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VAN VLECK CORRECTION FOR THE GBT CORRELATOR

Frederic R. Schwab

August 23, 2007

Abstract. In 2001 I reviewed the Glish/AIPS++ van Vleck correction code and circulated a
memorandum with some recommendations on streamlining and improving that code. Those recom-
mendations, which are described in this memorandum, derive from (then) recent work of mine on
optimal quantization functions for multi-level digital correlators, with applications to ALMA and
EVLA, as well as the GBT. That work will be published elsewhere [3].

1. Introduction. Back in 2001 I reviewed the early AIPS++ van Vleck correction codes for
the GBT correlator, which were written in Glish and C, and I circulated to most of the interested
parties a draft version of this memorandum in which I offered some recommendations on stream-
lining and improving that code. That AIPS++ software was derived from codes developed at
Arecibo by Murray Lewis and in Tucson by Andy Dowd for the 12-Meter Telescope. Murray
Lewis’s approximations to the 9-level van Vleck correction were based on analytic expressions
for the 9-level correlator output that I provided to Mike Davis some years ago (I believe in
1996). Murray Lewis’s memoranda [1,2] which furnish these approximations, and provide their
derivation, were not referenced in the Glish/AIPS++ code. And in the absence of Murray’s
documentation the old GBT code was, for the most part, inscrutable and unverifiable.

Murray Lewis’s first memorandum [1] presents approximations to the 9-level van Vleck
correction curve for the case in which the true correlation, ρ satisfies |ρ| ≤ 0.975; his second
memorandum [2] treats the very high correlation regime, 0.975 ≤ |ρ| ≤ 1. His approach is ap-
propriate both for autocorrelation and cross-correlation modes, assuming stationary zero-mean
bivariate normal inputs to the correlator, of identical variance σ2. (For the cross-correlation
modes his approximations would be inadequate if the signal input levels to the correlator have
not been adjusted to have equal variance.) In the 9-level case, the optimal spacing of the
quantizer input levels is ∼0.5338222σ, implying that the first positive input threshold value is
one-half that value: or v1 = vopt ≈ 0.266911σ.

Lewis’s memoranda provide not only the van Vleck correction curves for the case of the
optimal threshold setting, v1 = vopt, but also for suboptimal cases in which the threshold level
settings may differ from the optimal setting in discrete steps, by some multiple of 10%—namely,
v1 = kvopt, for k = 0.3, 0.4, 0.5, . . . , 2.0. I believe that his intention was to linearly interpolate
the coefficients for intermediate values of the measured thresholds; I did not scrutinize the
Glish/AIPS++ code closely enough to see whether that interpolation was indeed performed.
In fact, the coefficients for the 9-level van Vleck correction appear to have been derived from
work done earlier, or perhaps later, than that described in the available memoranda, as the
coefficients in the code did not quite match those in the memoranda.

The 3-level correction in the Glish/AIPS++ code employed polynomial approximations
which no doubt were sufficiently accurate, but no reference to the source of these approximations
was given in the code.

I thought at the time that anyone who might look at the Glish/AIPS++ code would agree,
that—although it might indeed be working as intended, and perhaps acceptably well—that for
aesthetic reasons, at least, it ought to be replaced by a cleaner code. Rather than dissect the old
code and clean it up, I decided it would be easier to simply replace it. The present memorandum
is a slightly updated version of the draft that was earlier circulated and then was used as the
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basis for new van Vleck correction software—which was implemented first in the AIPS++ filler
and, more recently, in SDFITS.

2. Computation of van Vleck Correction Curves. Because other multi-level digital cor-
relators besides the GBT correlator were (and still are) under development (e.g., for ALMA
and EVLA), I decided to write a general-purpose van Vleck code that could be used for those
applications as well. Whereas the GBT correlator operates in 3-level by 3-level (3 × 3) and
9 × 9 modes, the ALMA correlator will operate in 2-bit and 4-bit (4- and 16-level modes) and
the EVLA correlator in 4-bit and higher-level modes (mainly 7-bit, as I understand). My code,
given in Appendix A and described below, is general enough to be used also for the ALMA
and EVLA applications—and, indeed, for most other radio-astronomical correlators, existing or
planned.

