
Trajectory generator with improved small-step behavior

Donald C. Wells*

2004-05-28

Abstract

GBT Memo 203 documented the trajectory generator functions jmCalcTrajectoryO and
jmPosicastTrajectoryO; the former function is used in the Monitor & Control system of the GBT
to minimize vibrations by reducing the 'jerk' of trajectories. Its algorithms have been modified to
improve their behavior for small-step trajectories and to implement offset scanning. The revised function
prototype for JmCalcTrajectoryO is documented in this report. Function jmConcatTrajectoryO has
been added to the trajectory generator package1 to facilitate construction of complex trajectories by
concatenation of trajectory segments; this new function is documented here in an appendix.

Revision History

203.0 1999-12-31 GBT Memo 203 distributed [Wel99]
203.1 2000-10-20 Implemented simulation of small-step trajectory cases
203.2 2000-12-08 Implemented offset-scan capability Section 1.1 on page 3
203.3 2000-12-14 Implemented segment concatenation Appendix A on page 4

Contents

1 The new small-step algorithm in jmCalcTrajectoryO

1.1 The new offset-scan feature in jmCalcTrajectory

1.2 Prospects for further improvements for small-step cases

2 Recommendations for the GBT

A Concatenation of offset-scan trajectories (jmConcatTrajectory)

Bibliography

*dwellsenrao.edu http://wvw.cv.nrao.edu/~dwells
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 USA

1The jm (jerk minimization) package of C functions is available under GNU Public License at
ftp://fits.cv.nrao.edu/pub/gbt-dwella_jm.tgz [1141 KB, also see gbt_dwells-jm.readme].

2 Page IVajectory generator with improved small-step behavior GBT Memo 231

1 The new small-step algorithm in jmCalcTrajectoryO

The first released version of jmCalcTrajectoryO [Wel99] was installed in the GBT M&C software during
the first half of 2000; it was operational in the M&C code during acceptance tests of the GBT main drive
servos in August 2000. Steps of various sizes were commanded while output of an accelerometer on the
feedarm was monitored. For steps of several degrees J. Brandt reported [BraOO] that the observed vibration
levels produced by the jerk-minimizing trajectories were lower than the levels observed when the servos were
commanded (by hand) to perform the same steps abruptly. However, for steps of order 0.1 degrees, he
reported that

"One surprising result is that small position changes cause higher magnitude vibrations. I suspect
a bug in the algorithm is occurring here when the step is so small, that the acceleration sin2 shaped
pulses begin to narrow enough to cause impulsive application of acceleration forces."

Brandt was certainly correct in his suspicion. This small-step problem was confirmed by simulations soon
after it was reported from the field trials.2 There appear to be three ways in which small steps can lead to
impulsive (jerky) trajectories: (1) Function argument dt is comparatively large for the GBT, 0.1 s; if Tyler's
algorithm [Tyl94] computes an acceleration duration tl (or t3, deceleration) which is smaller than dt, that
acceleration will be a step function. (2) Even if an acceleration duration is several times larger than dt, it
may be undersampled by the piecewise parabolic approximation computed by jmCalcTrajectoryO, so that
the effective trajectory is noisy. (3) The position loops of the GBT AzEl servos have a lowpass cutoff of about
0.3 Hz, so that an acceleration duration which is well-sampled, but which is shorter than this timeconstant
(about 3 s), cannot be properly tracked by the PID servos; i.e., significant error will accumulate rapidly in
the servo error register, and the servo is likely to jerk the telescope as it tries to zero this error.

The fix for these problems is to modify the algorithm such that all acceleration durations are longer than
certain minimum amounts. First, durations should be longer than about 5 times dt in order to assure that
the piecewise paraboUc approximation to the acceleration profile will not be undersampled. For the GBT
this will be 0.5 s, and imphes that the minimum duration for any trajectory will be about 1 s (acceleration
plus deceleration). Second, durations should be comparable (or perhaps slightly greater than) the effective
time constant of the PID servo position loops. For the GBT this will be about 3 s, and implies that the
minimum duration for any trajectory will be about 6 s.

Soon after the small-step problem was recognized in 2000, the author began to try various fixes for the
problem. Several different new algorithms were tried during a three year period, and all were abandoned, for
various reasons, after their trials. All of these algorithms shared the feature that t_servo was added to the
arguments of function jmCalcTrajectoryO and jmPosicastTrajectoryO. Also, they all used a minimum
acceleration duration which is computed using

#define AMSAMPLE 5
t_min = ceil(t_servo[0] / dt) * dt;
t_min = (t_min > AMSAMPLE*dt) ? t_min : AMSAMPLE*dt;

The first statement rounds the servo time constant argument up to the next multiple of dt, and the second
statement assures that profiles will be adequately sampled. The algorithms all attempted to find solutions
which satisfy the constraint that both the acceleration and the decelerations times should be longer than
t jnin computed as shown above. Finally, in January 2004 an algorithm which only attempted to satisfy
the constraint for one of the two times succeeded in generating acceptable trajectories for a set of test
problems. This algorithm was further developed during the period January-May 2004, and is being released
now, concurrently with publication of this GBT Memo.

