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Abstract 

GBT Memo 203 documented the trajectory generator functions jmCalcTrajectoryO and 
jmPosicastTrajectoryO; the former function is used in the Monitor & Control system of the GBT 
to minimize vibrations by reducing the 'jerk' of trajectories. Its algorithms have been modified to 
improve their behavior for small-step trajectories and to implement offset scanning. The revised function 
prototype for JmCalcTrajectoryO is documented in this report. Function jmConcatTrajectoryO has 
been added to the trajectory generator package1 to facilitate construction of complex trajectories by 
concatenation of trajectory segments; this new function is documented here in an appendix. 

Revision History 

203.0 1999-12-31 GBT Memo 203 distributed [Wel99] 
203.1 2000-10-20 Implemented simulation of small-step trajectory cases 
203.2 2000-12-08 Implemented offset-scan capability Section 1.1 on page 3 
203.3 2000-12-14 Implemented segment concatenation Appendix A on page 4 
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1    The new small-step algorithm in jmCalcTrajectoryO 

The first released version of jmCalcTrajectoryO [Wel99] was installed in the GBT M&C software during 
the first half of 2000; it was operational in the M&C code during acceptance tests of the GBT main drive 
servos in August 2000. Steps of various sizes were commanded while output of an accelerometer on the 
feedarm was monitored. For steps of several degrees J. Brandt reported [BraOO] that the observed vibration 
levels produced by the jerk-minimizing trajectories were lower than the levels observed when the servos were 
commanded (by hand) to perform the same steps abruptly. However, for steps of order 0.1 degrees, he 
reported that 

"One surprising result is that small position changes cause higher magnitude vibrations. I suspect 
a bug in the algorithm is occurring here when the step is so small, that the acceleration sin2 shaped 
pulses begin to narrow enough to cause impulsive application of acceleration forces." 

Brandt was certainly correct in his suspicion. This small-step problem was confirmed by simulations soon 
after it was reported from the field trials.2 There appear to be three ways in which small steps can lead to 
impulsive (jerky) trajectories: (1) Function argument dt is comparatively large for the GBT, 0.1 s; if Tyler's 
algorithm [Tyl94] computes an acceleration duration tl (or t3, deceleration) which is smaller than dt, that 
acceleration will be a step function. (2) Even if an acceleration duration is several times larger than dt, it 
may be undersampled by the piecewise parabolic approximation computed by jmCalcTrajectoryO, so that 
the effective trajectory is noisy. (3) The position loops of the GBT AzEl servos have a lowpass cutoff of about 
0.3 Hz, so that an acceleration duration which is well-sampled, but which is shorter than this timeconstant 
(about 3 s), cannot be properly tracked by the PID servos; i.e., significant error will accumulate rapidly in 
the servo error register, and the servo is likely to jerk the telescope as it tries to zero this error. 

The fix for these problems is to modify the algorithm such that all acceleration durations are longer than 
certain minimum amounts. First, durations should be longer than about 5 times dt in order to assure that 
the piecewise paraboUc approximation to the acceleration profile will not be undersampled. For the GBT 
this will be 0.5 s, and imphes that the minimum duration for any trajectory will be about 1 s (acceleration 
plus deceleration). Second, durations should be comparable (or perhaps slightly greater than) the effective 
time constant of the PID servo position loops. For the GBT this will be about 3 s, and implies that the 
minimum duration for any trajectory will be about 6 s. 

Soon after the small-step problem was recognized in 2000, the author began to try various fixes for the 
problem. Several different new algorithms were tried during a three year period, and all were abandoned, for 
various reasons, after their trials. All of these algorithms shared the feature that t_servo was added to the 
arguments of function jmCalcTrajectoryO and jmPosicastTrajectoryO. Also, they all used a minimum 
acceleration duration which is computed using 

#define AMSAMPLE 5 
t_min = ceil(t_servo[0]  / dt)  * dt; 
t_min =  (t_min > AMSAMPLE*dt)  ? t_min :  AMSAMPLE*dt; 

The first statement rounds the servo time constant argument up to the next multiple of dt, and the second 
statement assures that profiles will be adequately sampled. The algorithms all attempted to find solutions 
which satisfy the constraint that both the acceleration and the decelerations times should be longer than 
t jnin computed as shown above. Finally, in January 2004 an algorithm which only attempted to satisfy 
the constraint for one of the two times succeeded in generating acceptable trajectories for a set of test 
problems. This algorithm was further developed during the period January-May 2004, and is being released 
now, concurrently with publication of this GBT Memo. 

