4" h'xs ' t cp ) 

(1.4.7) IZ (Ys^ = fyS - i 12 + Qys - i 13 + hyS - icp, 

^ = fzs * £ 12 9zs i 13 tlzs ' t cp • 

For each triple of measured subreflector targets, referenced by a value of the index 

integer A, there are nine scalar constants: 

/xsC-^)? <7Xs(.A), /ixs(.A),/yS(i4.), <7yS(A), /iyS(A), /2S(A), ^zs(A), /I2S(A)j 

which can be regarded as elements of a rotation matrix, \R\ , which rotates the 

three target vectors to the subreflector frame basis vector copies which are consid¬ 

ered to be embedded in the subreflector structure, and carried along rigidly with 

it during subreflector movements. That is, we may write: 

" K(X,) " fxs Qxs hxs t 12 112 

(1.4.8) n{Ys) fys Qys hys • i 13 = m- t 13 

. K(Z.) fzs Qzs hzs ^ cp ^ cp 

The matrix elements may be computed numerically by substituting the values of 

the vectors £12, 113, t ^ corresponding to subreflector home position as elements 

in the right side column matrix of (1.4.8) and substituting Xs, Ys, Zs as elements 

of the left side column matrix. In terms of the subreflector system coordinates 

of the three targets and their mutual distances one has the following system of 

three sets of three linear equations to solve for the matrix elements. The coeffi¬ 

cients appearing in (1.4.9) are computed using tables 2b and 4 and by computing 

the subreflector frame components of t ^ corresponding to the target coordinates 

when the subreflector is at home position. 
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(1.4.9) 

(1.4.10) 

(1.4.11) 

" 1' 

0 = 
1 

O
 

—
i 

o
 > 

1 

i 
o

 1 
1 

o
 • 

0 

I 
rH > 

ip 12)«hp " 

12)shp ' Ys 

12)shp ' %s 

(P lijshp ' Xs 

(t 12)shp ' Ys 

(i I2)shp ' Zs 

(t 12)shp ' X8 

{t 12)s/ip " ^5 

(t I2)shp ' Zs 

{pl3)shp ' Xg 

(t 13)shp * Ys 

(pl3)shp ' Zs 

(plS^shp ' Xg 

(t 13)shp ' Ys 

(tIS^shp ' Zs 

ip IS^shp ' -^-s 

(p 13)s/i.p * Ys 

(p 13^slip ' Zs 

(Pcp)shp ' -Xg 

(pep )shp ' Ys 

(pcp)shp * Zg 

(p cp)shp * -^5 

(p cp)shp ' Ys 

{tcp )s/ip " Zs 

(p cp)s/ip " -^-5 

(p cp)shp ' Ys 

ip op) shp ' Zs 

fx, ' 

• 9xs 

hxs 

fys 

• 9ys 

J h>ys 

fzs 

• Qzs 

_ Ihs . 

The square matrix on the right side of each equation is inverted and the inverse 

is multiplied by the column matrix on the left side to give the f,g,h elements. 

The matrix elements are tabulated numerically in Table 6, for each group of three 

targets indexed by the integer A. Subreflector-frame components of target-triple 

vectors (A), t^A), t^A) corresponding to the subreflector at home position 

are listed in table 6b. 

T he rotated nutation axis is found from the relation 

(1.4.12) n(xnut) = cs.n(xs) - ss-n(Ys). 

The rotation matrix elements listed in Table 6 are used in the following man¬ 

ner. We are given a set of measured, least-squares-adjusted coordinates of some 

of the subreflector prism targets (that is, of their fiducial reference points), in one 

of the telescope coordinate systems. We wish to find the spatial orientation of the 

subreflector when these measurements were made. To do this, we first convert 

these adjusted coordinates to the subreflector system coordinates, using a stan¬ 

dard telescope coordinate transformation. We then choose three of the measured 
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targets and compute vectors in (A), £13 (A), t^A) corresponding to this target 

triple, expressing their components in terms of the basis vectors X81 YSl Zs of 

the subreflector frame. The rotated frame vectors 7Z(XS)^ TZ(YS)} 7Z (Zs) which 

specify the subreflector orientation are computed by substituting into equations 

(1.4.7) the vectors just computed and the nine corresponding matrix elements 
tabulated in Table 6. 
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Table 6: Rotation Matrix Elements For Subreflector Target Triple Vectors. 

Ti(A) T2(A) Tz(A) Index fxs(A) 9xs(A) hxs^A) 
fvs(A) 9ys(A) Ks{A) 
fzs(A) 9zs{A) hzs{A) 

ZSG305 ZSG316 ZSG317 

rH
 

o
 II -0.5950641 -0.5873163 0.1274554 

0.0765718 0.0753698 0.9918443 
-0.9265748 0.9108963 0.0001114 

ZSG312 ZSG321 ZSG313 

<N 
O

 II -1.1239356 0.5233080 0.1073419 
0.1213464 -0.0564240 0.9942222 

-0.0009894 1.0004610 -0.0000748 
ZSG305 ZSG312 ZSG317 

CO 
o

 II -0.5460458 -0.1046140 0.9889080 
0.10533330 0.1046140 0.9889080 
-0.8571475 0.5511972 0.9889080 

ZSG312 ZSG316 ZSG313 A = 04 -1.0062901 -0.1455913 0.0912475 
0.0922060 0.0134298 0.9958282 

-0.0008831 0.9998726 -0.0000890 
ZSG316 ZSG321 ZSG305 A = 05 -0.5406781 0.8219911 0.1280913 

0.0705714 -0.1056575 0.9917620 
0.8387957 0.5746300 -0.0008750 

ZSG321 ZSG317 ZSG312 

to 
O

 II 0.4663355 0.8124150 0.1135491 
-0.0639324 -0.0857828 0.9934622 
0.8943272 -0.5949794 0.0118105 

ZSG317 ZSG313 ZSG316 A = 07 1.0065043 -0.1466201 0.0908144 

-0.0917843 0.0135081 0.9958678 

-0.0007025 -0.9998979 0.0001371 
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Table 6 (continued) 