The new algorithm tests times ti (acceleration) and £3 (deceleration) to check whether either of them is less
than tmin. It also computes the changes of position ^atl^ which will occur during the two intervals; if these

2This bug is somewhat ironic: the small-step problem was overlooked during the original development in 1999 because of
the concentration on solving the large-step case!

GBT Memo 231 Trajectory generator with improved small-step behavior Page 3

are smaller than function argument p_eps (see function prototype below), then the small-step time violation
is ignored. If one of the two times is too short, and its motion is significant, the algorithm searches for a
reduction of acceleration which will lengthen the time sufficiently. If both of the times are too short and
their motions are significant, then the search is conducted for the larger of the two times. This design has
the deficiency that the other time interval is sometimes still too short, even though the acceleration has been
reduced (see Figure 1 on page 5 and Appendix A on the next page for an example). An obvious idea is to
search for a solution using the smaller of the two times; this approach failed in certain cases, whereas the
choice which is described here has succeeded in an extensive set of test cases.3

The revised function prototype is:

jmError jmCalcTrajectory(/* returns enum code on error */
jmCalc mode, /* jmFastest,jmSpecifyTime,.. */
jmFunct funct, /* jmTylerA,jmTylerB,.. */
double dt. /* time step, e.g. 0.1 s */
int nAxes, /* num axes for pOC] ,a_maxC] ,etc */
double POD, /* initial trajectory */
double v0[].
double a0[]. /* <—not yet implemented */
double pOs[], /* 'scan' offset wrt trajectory */
double vOs[],
double pf[3. /* final position */
double vfC], /* final velocity */
double af[]. /* final acceleration (jmTylerC) */
double pfs[]. /* 'scan' offset wrt trajectory */
double vfsC],
double tf. /* time for pf+vf+af target traj */
double v_maxC] , /* +/- limits for axes */
double a_maxC] ,
double t _servo C] , /* position loop response time */
double p_eps C] , /* negligible position change */
double *t.total, /* ptr to total trajectory time */

1.1 The new offset-scan feature in jmCalcTrajectory

Ability to generate offset scans was added to the trajectory generator package in December of 2000, and
the code was released, accompanied by an unpubUshed revision of GBT Memo 203 which was called Memo
"203.2" (see the Revision History above). This new feature appears as the arguments pOs, vOs, pf s and vf s
in the function prototype above. These arguments are added to arguments p0, vO, pf and vf, respectively.
This feature is especially convenient when used in the case of an accelerated target trajectory, as described
in Appendix A on the next page.

1.2 Prospects for further improvements for small-step cases

The original jmCalcTrajectory implementation solved the problem of finding the fastest trajectory between
specified starting and ending conditions. It even solved the problem of finding the fastest trajectory which
would osculate to a specified target trajectory. This was an example of an optimization problem. The
improved algorithm described in this report finds the optimum trajectories subject to a constraint that the

3Ideally) we would search for an acceleration reduction which would make both times long enough, but that was the approach
that failed in the trials during 2000-2003. Even better would be to find different acceleration reductions for ti and £3; that is
the approach that would be implemented if this code is further developed as discussed in Section 1.2.

4 Page IVajectory generator with improved small-step behavior GBT Memo 231

acceleration or deceleration time should be longer than a specified minimum time. This is an example of a
constrained optimization problem. However, the present algorithm can only enforce one such constraint. We
really want to simultaneously enforce two constaints (on both the acceleration and the deceleration times).
During the period 2000-2004, the author tried several approaches in a futile attempt to achieve this result,
and ultimately settled for the partial solution presented here.

Algorithms which solve multiple-constraint optimization problems such as this one are available commercially
from multiple sources, although not in forms which lend themselves to installation in real-time applications
like the GBT Monitor & Control system. Recently the author located a constrained optimization subroutine
package which appears to be suitable, and which is in the public domain. It appears to the author that this
could be adapted to produce a fully general and fully optimized trajectory generator algorithm.

2 Recommendations for the GBT

The author recommends

• that this new jm package be installed in the GBT (with t_servo adjusted empirically to minimize
excitation of vibrations),

• that function jmPosicastTrajectoryO be tested with the GBT (to demonstrate cancellation of
vibrations for appropriate modal period arguments), and

• that the R&D effort discussed in Section 1.2 on the preceding page be authorized and funded in order
to make further improvements in the scanning performance of the GBT.

Regarding the second item, the author conjectures that if jmPosicastTrajectoryO is used to generate
trajectories, it may be possible to reduce t .servo to well below the actual servo time constant (but not
below the sampling constraint of 0.5s for the GBT) without exciting vibrations, because vibrations excited
by the servo will be cancelled by the servo. It should also be possible to use the jmTylerA mode for the
jmPosicastTrajectoryO accelerations, rather than the jmTylerB/jmTylerC (sin2) functions which we now
use; this will give a further speedup. These potential improvements may yield more than a factor of two
speedup; such a development would be a major improvement for GBT operations if it succeeded.