The new algorithm tests times ti (acceleration) and £3 (deceleration) to check whether either of them is less 
than tmin. It also computes the changes of position ^atl^ which will occur during the two intervals; if these 

2This bug is somewhat ironic: the small-step problem was overlooked during the original development in 1999 because of 
the concentration on solving the large-step case! 
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are smaller than function argument p_eps (see function prototype below), then the small-step time violation 
is ignored. If one of the two times is too short, and its motion is significant, the algorithm searches for a 
reduction of acceleration which will lengthen the time sufficiently. If both of the times are too short and 
their motions are significant, then the search is conducted for the larger of the two times. This design has 
the deficiency that the other time interval is sometimes still too short, even though the acceleration has been 
reduced (see Figure 1 on page 5 and Appendix A on the next page for an example). An obvious idea is to 
search for a solution using the smaller of the two times; this approach failed in certain cases, whereas the 
choice which is described here has succeeded in an extensive set of test cases.3 

The revised function prototype is: 

jmError jmCalcTrajectory( /* returns enum code on error */ 
jmCalc mode, /* jmFastest,jmSpecifyTime,.. */ 
jmFunct funct, /* jmTylerA,jmTylerB,.. */ 
double dt. /* time step, e.g. 0.1 s */ 
int nAxes, /* num axes for pOC] ,a_maxC] ,etc */ 
double POD, /* initial trajectory */ 
double v0[]. 
double a0[]. /* <—not yet implemented */ 
double pOs[], /* 'scan' offset wrt trajectory */ 
double vOs[], 
double pf[3. /* final position */ 
double vfC], /* final velocity */ 
double af[]. /* final acceleration (jmTylerC) */ 
double pfs[]. /* 'scan' offset wrt trajectory */ 
double vfsC], 
double tf. /* time for pf+vf+af target traj */ 
double v_maxC] , /* +/- limits for axes */ 
double a_maxC] , 
double t _servo C] , /* position loop response time */ 
double p_eps C] , /* negligible position change */ 
double *t.total, /* ptr to total trajectory time */ 

1.1    The new offset-scan feature in jmCalcTrajectory 

Ability to generate offset scans was added to the trajectory generator package in December of 2000, and 
the code was released, accompanied by an unpubUshed revision of GBT Memo 203 which was called Memo 
"203.2" (see the Revision History above). This new feature appears as the arguments pOs, vOs, pf s and vf s 
in the function prototype above. These arguments are added to arguments p0, vO, pf and vf, respectively. 
This feature is especially convenient when used in the case of an accelerated target trajectory, as described 
in Appendix A on the next page. 

1.2    Prospects for further improvements for small-step cases 

The original jmCalcTrajectory implementation solved the problem of finding the fastest trajectory between 
specified starting and ending conditions. It even solved the problem of finding the fastest trajectory which 
would osculate to a specified target trajectory. This was an example of an optimization problem. The 
improved algorithm described in this report finds the optimum trajectories subject to a constraint that the 

3Ideally) we would search for an acceleration reduction which would make both times long enough, but that was the approach 
that failed in the trials during 2000-2003. Even better would be to find different acceleration reductions for ti and £3; that is 
the approach that would be implemented if this code is further developed as discussed in Section 1.2. 



4 Page IVajectory generator with improved small-step behavior GBT Memo 231 

acceleration or deceleration time should be longer than a specified minimum time. This is an example of a 
constrained optimization problem. However, the present algorithm can only enforce one such constraint. We 
really want to simultaneously enforce two constaints (on both the acceleration and the deceleration times). 
During the period 2000-2004, the author tried several approaches in a futile attempt to achieve this result, 
and ultimately settled for the partial solution presented here. 

Algorithms which solve multiple-constraint optimization problems such as this one are available commercially 
from multiple sources, although not in forms which lend themselves to installation in real-time applications 
like the GBT Monitor & Control system. Recently the author located a constrained optimization subroutine 
package which appears to be suitable, and which is in the public domain. It appears to the author that this 
could be adapted to produce a fully general and fully optimized trajectory generator algorithm. 

2    Recommendations for the GBT 

The author recommends 

• that this new jm package be installed in the GBT (with t_servo adjusted empirically to minimize 
excitation of vibrations), 

• that function jmPosicastTrajectoryO be tested with the GBT (to demonstrate cancellation of 
vibrations for appropriate modal period arguments), and 

• that the R&D effort discussed in Section 1.2 on the preceding page be authorized and funded in order 
to make further improvements in the scanning performance of the GBT. 