Ti(A) T2(A) Tz(A) Index fxs(A) QXS(A) hxsiA) 

fys(A) 9ys(A) hyM) 
fzs(A) 9zs(,A) hzs(A) 

ZSG313 ZSG305 ZSG321 

00 
o

 II 0.4319887 -0.8326325 0.1276031 
-0.0923497 0.0837904 0.9909677 
-0.8825436 -0.5629287 -0.0412359 

ZSG305 ZSG312 ZSG321 II o
 

-0.0051510 -0.9889158 0.1283744 
0.0503319 0.1011249 0.9909046 

-1.2196702 0.6628702 0.0403493 
ZSG312 ZSG316 ZSG317 A = 10 -0.9353200 -0.1525366 0.0912146 

0.0857391 0.0138279 0.9958312 
-0.4882326 1.0474192 0.0001368 

ZSG316 ZSG321 ZSG313 A =11 -0.9960385 0.9240050 0.1129583 

0.1192453 -0.0976384 0.9935339 
0.5213506 0.6440497 -0.0114385 

ZSG321 ZSG317 ZSG305 A = 12 0.0113682 0.9850689 0.1281101 
-0.0028698 -0.1264207 0.9917593 
1.2287566 -0.7235405 0.0011310 

ZSG317 ZSG313 ZSG312 

CO 
T—1 II 

1 

1.0900539 -0.1789874 0.0907812 

-0.0993156 0.0162065 0.9958709 

0.5689743 -1.2204563 -0.0000894 

ZSG313 ZSG305 ZSG316 

T-H II 0.9763086 -0.9366170 0.1459994 

-0.1590694 0.1197698 0.9888664 

-0.5130211 -0.6364718 -0.0287667 
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Table 6 (continued). 

Ti(A) Tt(A) Tz(A) Index f*s{A) Qxsi^A) h'xs(A) 

fys{A) 9VS{A) hy.(A) 
fzs{A) 9zs{A) hzs{A) 

ZSG305 ZSG312 ZSG313 A = 15 -0.8979189 -0.8624361 0.1880782 

0.1719455 0.1651546 0.9821541 

-0.6174309 0.5877798 -0.0000032 

ZSG312 ZSG316 ZSG305 A = 16 -1.1203275 -0.2064314 0.0804702 

0.0368199 -0.0817525 0.9941351 

0.7411683 1.3548145 0.0722495 

ZSG316 ZSG321 ZSG312 A =17 -0.1583171 0.9149809 0.0947209 

0.0418398 -0.0716773 0.9952114 

1.1042621 0.6355171 -0.0241279 

ZSG321 ZSG317 ZSG316 
00 
r—t II 0.8627946 0.8486029 0.1295000 

-0.1127477 -0.1107582 0.9915794 

0.6033200 -0.6234800 0.0001100 

ZSG317 ZSG313 ZSG321 A= 19 0.9104377 -0.1610968 0.0945339 

-0.0693233 0.0441517 0.9951896 

-0.6642349 -1.1166955 0.0257099 

ZSG313 ZSG305 ZSG317 A = 20 -0.2000201 -1.1225552 0.0797877 

-0.0801118 0.0348302 0.9941094 

-1.3033097 -0.7490155 -0.0733509 
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Table 6b: Home Position Components Of Target Triple Vectors. 

Ti(A) T2(A) UA) Index (tl2)hp ' Xs (tl2)hp ' Ys (^12)/ip • Z8 

(ttt)hp ' X3 (^13)/ip * K (iiajftp • Zs 

(^cp)ftp * -X-s (pcp)hp ' Y8 (pcp)hp * Zs 

ZSG305 ZSG316 ZSG317 II o
 

h-*
 

-0.8249516 0.1060698 -0.5406785 
-0.8391664 0.1077742 0.5478351 
0.1274554 0.9918443 0.0001114 

ZSG312 ZSG321 ZSG313 A = 02 -0.8798803 0.0950320 0.4655958 
-0.0008622 0.0001684 0.9999996 
0.1073419 0.9942222 -0.0000748 

ZSG305 ZSG312 ZSG317 
CO 
O

 II -0.5347570 0.1024010 -0.8134096 
-0.8391664 0.1077742 0.5478351 
0.1457327 0.9889080 0.0286861 

ZSG312 ZSG316 ZSG313 

o
 II -0.9853504 0.0902745 -0.1446893 

-0.0008622 0.0001684 0.9999996 
0.0912745 0.9958282 -0.0000890 

ZSG316 ZSG321 ZSG305 II o
 

cn
 

-0.5650122 0.0736993 0.8217844 

0.8249516 -0.1060698 0.5406785 
0.1280913 0.9917620 -0.0008750 

ZSG321 ZSG317 ZSG312 A = 06 0.5838686 -0.0763427 0.8082507 

0.8798803 -0.0950320 -0.4655958 

0.1135491 0.9934622 0.0118105 

ZSG317 ZSG313 ZSG316 II o
 

0.9852448 -0.0898256 -0.1456850 

-0.0006798 0.0001997 -0.9999997 

0.0908144 0.9958678 0.0001371 

31 



Table 6b (continued) 

TM) TM) UA) Index 
^ A. 