The idea behind the code in Appendix A is simply to compute, to high accuracy, a sufficient
number of points along the van Vleck curve that fitting a polynomial spline interpolant to these
points will yield a sufficiently accurate correction curve. The van Vleck curves are quite linear
for small |ρ|, but typically have a hook-like behavior for larger |ρ| ≈ 1. Therefore, I have chosen
to sample with abscissae located at the so-called expanded Chebyshev points [4, p. 27], which are
more highly clustered near ρ = ±1. Somewhat arbitrarily, I have chosen to interpolate among 65
points. This is probably overkill: for the 3-level and 9-level cases—with equi-spaced quantizer
input level thresholds, fixed and equi-spaced output levels, but varying input threshold spacing—
and employing cubic natural spline interpolation [4], the resulting maximum relative error is less
than 10−9. Accurate computation of a small number of points along the van Vleck curve should
easily be affordable in the GBT application, and—once (per correlator dump, typically) having
done so—correction of all the lag data (typically many thousands of lag correlation measurements
per dump) should be accomplished very quickly, because spline interpolation is very inexpensive
(involving just a table-look up, to find the correct set of coefficients, followed by evaluation of a
low-order (cubic) polynomial).

The code in Appendix A is completely general, in the sense that the two, x- and y-inputs
to the correlator may be quantized to different numbers of levels; the quantizer input voltage
thresholds may differ arbitrarily; and the quantizer output levels may be specified arbitrarily.
Of course, for the GBT correlator we do not need all this generality—but it comes at almost no
added expense.

An n-level quantization function q(x) may be specified by a list V of input voltage thresh-
olds, −∞ ≡ v0 < v1 < v2 < · · · < vn−1 < vn ≡ ∞; and a list W of quantizer output levels,
W = {w1, w2, . . . , wn}; such that q(x) = wk, whenever x lies between vk−1 and vk.

Suppose the (real-valued) inputs to an m-level by n-level correlator to be drawn from
a bivariate normal distribution with means µx and µy, standard deviations σx and σy, and
correlation coefficient ρ; and thus characterized by the joint probability density function

p(x, y, ρ) =
1

σxσy
g

(
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σx
,

y − µy

σy
, ρ

)

, (1)
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g(x, y, ρ) ≡ 1

2π
√

1 − ρ2
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(

−1

2

(

x2 − 2ρxy + y2
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(2)

is the standard bivariate normal probability function [5, p. 936]. And suppose that the (finite)
voltage input thresholds of the x-quantizer are {vx,1, vx,2, . . . , vx,m−1} and that the correspond-
ing output levels are {wx,1, wx,2, . . . , wx,m}; and for the y-quantizer that the finite thresholds
and the output levels are {vy,1, vy,2, . . . , vy,n−1} and {wy,1, wy,2, . . . , wy,n}, respectively. Then,
by integration of the joint probability density function (Eq. 1), the expectation value of the
correlator output is

r(ρ) =
1

σxσy

m
∑
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n
∑

j=1
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dy dx . (3)
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And (by the Second Fundamental Theorem of Calculus) the derivative, with respect to ρ, of the
expectation value of the correlator output is given simply by

h(ρ) ≡ dr

dρ
=

1
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, ρ

)

. (4)

(This result would also obtain by application of Price’s Theorem [6], [7].) The expected correlator
output thus can be expressed not only as in Equation 3, but also as

r(ρ) = r(0) +

∫ ρ

0

h(ρ′) dρ′ . (5)

Hence r(ρ), for any ρ, may be computed to any desired accuracy via numerical quadrature.
Observe that r(0) is equal to zero whenever the quantization functions possess odd symmetry
and µx = µy = 0, but otherwise (from Eq. 3, after simplification)

r(0) =
1
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In the code in Appendix A, I use the automatic quadrature subroutine dqags of the Fortran
package QUADPACK [8] to perform the numerical integration. The automated quadrature routine
selects suitable Gaussian quadrature formulae, and appropriate sampling abscissae, to achieve
user-specified absolute and relative error bounds. Another quadrature routine could be substi-
tuted, if desired, in the Glish/AIPS++ adaptation of this code.

The end result of the code in Appendix A is a list of ordered pairs {(ri, ρi) | i = 1, . . . , N},
with −1 ≡ ρ1 < ρ2 < · · · < ρN ≡ 1 (a set of expanded Chebyshev points, as mentioned above,
coarsely spaced) and satisfying r(ρi) = ri, which is suitable for recovering true correlation ρ for
any measured correlation r, by spline interpolation. Since I believed Glish/AIPS++ to already
contain a suitable spline code, I did not included such a code in Appendix A.