Regarding the second item, the author conjectures that if jmPosicastTrajectoryO is used to generate 
trajectories, it may be possible to reduce t .servo to well below the actual servo time constant (but not 
below the sampling constraint of 0.5s for the GBT) without exciting vibrations, because vibrations excited 
by the servo will be cancelled by the servo. It should also be possible to use the jmTylerA mode for the 
jmPosicastTrajectoryO accelerations, rather than the jmTylerB/jmTylerC (sin2) functions which we now 
use; this will give a further speedup. These potential improvements may yield more than a factor of two 
speedup; such a development would be a major improvement for GBT operations if it succeeded. 

A    Concatenation of offset-scan trajectories (jmConcatTrajectory) 

This function was originally coded in December of 2000, and has been included with the jm code since that 
time, but it has not been documented in a formal publication. The prototype is: 

jmError jmConcatTrajectory( /* returns error code      */ 
jmPS *pPSl, /* output trajectory       */ 

jmPS *pPS2, /* trajectory to be appended */ 

The arguments are pointers to two trajectory structures. The second trajectory is appended to the first 
trajectory. A check is made for position mismatch at the join point, using argument tol. 

A test problem for this function has been coded, and its output is shown in Figure 1 on the next page. 
The idea is that we start at position 0.015 with zero velocity, and then move up to osculate to a specified 
parabolic target trajectory after about 7 s. We then move away from the target trajectory and get a running 
start for a scan. The scan at constant velocity lasts for 2.4 s, and is centered on the target. We then turn 
around and do a reverse scan for 2.4 s. Finally, we return to the target trajectory, and osculate to it again. 
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segment description ttotal [s] T[s] Ms] Ms] Ms] am_scale 
1 osculate to target trajectory 8.1 8.1 3.42 0.34 3.74 0.0 
2 move to start of scan 14.6 6.5 1.91 0.29 3.69 0.0 
3 forward scan 17.0 2.4 -0.00 2.40 0.00 1.0 
4 reverse direction for 2nd scan 23.6 6.6 3.95 0.06 2.00 0.0 
5 reverse scan 26.0 2.4 -0.00 2.40 -0.00 1.0 

<D 

0.04 

0.038 

0.036 

0.034 

0.032 

0.03 

0.028 

0.026 

0.024 {- 

0.022 

0.02 

0.018 

0.016 

0.014 

0.012 

0.01 

0.008 

0.006 

0.004 

0.002 

0 

-0.002 

-0.004 

0.022+(-0.0001+0.5*2e-05*(t-8))*(t-8) 
Six jmTylerC trajectory segments T=30.7s,P=1s>Damp=0.005 

ends of segments 
10x 

0 8      10     12     14 16     18     20 
t[s] 

22     24     26     28     30     32     34     36 

Figure 1: Concatenated trajectory segments relative to accelerating target 
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This example shows the capability of the jm package to generate scan trajectories for the general case of a 
radio telescope scanning an astronomical target. 

The concatenated trajectory was integrated using the mass-on-arspring approximation, as was done in 
Memo 203, in order to see the amplitude of vibrations which would be excited by the trajectory. The 
position error of the system relative to the commanded trajectory is shown as the lower trace of the figure, 
with lOx exxageration. The negative residual at t = 1.5s and the positive residual at t = 5.5s are the 
inertia! error of the system (i.e., pointing error while accelerating). Such inertial residuals occur for each 
of the acceleration and decelleration intervals of the concatenated trajectory. Two of these excursions, at 
t = 8s and t = 29.5s, are large and brief. Note that these correspond to the time intervals of order 1.9s in 
the table at the top of the figure. Also note that oscillations with P=ls start after the first such excursion 
and are somewhat damped after the second excursion. The vibration amplitudes shown here are less than 
0.001 in the figure, but that is really 0.0001. So, if this example is taken as a GBT scan with motions of 
order 0.03 degree (108 arcsec), then the vibration amplitudes during the scan are less than 0.4 arcsec. This 
would be an acceptable level for the GBT, even for 100 GHz operation where the beam width is of order 
8 arcsec. 

The two short time intervals in this simulation illustrate the deficiency of the current algorithm. For example, 
in segment 6 we have ti = 3.7s, satisfying the tgerv0 = 3.5s constraint, but tz — 1.93s, which is too short. 
If these remaining small-step deficiencies of the new algorithm cause difficulty for observations, the author 
recommends a pragmatic solution: set t_servo to a value about 50 percent larger, such as 5 seconds instead 
of 3.5 seconds. This will be likely to reduce the incidence of small-step problems even further. 
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