(^12)ft.p * Xg [plTjhp ' Ys 

- . ^ K ' 
(Pit)hp' Zs 

\tl3)hp ' Xs (tl3)hp ' Ys {tl3)hp • Zs 

{pcp)hp ' Xg (j'cp)hp ' Ys (cp)hp ' Zs 

ZSG313 ZSG305 ZSG321 

00 
o

 II 0.5617322 -0.1075720 -0.8468747 
-0.8900151 0.0969576 -0.4456973 
0.1276031 0.9909677 -0.0412359 

ZSG305 ZSG312 ZSG321 II o
 

to
 

-0.5347570 0.1024010 -0.8134096 
-0.9917583 0.1280992 0.0094747 
0.1283744 0.9909046 0.0403493 

ZSG312 ZSG316 ZSG317 A = 10 -0.9853504 0.0902745 -0.1446893 
-0.4593125 0.0419495 0.8872837 

0.0912146 0.9958312 0.0001368 

ZSG316 ZSG321 ZSG313 A = 11 -0.5650122 0.0736993 0.8217844 

0.4593768 -0.0420133 0.8872473 
0.1129583 0.9935339 -0.0114385 

ZSG321 ZSG317 ZSG305 A = 12 0.5838686 -0.0763427 0.8082507 
0.9917583 -0.1280992 -0.0094747 
0.1281101 0.9917593 0.0011310 

ZSG317 ZSG313 ZSG312 A =13 0.9852448 -0.0898256 -0.145685 

0.4593125 -0.0419495 -0.8872837 

0.0907812 0.9958709 -0.0000894 

ZSG313 ZSG305 ZSG316 A = 14 0.5617322 -0.1075720 -0.8468747 

-0.4593768 0.0420133 -0.8872473 

0.1459994 0.9888664 -0.0287667 
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Table 6b (continued). 

Ti(A) T2(A) TsiA) Index (P12)hp' Xs ($12)hp ' (^12) ftp • zs 

(^13)/ip * Xs (il3)hp * 0-13 )/ip • zs 

(tcp)hp ' Xs {pcpjhp ' Ys 

ZSG305 ZSG312 ZSG313 A = 15 -0.5347570 0.1024010 -0.8134096 
-0.5617322 0.1075720 0.8468747 
0.1880782 0.9821541 -0.0000032 

ZSG312 ZSG316 ZSG305 A =16 -0.9853504 0.0902745 -0.1446893 
0.5347570 -0.1024010 0.8134096 
0.0804702 0.9941351 0.0722495 

ZSG316 ZSG321 ZSG312 A =17 -0.5650122 0.0736993 0.8217844 
0.9853504 -0.0902745 0.1446893 
0.0947209 0.9952114 -0.0241279 

ZSG321 ZSG317 ZSG316 

00 
rH II 0.5838686 -0.0763427 0.8082507 
0.5650122 -0.0736993 -0.8217844 
0.1295000 0.9915794 0.0001100 

ZSG317 ZSG313 ZSG321 A = 19 0.9852448 -0.0898256 -0.1456850 
-0.5838686 0.0763427 -0.8082507 
0.0945339 0.9951896 0.0257099 

ZSG313 ZSG305 ZSG317 >1 = 20 0.5617322 -0.1075720 -0.8468747 

-0.9852448 0.0898256 0.1456850 

0.0797877 0.9941094 -0.0733509 
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1.5. Rangefinder Aiming 

The metrology problem to be solved here is the following. The subreflector is 

not at home position. A position and orientation of the subreflector are assumed 

to be commanded with respect to the ground, and specified by a message stating 

the tipping structure azimuth and elevation and the six local subreflector param¬ 

eters. The present task is to compute local rangefinder aiming coordinates (with 

respect to the appropriate rangefinder support platforms) to aim a ground-based 

or feed arm rangefinder to the reference point of a subreflector prism range tar¬ 

get. We will be able to achieve rangefinder aiming if we are able to compute the 
coordinates of the subreflector's retrotarget reference points with respect to the 

ground reference frame. (We can for example convert these subsequently to main 

reflector frame coordinates). Computational algorithms already exist to specify 

the locations and orientations of the rangefinders. What remains, is to specify 

the spatial locations of the subreflector target reference points. 

For the purpose of aiming the rangefinders, the location of the subreflector 

retrotarget reference points will have to be computed as functions of eight in¬ 

dependent variables: commanded tipping structure elevation and azimuth, three 

subreflector offset angles from home position and three subreflector displacements 

from home position. These are specified by the subreflector state vector, S. To 
compute target point locations, the subreflector ellipsoid center point coordinates 

and ellipsoid axis direction cosines will have to be computed as functions of these 

independent variables, for a geometric design telescope. That is the rangefinders 

are aimed to points in space specified by a geometric telescope model. The com¬ 
ponents of the state vector S are considered to be setpoint values for a geometric 

telescope; the modalities for actually driving the subreflector to this location do 

not have to be considered here. But feed arm rangefinder platform orientations 

and locations will have to be found using the telescope's Finite Element Model, 
because gravity deformation of the telescope affects the relative locations and 
orientations of the feed arm rangefinders with respect to the feed arm tip, and 

consequently affects rangefinder locations with respect to the subreflector, even 

at home position. 

Ellipsoid frame coordinates of the fiducial point of each subreflector structure 
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target j (listed in Table 2) were computed from the known geometry of the prism 

installation into the subreflector structure. GBT Archives Drawing D35420M200 

[Taggart-l] defines the prism installation geometry. When ground frame coor¬ 

dinates of three (or preferably four) subreflector prism target fiducial reference 

points are provided, the ground frame coordinates of the ellipsoid center can be 

calculated, and the direction cosines of the ellipsoid frame unit basis vectors rela¬ 

tive to the ground frame can also be computed. These coordinates and direction 
cosines are computed for a general case where the subreflector has known angu¬ 

lar and distance displacements from its home position relative to the subreflector 
reference frame. The subreflector frame has, presently, only been defined with 

respect to a geometric model of the GBT. It has been conceived, to date, only 

within the paradigm of a telescope consisting of a rigid alidade linked to a rigid 

tipping structure. It has not yet been defined for an elastically deformable tele¬ 

scope, possessing subreflector actuators pinned to the end of a flexible feed arm. 