3. Alternative Computation of the van Vleck Correction Curves, via the Bivariate

Normal Integral. Each of the double integrals occurring within the double summation in
Equation 3 may be expressed in terms of the bivariate normal integral [5, p. 936],

L(h, k, ρ) ≡
∫

∞

h

∫

∞

k

g(x, y, ρ) dy dx . (7)

Specifically,
∫ b

a

∫ d

c

g(x, y, ρ) dy dx = L(a, c, ρ) − L(a, d, ρ) − L(b, c, ρ) + L(b, d, ρ) . (8)

Expressions L(h, k, ρ) with h or k equal to −∞ simplify to become error functions, and those
with h or k equal to +∞ reduce to zero. If quantizer input level thresholds are spaced symmet-
rically about the origin, then some terms can be combined. I have a Mathematica code which
automatically generates and simplifies the formula for r(ρ), for any desired quantization scheme,
but I do not have such general a code written in Fortran or C.

In Appendix B, I do, however, provide a Fortran code for computation of the 3-level ×
3-level and 9-level × 9-level van Vleck curves in terms of the bivariate normal integral, for the
special case of equi-spaced input thresholds and equi-spaced output levels. This code would have
been appropriate for the GBT, but it happened that the code of Appendix A was fast enough.

I use the subroutine BVND, written by Alan Genz of the Department of Mathematics at
Washington State University, and based on the algorithms given in [9], [10], for computation of
the bivariate normal integrals.

This code (like the code of Appendix A) would be appropriate for correcting both auto-
correlation and cross-correlation data. I allow for the possibility of inputs with non-zero mean
(i.e., possible “DC offsets”), because Rick Fisher (private communication) has suggested that
this may be necessary in the case of the GBT correlator.
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4. Computing Quantizer Threshold Spacing from the Measured Zero-Lag Autocor-

relation. In Appendix C, I give a Fortran code which can be used, in the case of quantization
functions with equi-spaced input threshold and equi-spaced output levels, to infer the quantizer
input threshold spacing from the measured zero-lag autocorrelation (assuming bivariate normal
inputs to the correlator, with zero mean). Given the number of quantization levels and the
measured zero-lag autocorrelation, the code returns the inferred value of the first positive input
threshold, v1, (in units of the r.m.s. input level).

For the case of odd n, the expectation of the zero-lag autocorrelation is

r(1) =

(n−1)/2
∑

k=1

(2k − 1) erfc

(

(2k − 1)v1√
2

)

, (9)

and for even n

r(1) = 1 + 8

(n−2)/2
∑

k=1

k erfc

(

kv1√
2

)

. (10)

The code of Appendix C solves for v1 by means of Newton’s method. I have tested it thoroughly
for the cases n = 3, 4, 5, . . . , 16, but not for larger values of n. For typical values of the zero lag,
convergence is achieved in 5–6 iterations. For pathologically extreme values the iteration limit
would need to be increased.

For the n = 3 case, v1 =
√

2 erfc−1(r(1)), where erfc−1 is the inverse of the complementary
error function. For this case, the inverse error function code of Appendix E could be used
instead.

5. Deriving 3-Level or 9-Level Quantizer Thresholds from Quantizer Zone Popula-

tion Counts. In the case of possible DC offsets in the inputs to the GBT correlator, it may
be useful to try to infer the quantizer input threshold spacings and the mean signal levels from
the correlator “self counts”—i.e., from the population counts at each of the quantization levels.
The problem is that these counts are not provided for the full duration of an integration period,
but only for, I believe, a 20-msec interval at the start of (or preceding?) the integration period.
So the statistics might really be inadequate. When operating in 9-level mode, only the counts
for the lowermost three levels, middle three levels, and uppermost three levels are provided.

From the population counts it is straightforward to derive estimates of the mean and
r.m.s. input signal levels. A template code for this purpose, written for Mathematica, is given
in Appendix D. It requires a code for the inverse of the error function; a suitable template code
is given in Appendix E. This code is based on approximations published by Blair, Edwards, and
Johnson [11]. From their tabulations of rational approximations to erf−1 and erfc−1, I chose ap-
proximations suitable to achieve maximum relative errors less than 10−7 over the entire domain
of definition of the functions. (The older van Vleck code uses an approximation to erf−1(x),
taken from [12], which is valid only over the interval |x| ≤ 0.75.)

6. Discussion. Here I have provided most of the pieces which were required for a clean,
reasonably well-documented van Vleck code for the GBT. Further programming effort was
needed to coordinate the logic flow in calling up these pieces and correcting the actual data.
I recommended that if the approach of Appendix A were undertaken, one might want to re-
organize the steps somewhat, depending on what degree of modularization, etc., was desired. As
I’m not a competent C or C++ programmer, I provided only template codes, written in either
Fortran or the programming language of Mathematica.