A Concatenation of offset-scan trajectories (jmConcatTrajectory)

This function was originally coded in December of 2000, and has been included with the jm code since that
time, but it has not been documented in a formal publication. The prototype is:

jmError jmConcatTrajectory(/* returns error code */
jmPS *pPSl, /* output trajectory */

jmPS *pPS2, /* trajectory to be appended */

The arguments are pointers to two trajectory structures. The second trajectory is appended to the first
trajectory. A check is made for position mismatch at the join point, using argument tol.

A test problem for this function has been coded, and its output is shown in Figure 1 on the next page.
The idea is that we start at position 0.015 with zero velocity, and then move up to osculate to a specified
parabolic target trajectory after about 7 s. We then move away from the target trajectory and get a running
start for a scan. The scan at constant velocity lasts for 2.4 s, and is centered on the target. We then turn
around and do a reverse scan for 2.4 s. Finally, we return to the target trajectory, and osculate to it again.

GBT Memo 231 Trajectory generator with improved small-step behavior Page 5

segment description ttotal [s] T[s] Ms] Ms] Ms] am_scale
1 osculate to target trajectory 8.1 8.1 3.42 0.34 3.74 0.0
2 move to start of scan 14.6 6.5 1.91 0.29 3.69 0.0
3 forward scan 17.0 2.4 -0.00 2.40 0.00 1.0
4 reverse direction for 2nd scan 23.6 6.6 3.95 0.06 2.00 0.0
5 reverse scan 26.0 2.4 -0.00 2.40 -0.00 1.0

<D

0.04

0.038

0.036

0.034

0.032

0.03

0.028

0.026

0.024 {-

0.022

0.02

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

-0.002

-0.004

0.022+(-0.0001+0.5*2e-05*(t-8))*(t-8)
Six jmTylerC trajectory segments T=30.7s,P=1s>Damp=0.005

ends of segments
10x

0 8 10 12 14 16 18 20
t[s]

22 24 26 28 30 32 34 36

Figure 1: Concatenated trajectory segments relative to accelerating target

6 Page TVajectory generator with improved small-step behavior GBT Memo 231

This example shows the capability of the jm package to generate scan trajectories for the general case of a
radio telescope scanning an astronomical target.

The concatenated trajectory was integrated using the mass-on-arspring approximation, as was done in
Memo 203, in order to see the amplitude of vibrations which would be excited by the trajectory. The
position error of the system relative to the commanded trajectory is shown as the lower trace of the figure,
with lOx exxageration. The negative residual at t = 1.5s and the positive residual at t = 5.5s are the
inertia! error of the system (i.e., pointing error while accelerating). Such inertial residuals occur for each
of the acceleration and decelleration intervals of the concatenated trajectory. Two of these excursions, at
t = 8s and t = 29.5s, are large and brief. Note that these correspond to the time intervals of order 1.9s in
the table at the top of the figure. Also note that oscillations with P=ls start after the first such excursion
and are somewhat damped after the second excursion. The vibration amplitudes shown here are less than
0.001 in the figure, but that is really 0.0001. So, if this example is taken as a GBT scan with motions of
order 0.03 degree (108 arcsec), then the vibration amplitudes during the scan are less than 0.4 arcsec. This
would be an acceptable level for the GBT, even for 100 GHz operation where the beam width is of order
8 arcsec.

The two short time intervals in this simulation illustrate the deficiency of the current algorithm. For example,
in segment 6 we have ti = 3.7s, satisfying the tgerv0 = 3.5s constraint, but tz — 1.93s, which is too short.
If these remaining small-step deficiencies of the new algorithm cause difficulty for observations, the author
recommends a pragmatic solution: set t_servo to a value about 50 percent larger, such as 5 seconds instead
of 3.5 seconds. This will be likely to reduce the incidence of small-step problems even further.

References

[BraOO] Joseph J. Brandt. Initial results of the trajectory pre-processor on the GBT. unpublished 4 page
limited-distribution memo, with three figures titled 'Position steps using the preprocessor', 'Position
steps using the OCU' and 'Position error during steps using the preprocessor', August 2000.

[Tyl94] S. R. Tyler. A trajectory preprocessor for antenna pointing. [JPL] Telecommunications and Data
Acquisition Progress Report 42-118, April-June: 139-159, August 1994. Abstract: "A trajectory-
preprocessing algorithm has been devised which matches antenna angular position, velocity, and
acceleration to those of a target. This eliminates vibrations of the antenna structure caused by
discontinuities in velocity and acceleration commands, and improves antenna-pointing performance
by constraining antenna motion to a linear regime..".

[Wel99] Donald C. Wells. Jerk-minimizing trajectory generator in C. GBT Memo 203, NRAO, December
1999. This memo describes the C function jmCalcTrajectoryO, which computes multiple jerk-
minimizing trajectories. This memo also documents the C function jmPosicastTrajectoryO,
which implements the "Posicast" algorithm by convolving multiple trajectories computed by
jmCalcTrajectoryO with pairs of impulses; if the time separations of the impulse pairs is half of
the vibrational period(s) cancelled (minimized all the way to zero). The current version of the jm
package is available under GNU Public License as file
ftp: //fits. cv. nrao. edu/pub/gbt -dwells_jm. tgz.