We are thereby presented with the following real problem. By using rangefinder 

metrology we can locate the current position and orientation of the subreflector 

with respect to the ground. The subreflector is moved by resetting the lengths 

of six Stewart Platform piston actuators, which give it known displacements and 

tilts with respect to the tip of the telescope feed arm (which is a flexible can¬ 

tilever). To control the subreflector position with respect to the main reflector 

and the physical Gregorian focus at the receiver room horn flange, the position 

and orientation of the subreflector will have to be located with respect to the 

ground reference frame. This could be done in the following way. 

When the independent subreflector variables are specified by calling out S 

in a (Gregorian) Focus Tracking Synchronization Message, one is given enough 

information to calculate displacement components of the subreflector ellipsoid's 

center point and optical axis reference point from their home positions, and also 

to compute the direction cosines of the unit vectors along the ellipsoid axes (which 

are tilted, for non-zero values of the six independent subreflector variables) with 

respect to the ellipsoid unit basis vectors at home position. We compute the 

subreflector position and orientation with respect to ground for home position, 

given the subreflector state vector, S. After computing the subreflector position 

and orientation for subreflector home position, we can subsequently specify subre¬ 

flector position and orientation with respect to ground, for an arbitrary given set 

of values for the six independent subreflector variables, and compute the retro- 
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target reference point coordinates to aim at. The computations are given in the 

paragraphs which follow. 

When the subreflector is at home position, for a geometric telescope at com¬ 

manded elevation ELcorn and commanded azimuth AZcom the ground frame co¬ 

ordinates of the subreflector prism target fiducial points are given by: 

X(Ti) 1 x(h) 1 ' Xce(T,) - X^ih) - 
(2.1.1a) YiT,) = Y(h) + [fi71] Yce(Tj) - Yce{h) 1 or 

Z(Tj) hp Z(Ii) hp Zce(Tj) — Zce(Ii) hp 

MT,) ] X(h) 1 dxj 

m) — y(h) + [fi71] fiyj 
Z(Tj) hp Z(h) hp . *** . 

The values of <5^, <5yj, 8Zj are constants which are computed by subtracting the 

ellipsoid system coordinates of I\ given in equations (1.1) from those of the sub¬ 

reflector targets, given in Table 2. The subscript "/ip" denotes values computed 

for the subreflector home position. The column vector of ground frame coordi¬ 

nates for the reference point I\ at home position (corresponding to commanded 

telescope angles) is computed from the geometric telescope design geometry, and 

turns out to be 

(2.1.2) 
Hh) 

Y(h) 

Z(h) 
-[ 

T16 

hp 

(sm AZcorn • sin ELCOTn • dSe) (sin AZcorn * cos ELCOTri • hseJ 

(cos AZcorn ' sin EL/corn * dse) (cos AZcorn • cos ELcorn * /ise) 

(cOsELcom ' dse) (sin ELCom ' hs "sel 

The lengths dse and hse are given, for the geometric design telescope, in 

Appendix I of [Goldman-1], and have the values: 

(2.1.2b) dse = 62.731110 meters, hse = 69.291990 meters. 

In terms of the commanded telescope elevation and azimuth angles, the coor¬ 

dinate rotation matrix [/?71(az(£), el(t))] from the ellipsoid reference frame to the 
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ground reference frame is: 

(2.1.3) [R71] = 

0 Sfi Cp 

0 —^Cp Sp 
10 0 

cos AZcorn sin A.Z 

(sin AZcom • sin ELcom) (cos AZ^ • sin ELcom) 

(sin AZcom • cos ELcom) (cos AZcom • cos ELcorn) 

0 
— cos ELC 

sin ELrm 

We can now compute the positions of the subrefiector target reference point lo¬ 

cations corresponding to a subrefiector at a commanded position specified by the 

subrefiector state vector S. We compute these coordinates in the subrefiector co¬ 

ordinate system. They can subsequently be transformed into coordinates in other 

telescope coordinate systems using coordinate transformations which are already 

available. See e.g. Appendix I of [Goldman-1]. 

1.5.1. Coordinates Of Subrefiector Retrotarget Reference Points. 

We now compute the subrefiector system coordinates of reference point Tj of 

subrefiector retrotarget when the subrefiector is at the general position speci¬ 

fied by state vector S. We begin by considering the coordinates of Tj when the 

subrefiector is at home position state Shp(AZcam, ELcarn). The home position 

subrefiector system coordinates of Tj are denoted by the symbols 

Xshp(T3) , YShp{Tj) , ZShp(Tj) . 

These coordinates are constants; their numerical values appear in Table 4. 

In terms of these coordinates, the displacement vector from subrefiector refer¬ 

ence point /j to target reference point Tj is: 

(2.2.1) XShp{Tj) = Xshp(Tj) • Xs + Yshp(Tj) • Ys + Zshp(Tj) - , 

where Xs , Ys , Zs are the subrefiector frame basis vectors when the subrefiector is 

at home position Shp(AZcom, ELCOfn). 

We use the notation: 

(2.2.2) n = n3{oz • zs) • n2(oy. ys) • Ki(0nut • xnut) 
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to denote the operation of rotating the subreflector successively by the (radian) 

angles 6nut about the subreflector nutation axis, 0y about the subreflector Y^-axis, 

and 6Z about the subreflector ^-axis, while leaving reference point Ii fixed in 

position. By convention these are right-handed rotations when these angles are 

positive. 

After the subreflector is moved to the position specified by state vector S, the 

target reference point Tj will have moved to the position given by the displace¬ 

ment vector 

(2.3.2) Tj(S) = XS(I) ■ Xs + YS(I) ■ t + ZS(I) ■ Z, + Tl [Xshp(T,)] . 