My code is fully adequate for the case of cross-correlation data. In this case, one should
first process the two sets of auto-correlation data, in order to infer (from either the zero-lag
auto-correlation, or the population counts) the relation of input signal statistics to quantizer
characteristics. This code would also be applicable to 3-level × 9-level operation of the correlator,
but I believe that mode of operation has never been under consideration.

Rick Fisher did some comparisons of the old and new van Vleck correction codes for GBT
spectrometer data and posted the results on his Web site.1 Figures 1 and 2, below, show two
sets of his summary plots.

1See http://www.cv.nrao.edu/~rfisher/Quantization/quantization.html .
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Figure 1. Comparison of 9-level total power spectra using 50 MHz spectrometer bandwidth, noise filtered
through a 12.5 MHz anti-aliasing filter. (Top) Full range; (Bottom) Exploded view of filter skirt. (Red curve)
New van Vleck correction; (Blue curve) Old van Vleck correction; (Yellow curve) No correction. [Figure courtesy
of Rick Fisher.]
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Figure 2. Comparison of 3-level total power spectra using 50 MHz spectrometer bandwidth, noise filtered
through a 12.5 MHz anti-aliasing filter. (Top) Full range; (Bottom) Exploded view of filter skirt. (Red curve)
New van Vleck correction; (Blue curve) Old van Vleck correction; (Yellow curve) No correction. [Figure courtesy
of Rick Fisher.]

6



Within the past few years I have, on occasion, assisted the ALMA Correlator Group in
developing van Vleck correction codes appropriate to their needs. In particular, I provided
analogs of the Appendix B and D codes for the cases of interest to ALMA, and I aided Jim Pisano
and Rodrigo Amestica in streamlining and optimizing the algorithms to achieve sufficiently fast
speed of execution for their real-time requirements.
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Appendix A. A Fortran Code to Compute van Vleck Correction Curves

This van Vleck correction code is fully documented in Section 2, above, and in the comment
lines within the code. (Except that quantizer input threshold levels here are given in units of
the r.m.s. signal input voltage levels, σx and σy .) I have here omitted the QUADPACK code, since
it is readily available on the Web (i.e., from Netlib).

module quantizerdeclarations

integer, parameter :: nmax=256

integer :: nx,ny

double precision :: qx(2,nmax),qy(2,nmax)

end module

program testvv

c

c Program to compute highly accurate van Vleck correction curves

c for an m-level x n-level digital correlator, for arbitrary m and n,

c and arbitrarily specified quantization input thresholds and output

c levels, for bivariate normal inputs possibly with non-zero means

c (i.e., allowing d.c. offsets)

c

c What we’ll produce is a highly accurate table of ordered pairs

c {( r(rho(i)), rho(i) ), i=1,...,npts}, with rho(i) - the true

c correlation in the range [-1,1] - and r(rho(i)) the expectation

c of the (unnormalized) correlator output when the true correlation is

c equal to rho(i). Then the idea would be to fit a spline approximation

c to these tabular data and apply that correction to the measured

c correlations. Choosing 65 points appropriately spaced (i.e., much

c more densely spaced for large |rho|) suffices in achieving a relative

c accuracy of approximately 10^-7 for the 9-level x 9-level case if

c cubic natural spline interpolation is employed. (65 points is

c probably overkill - perhaps one-half, or even one-quarter, that

c number of points would suffice, but I haven’t checked yet.)

c

use quantizerdeclarations

integer, parameter :: npts=65

double precision :: v1,v1x,v1y,mux,muy,rs(npts),rhos(npts)

c First set up the definition of the quantization functions as in

c one of the examples below:

c Optimal 3-level by 3-level quantization function:

c (I.e., the 3-level by 3-level quantization function for

c zero-mean input signals with voltage thresholds set

c at the optimal values of +/- ~0.612003 sigma.)

c

nx=3

v1=.61200318096d0

qx(1,1:nx-1)=(/ -v1,v1 /)

qx(2,1:nx)=(/ -1d0,0d0,1d0 /)

ny=3

qy(1,1:ny-1)=(/ -v1,v1 /)

qy(2,1:ny)=(/ -1d0,0d0,1d0 /)
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c Like the above, but if the threshold for the x-quantizer

c were set non-optimally at 0.6 sigma and there were a d.c.

c offset of 0.01 sigma in the x-inputs, and if the y-quantizer

c were set non-optimally at 0.7 sigma and there were a d.c.