Because the rotation operator is linear when acting on the sum of displacement 

vectors we get, 

(2.3.3) n [^(Tj)] = X^Tj) ■ n [x,] + y,hv(Tj) ■ ft [k] + Z^iTj) ■ n [za]. 

(2.3.4) ^(S) = X.(I) ■ Xs + Y,(I) ■ Y, + Zt(I) ■ Zs + X^Tj) ■ Tl [A's] + 

+YsHP(Tj) ■ ft [n] + Z^Tj) ■ Tl [Zs] . 

We use the notation: 

(2.3.5) 2}(S) - Xsj • X, + Yaj ■ Ys + Zaj • Za 

to denote the displacement of Tj(S) from the origin point Ii of the subreflec¬ 

tor. Here, 

XSj is the ^-component of Tj(S) , 

YSj is the V^-component of Tj(S) , 

Zsj is the Zs-component of Tj(S) . 

To compute the part of the retrotarget displacements caused by subreflector 

rotations about the reference point I we use the following result of classical vector 

analysis. (See e.g. H. Goldstein's Classical Mechanics). 
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Given a displacement vector v from a point I we wish to rotate v about an axis 

through / by a right-hand rotation angle 0 so that the (oriented) axis of rotation 

points along the direction of a unit vector u. Calling v' the rotated vector we 

may write in symbolic notation v —» v' or 

(2.3.6) 71(0 - u) [v] = v'. 

It can be shown that the rotation may be computed explicitly using the for¬ 

mula 

(2.3.7) v' = (u)(u- {f)(l — cos^) + (v)cos0 + (u x v)sm6 . 

We use this formula to compute the rotated vectors appearing in (2.3.2) and 

(2.3.4). We will use the abbreviations: 

(2.3.8) 

Cn cos dnui , Sn sin 0nut i 

Cy = COS 6y 

Cr = cos 07 

Sy = sin 0y , 

S7 = sin 0, 

We now compute the rotated vectors. First we rotate Xs by 6nut about Xnut 

Elquation (2.3.7) gives 

(2.3.8) K, [Xs] = (Xnut)(Xnut ■ X,)(l - C„) + 

+ (X,)(Cn) + (Xnut X Xs)(Sn) , and 

(2.3.8b) K, [A'SJ = (C, ■ - Ss ■ n)(C5)(l - Cn) + 

+ (Xs)(Cn) + cs -ss o 

1 0 0 
(Sn) > which gives, 

(2.3.9a) TZi [Xs] = (C5
2 + S? • Cn)Xs + (-C, ■ S,)(l - Cn)Ys + (Ss ■ Sn)Z,. 

By similar computations we get rotations of Ys and Zs by 6nut about Xnut, 

(2.3.9b) K, [Ys] = (-C. ■ 5S)(1 - Cn)Xs + (5? + Cs
2 • Cn)Y, + (C, • Sn)Zs , 

(2.3.9c) K, \ZS] = (-S3 ■ Sn)Xs + (-Cs • Sn)Ys + (Cn)Zs. 
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These results can be written as 

(2.3.10) fti Ys 

Z. 

{Cl + Sl-Cn) (-C..S.)(1- 

(~CS ■ S3)(l - Cn) (S? + C?-C„) 

(-Ss ■ Sn) (-C. ■ Sn) 

Cn) (.Ss • Sn) " X. 
(Cs • S„) • Ys 

(C„) ZS 

or 

Xs All Al2 A\z Xs ' Xs 

(2.3.11) n. Ys = A21 A22 A<n • t = [A] - Ys 

Zs A31 A32 A33 Zs 

An = {01 + 8* 'Cn) Aw — (- Cs ■ Sa){l - Cn) ^13 ^ 
(2.3.12) Azi = (-Cs ' Ss)(l - Cn) A22 — (^ + ^2 'Cn) A23 — 

Az\ = (Ss' sn) A32 = (- Cs - Sn) A33 = 

where 

It can be verified that rotation matrix [A] is an orthonormal matrix. Its ele¬ 

ments are computed explicitly from trigonometric functions of 0S = 36.7° and 

Qnut- 

We next rotate Tl\ ,7l\ ,7^ by • Ys). Using (2.3.7) again, 

we get, 

(2.3.13) 7^-R., [Xs] = (YS)(YS ■ (AnXs + AnY3 + Al3Z.))(l - Cs) + 

+ (-^ll^S + AftYs + Al3Zs)(Cy) + 

n Zs 

0 10 

^11 -^12 -<4.13 

(Sy) , reducing to 

(2.3.13b) ^2^1 — Xs{AiiCy + Aia/Sy) + Ys{Ai2) 4- Zs(AizCy — AnSy) . 

Similar manipulations give 

(2.3.14) = Xg^AiiCy + A^Sy^j + YS(A22) + Zg^AnCy — ^21^) . 
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(2.3.15) [Zs] — Xs(Az\Gv + A&Sy) + Ys(Az2) 4- Zs(A^Cy — A^iSy) 

Results (2.3.13) through (2.3.15) can be written as 

Xs Bu B\2 £13 Xs xs 

(2.3.16) Killi Ys 
= #21 B22 B23 - Ys = [B]- Ys 

zs 
B31 B32 B33 zs Zs 

where 

Bn = AuCy -f AisSy B12 = A12 
(2.3.17) B21 = A2iCy + AyzSy B22 = A22 

B31 = AsiCy + A^Sy B32 = A32 

BlS = Al^Cy — 

B23 = ^23 Cy — A2I Sy 
B33 = AzjCy — AajiSy . 

Numerical values for elements of [B] are computed explicitly from trigonomet¬ 

ric functions of 6y and previously computed elements of [A]. 

Finally, we rotate [x,] , TZ^Jlj [K,] , K2K| [z,] by Tlz(62 ■ Zs). We get 

(2.3.18) U [X.] = (Za)(Zs ■ (.BnXs + Bi2Ys + BnZs)){\ - Cz) + 

+ (BuXg + B^Ys + Bi3Zs)(Cz) 4- 001 

Bn B\2 B\3 

(Sz) , reducing to 

(2.3.18b) U [Xs] = Xs{BnCz - B12Sz) + Vs(BnCz + Bi,Sz} + Zs(Bl3) . 

Similar manipulations give 

(2.3.19) n [n] = XS(B21CZ - Bnsz) + Ya(BriCz + B2lSz) + ZS(B23) . 

(2.3.20) K [Z,] = Xs(B3lC2 - B32SZ) + Y3(BnCz + B31SZ) + ZS{B33) . 

Resudts (2.3.18) through (2.3.20) can be written as 
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Xs 

l *■1 
Q

 

Q
 

L_ 
. Xs Xa 

(2.3.21) n Ys = D21 D22 D23 - Ys = ID]- y8 

D31 Dz2 D33 Z5 Zs 

£)ii = BiiCz — BiiSz D12 = BmCz + BiiSz Diz = B^ 

(2.3.22) D2\ = B2iGz — B22SZ D22 — B22Cz + B2iSz D23 = B23 
D^i — BZ1CZ — B^Sz D32 — B22(^2 + Bz\Sz Dzz = Bzs • 

Numerical values for elements of [D] are computed explicitly from trigonometric 

functions of 6Z and previously computed elements of [B]. We have now obtained 

the rotated basis vectors needed to compute the displacement vector ^-(S). In¬ 

serting the rotated basis vectors given in (2.3.21) into (2.3.4) we get 

" rix(s) ■ r xs(i) 1 " 1 
(2.3.22) Tjy{S) = Y.(t) + [.D]Tr • YsnpiTj) 

Tjz(S) Zs(I) Zshp(Tj) 

Our final results are, for the individual coordinates of target point Tj , in the 

subreflector coordinate system: 

(2.3.22) 

TjX(S)— XS(I) + Xshp(Tj) - Dn 4- YS}ip(Tj) • D21 + ZS}ip(Tj) • D31 , 

Tjy(S)= Ys{I) + XShp(Tj) • D12 4- Yshp{Tj) • D22 + Zshp{Tj) • D32 , 

Zs{I) XshpiTj) - D13 + YShp(Tj) - D23 + Zshpi^Tj) • Dzz . 

By converting these target reference point coordinates from the subreflector coor¬ 

dinate system to the ground coordinate system we obtain the aiming coordinates 

for ground based rangefinders for subreflector targets. If we convert these sub¬ 

reflector target point coordinates to the main reflector coordinate system we can 

compute aiming points for the feed arm rangefinders, whose platform positions 

and orientations are also referenced to the main reflector coordinate system. The 

target fiducial point home position subreflector system coordinates appearing in 

(2.3.22) are listed in Table 4. 
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1.5.2. Subreflector Target Prism Axis Directions. 

The direction cosines of the subreflector target prism axes with respect to the 

subreflector reference frame basis vectors can be calculated by the methods of the 

previous section, for the case where the subreflector has been positioned to corre¬ 

spond to the state vector S. To do this one starts with the known and tabulated 

direction cosines of the prism axis unit vector in the ellipsoid System. One next 

expresses the unit vector Nj directed along the axis of target prism j in terms of 

its subreflector system coordinates: computed for the case that 

the subreflector is at its home position Shp(Azcom, ELcom). We then rotate the 

prism axis vector to correspond to state vector S using the method of the previous 

section. 

Using (1.7.1) and (1.3) we can express the unit vector directed along the axis 

of target prism j , when the subreflector is at home position, in terms of subre¬ 
flector frame basis vectors. 

" X. ' 

- Ys . 

. ^ . 

When the subreflector is at home position, we call the direction cosines of Nj 

with respect to the subreflector frame coordinate axes N^j, A^-, respec¬ 

tively, so that 

(2.4.2) Nj = N%j • Xs + <£. • Ys + N^j ■ Zs . 

These direction cosines are, 

J\rhP — Kf Q _ AT . C 1 xsj Jvxce ^see iyyce ^see > 
(2.4.3) N%j = 7Vlce - Cace + Ny„ ■ Cace , 

N% = N^ . 

Their numerical values are given in Table 7. 

(2.4.1) Nj = [ Nx N N J- * i/rf> <*■ * t yce 

^ see a 
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Table 7: Target Prism Axis Direction Cosines (Subreflector System) 

When Subreflector Is At Home Position Shv(Azcom, ELCOTn). 

(#) Subreflector Nhp- X TXS 7 Nhp- 

Target 

ZSG305 Uppermost -0.5231177 -0.8520017 -0.0209983 

ZSG312 Upper Left -0.0511222 -0.8140772 0.5785021 

ZSG313 Upper Right -0.0503911 -0.8141000 -0.5785342 

ZSG316 Lower Left 0.5209365 -0.659346 0.5421142 

ZSG317 Lower Right 0.5203756 -0.6591874 -0.5428454 

ZSG321 Lowermost 0.8141175 -0.5805874 -0.0114397 

When the subreflector is moved to the position specified by the state vector 

S the prism axis unit vector is rotated from Nj to 7Z J/Vj- 

axis vector is computed from the relation: 

Nj(S). The rotated 

(2.4.4) n [7Vy] = Nj(S) = N% ■ K [X,] + N* ■ U [y.] +N% ■ TZ [zs] . 

We now express the rotated axis vector with respect to the subreflector frame 

basis vectors. We write, 

(2.4.5) Nj(S)= N^syx, + Nysj(S)-Ys + Nzsj(Syzs . 

The rotated basis vectors have already been computed and are given in (2.3.21). 

The direction cosines of the prism axis unit vector for general position of the sub¬ 

reflector are then 

(2.4.6) 

Nx3j(S)= N% ■ Dn + • Dn + N% ■ D:)l , 

Nysj(S)= N% ■ Dt2 + Nfa ■ D22 + N% ■ Dn , 

N2Sj(S)= N'Vj ■ D,, + N% ■ Dn + N% ■ D,, . 

The axis direction vector components can now be transformed to either the ground 

coordinate system or the main reflector coordinate system by available coordinate 

transforms. 
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1.6. Summary 

In this memo we introduced the concept of a subreflector state vector. This is 

a convenient device to describe positioning of the subreflector during the compli¬ 

cated motions it undergoes during astronomical observing. By using the device 

and its associated terminology we can reduce the confusion which has appeared 

previously when one has discussed motion of the subreflector. It is a natural way 

to describe subreflector motions. It separates problems associated with driving 

the subreflector using the telescope control system from problems intrinsic to mea¬ 
surement of subreflector location by laser ranging. 

The subreflector positions to which are to be set by the GBT control system 

will be specified by a sequence of focus tracking messages. Each message provides 

a state vector which prescribes the subreflector's commanded position and ori¬ 

entation at a particular observing time (and possibly also first and second time 

derivatives). The state vector components give sufficient information to spatially 

locate the subreflector's laser target reference points and target prism axis direc¬ 

tions. The target reference points are aiming points for the laser rangefinders. 

When given target reference point positions and axis directions, the metrology 

system computers can determine target visibility and rangefinder encoder set¬ 

tings for range measurements. 

Aiming to subreflector targets (when they are visible) from ground based 

rangefinders, will not require Finite Element Model calculations. The state vector 

prescribing the subreflector location provides positional information referenced to 

the geometric design telescope (corresponding to commanded telescope azimuth 

and elevation). Ground based rangefinders sit at fixed known locations. Aiming 

of ground based rangefinders can thus be accomplished without using the tele¬ 

scope's Finite Element Model. 

In contrast, feed arm rangefinders are mounted on moving platforms attached 

to a deformable structure. Their positions and orientations have to be computed 

using a Finite Element Model, in order to make any ranging measurements. This 

is a general problem intrinsic to the process of aiming feed arm rangefinders, for 

all types of range target. That is, feed arm rangefinders require a determination 

of their positions and orientations, needing finite element analysis, independent 

of whether they range to the main reflector surface, its rim, the ground, or to the 
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subreflector. Determination of feed arm rangefinder location has to be accom¬ 

plished using FEM for all types of rangings from the feed arm, and is not specific 

to range measurements to the subreflector. 

In this document, we have accomplished the following tasks: 

We have computed and tabulated fiducial reference point coordinates and 

prism axis direction cosines for the subreflector prism retrotargets and their as¬ 

sociated subreflector surface points, in the subreflector and ellipsoid coordinate 

systems (Tables 2, 3, 4). 

We have computed the distances between pairs of subreflector target reference 

points and between these reference points and the subreflector optical axis refer¬ 

ence point I (Table 2b). These distances are for the temperature at which the 
subreflector photogrammetry was taken. Aside from a simple temperature correc¬ 

tion for thermal expansion, these are constants characteristic to the subreflector 

and do not change as subreflector position changes. They can be used as entry 

data for adjustment of ranging measurements to the subreflector. 

We have provided equations to calculate subreflector target aim points when 

given a subreflector state vector request presented by a telescope focus tracking 
message. We have also provide information needed for computation of target vis¬ 

ibility, by supplying the target prism axis direction cosines when the subreflector 

is in any general position specified by a commanded state vector. 

Finally we have provided a scheme to calculate the subreflector translation 

displacement and rotation from home position, as it sits in place, using as data 

measured ground or main reflector system coordinates of triples of subreflector 

target reference points. We have provided a scheme to calculate the rotation of 

the subreflector frame basis vectors when carried rigidly by the subreflector during 

a movement from home position; from the rotations of these vectors the subre¬ 

flector tilt angles may be found corresponding to the subreflector's actual position 

in space. Numerical parameters needed for these calculations have been provided 

(Tables 5,6). 

This memo is a first analysis to provide detailed subreflector target reference 

point data and to demonstrate how to use this data to aim rangefinders towards 
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the subreflector and, inversely, to employ adjusted range-measured subreflector 

target-reference-point coordinates to specify the subreflector's actual position and 

orientation in space, which is a first step to obtaining state-vector-parameter data 

which is needed as error signal information for position feedback control. It is 

expected that a subsequent study will pursue this program further, and extend 

and simplify the calculations. 
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The Reference Optical Telescope. 

The reference optical telescope is just an optical design for a gregorian reflecting 

telescope with offset optics. Its first optical element is an off-axis surface patch 

on a paraboloid of revolution. This reflecting patch is designated as the "main 

reflecting surface" of the telescope. A near-parallel source beam of radiation is 

focused by this surface patch onto the focus point of the paraboloid, which is 

designated as the prime focus point of the telescope. The second optical element 

is an off-axis surface patch on an ellipsoid of revolution. This ellipsoidal patch is 

designated as the "subreflector surface" of the telescope. The physical structures 

embodying these surface elements are called the main reflector and secondary re¬ 

flector of the telescope. (Fig- 1). 

One of the two foci of the ellipsoid of revolution is located at the prime focus 

point, F0. Radiation leaving the prime focus is reflected by the subreflector surface 

to the other ellipsoid focus, Fi , the gregorian focus of the telescope (also called 

the Ml focus). The line through the two foci is the major axis of the ellipsoid. 

The paraboloid and ellipsoid axes intersect at the prime focus point, which is 

a common focus of those two quadric surfaces. These axes intersect at an angle 

0(0 < P << 90° ). The plane passing though them defines the "tangential optical 
plane". Each surface patch is defined furthermore to be generated by the inter¬ 

section of a plane perpendicular to the tangential plane with its defining quadric; 

such a plane cuts off a surface patch which is symmetric with respect to the tan¬ 

gential optical plane. The tangential optical plane is then a plane of symmetry of 

each reflecting surface and bisects it, and is also a unique plane of symmetry of 

the telescope. Let Ii be the point in the tangential optical plane which defines the 
mid ray of the tangential fan of rays from the gregorian focus to the subreflector 
surface. 

The gregorian focal plane of the optical telescope passes through the focus Fi 



and is perpendicular to the ray I\Fi. The rays I\Fi and FqIi can be considered 

to define a (folded) optical axis of the telescope. 

In a physical embodiment of the telescope the gregorian focal plane will coin¬ 

cide with flat machined surfaces of flanges attached to the receiver room turret's 

platter structure. The platter axis will be aligned perpendicular to the flanges and 

the focal plane. The flanges mate to flanges on the individual receiver support 
mounts. The platter flange centers, ideally, lie on a 56 inch radius circle centered 

on the turret axis, offset 56 inches from the gregorian focus. The receivers are 
rotated as required to the gregorian focus. 

The turret platter is provided with eight receptacles on its perimeter, one for 

each receiver assembly. Each receptacle has three feed positioning slots ( for the 

cardinal feed position, and three degrees on either side of the cardinal position). 

An index pin and motorized actuator is mounted on the ceiling of the feed room 

diametrically opposite the active feed. The receiver feed is locked into position 

by driving the index pin radially inward towards the turret axis, and engaging a 

slot on the appropriate receptacle. 

The telescope's optical design is defined by the following parameters: 

1. The focal length,/p, of the paraboloid. 

2. The angle, (3 , between the ellipsoid and paraboloid axes. 

3. The eccentricity, e , of the ellipsoid. 

4. The spacing, 2/e , between foci of the ellipsoid. 

5. The offset angle, a., from the ellipsoid major axis, of the mid ra}' of the 
tangential plane ray fan from the gregorian focus to the subreflector.. 

6. The half-angle, 0// , of the tangential plane ray fan from the gregorian focus 
to the subreflector surface. 

7. The half-angle, 0* , of the tangential plane ray fan from the prime focus to 
the intersection of the main reflector surface with the tangential plane. 

8. The offset angle, 0o , from the paraboloid axis, of the mid ray of the tan¬ 
gential plane ray fan from the prime focus to the parabolic arc intersection 
of the main reflector surface. 



The reference optical design has been specified by Norrod and Srikanth in 

GBT Memo 155 [Nor-l]. The exact parameters of the optical telescope specified 

in this memo are: 

fp 6000 cm 

fi 5.570° 

e 0.528 

2/e 1100 cm 

a 17.899° 

©// 14.99° 

e* 42.825° 

00 39.005° 

When referring to the optical telescope we use the following notation. Let: 

Vq denote the paraboloid vertex. 

Fo denote the prime focus point, the common focus of the ellipsoid and paraboloid. 

Fi denote the gregorian focus point, which is the other focus of the ellipsoid. 

/1 denote the intersection point of the tangential plane mid ra}' from the gre¬ 

gorian focus, with the subreflector surface. 

a be the length of the major semi axis of the ellipsoid. 

I) be the length of the minor semi axis of the ellipsoid. 

rx be the length of the ray Fill . 

r<L be the length of the ray FqI\ . 

dgp be the perpendicular distance of point /j to the paraboloid axis. 

hsp be the projected length of ray FqIi along the paraboloid axis. 

dfixp be the perpendicular distance of point Fi to the paraboloid axis. 

hmp be the projected length of ray FoFl along the paraboloid axis. 

7 be the angle FqI\ Fi . 



The following geometric relations hold: 

(2.1) a=^1 

(2.2 ) b = a-y/l - e2 , 

(2.3 ) n + r2 = 2a . 

Applying the law of cosines to triangle FqFiIi and using (2.3 ) one gets 

(2.4) n 
fe - e) 

e r2 = 2a — ri . 
1 — e cos a ' 

Applying the law of sines to the same triangle one gets 

-i 
( ) (sin a.) 

r-i 
(2.5 ) 7 = sm 

By simple trigonometry, 

(2.6 ) dsv = r2 s'm(a + 7 - 0) 

(2.7) dmp — 2fe sin(/5) 

hsp = r2 cos (a + 7-/3) 

hmji - 2/e COS (/?) 

The unit outward normal vector to the ellipsoidal surface patch at /j makes 
7 'y 

an angle ( —) -for with the ellipsoid's major axis and makes an angle (—)+« — /? 
2 

with the paraboloid's axis. 

The derived parameters of the reference optical design are: 



Derived 

Parameter 

Stated Value In 

GBT Document 

Computed From (2.1)-(2.7) 

a 410.106" (*) 1041.6667 cm (410.1050") 

b 348.280" (*) 884.6296 cm (348.2794") 

n 1510 cm (t) 1509.9158 cm (594.4550") 

*2 573 cm (|) 573.41748 cm (225.7549") 

7 36.127028° 

dsp 429.200 cm (!) 429.1726 cm (168.9656") 

ksp 380.300 cm (!) 380.2874 cm (149.7194") 

(?)+« 35.962514° 

1 8 
+

 30.392514° 

dtnp 106.800 cm (!) 106.7680 cm ( 42.0346") 

fo-mp 1094.800 cm (!) 1094.8062 cm (431.0261") 

The optical geometry of the subreflector is illustrated in Fig. 1. 

* RSI Contractor's Drawing 120730 . 

f GBT Memo 155 

| GBT Drawing C35102M081-Rev. B-Sheet 1. Design values on this drawing 
optical design values, rounded to the nearest millimeter. 
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Figure 4. Geometric Telescope Unit Base Vectors. 
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Figure 5. Reference Directions For SubreFlector Motions. 
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