c offset of -.02 sigma in the y-inputs

c

nx=3

v1x=.6d0

mux=.01d0

qx(1,1:nx-1)=(/ -v1x,v1x /)-mux

qx(2,1:nx)=(/ -1d0,0d0,1d0 /)

ny=3

v1y=.7d0

muy=-.02d0

qy(1,1:ny-1)=(/ -v1y,v1y /)-muy

qy(2,1:ny)=(/ -1d0,0d0,1d0 /)

c Optimal 3-level by 9-level quantization function:

c (I.e., no d.c. offsets, and thresholds set optimally for both

c the 3-level x-quantizer’s input signal and the 9-level

c y-quantizer’s input signal.)

c

nx=3

v1=.61200318096d0

qx(1,1:nx-1)=(/ -v1,v1 /)

qx(2,1:nx)=(/ -1d0,0d0,1d0 /)

ny=9

v1=.26691110435d0

qy(1,1:ny-1)=(/ -7*v1,-5*v1,-3*v1,-v1,v1,3*v1,5*v1,7*v1 /)

qy(2,1:ny)=(/ -4d0,-3d0,-2d0,-1d0,0d0,1d0,2d0,3d0,4d0 /)

c Optimal 9-level by 9-level quantization function:

c (I.e., the 9-level by 9-level quantization function for

c zero-mean input signals with voltage thresholds set

c at the optimal values of +/- (2k-1)*0.266911 sigma, k=1,2,3,4.)

c

nx=9

v1=.26691110435d0

qx(1,1:nx-1)=(/ -7*v1,-5*v1,-3*v1,-v1,v1,3*v1,5*v1,7*v1 /)

qx(2,1:nx)=(/ -4d0,-3d0,-2d0,-1d0,0d0,1d0,2d0,3d0,4d0 /)

ny=9

qy(1,1:ny-1)=(/ -7*v1,-5*v1,-3*v1,-v1,v1,3*v1,5*v1,7*v1 /)

qy(2,1:ny)=(/ -4d0,-3d0,-2d0,-1d0,0d0,1d0,2d0,3d0,4d0 /)

c Now call the subroutine vanvleck to generate the table of

c rs and rhos appropriate for spline interpolation to get rho(r)

c for any observed (unnormalized) correlator output measurement, r:

c

call vanvleck(npts,rs,rhos)

stop

end

subroutine vanvleck(npts,rs,rhos)

integer npts

double precision, parameter :: pi=3.1415926535897932d0
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double precision :: rhos(npts),rs(npts),rapprox,rzero,r0

integer :: i

c Get r(0), which has to be added to the integrated derivative

c of dr/drho, to get r(rho).

rzero=r0()

do i=1,npts

c For the rhos, choose the expanded Chebyshev points:

rhos(i)=-cos((2*i-1)*pi/(2*npts))/cos(pi/(2*npts))

c Now call the function rapprox and add r(0), to get a highly accurate

c value of the expected correlator output for that value of rho:

rs(i)=rzero+rapprox(rhos(i))

print *,i,rs(i),rhos(i)

end do

end

double precision function drbydrho(rho)

c For given rho, and given quantization functions, this function

c subroutine computes - via Price’s theorem - the value dr/drho of

c the derivative, with respect to rho, of the expected value of the

c correlator output. (Another function, rapprox, then will numerically

c integrate from 0 to rho, to get r(rho)-r(0) ).

use quantizerdeclarations

double precision :: rho,g,x,y,s

double precision, parameter :: twopi=6.2831853071795865d0

integer :: i,j

g(x,y,rho)=exp(-.5d0*(x**2-2d0*rho*x*y+y**2)/(1d0-rho**2))/

& (twopi*sqrt(1d0-rho**2))

s=0d0

do i=1,nx-1

do j=1,ny-1

s=s+(qx(2,i+1)-qx(2,i))*(qy(2,j+1)-qy(2,j))*

& g(qx(1,i),qy(1,j),rho)

end do

end do

drbydrho=s

end function

double precision function rapprox(rho)

c For given rho, this function subroutine produces a high-accuracy

c numerical approximation to the expected value of the correlator

c output r(rho)-r(0), by numerical integration of dr/drho. It calls

c the standard QUADPACK adaptive Gaussian quadrature procedure, dqags,

c to do the numerical integration.

double precision :: rho,drbydrho,a,b,epsabs,epsrel,result,abserr

double precision :: work(4096)

integer :: neval,ier,limit,lenw,last,iwork(1024)

external drbydrho

a=0d0

b=rho

epsabs=1d-12

epsrel=1d-12

limit=1024

lenw=4*limit

call dqags(drbydrho,a,b,epsabs,epsrel,result,abserr,neval,ier,

& limit,lenw,last,iwork,work)
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c print *,neval

if (ier.ne.0) print *,"Error in dqags, ier=",ier

rapprox=result

return

end

double precision function r0()

c This function computes r(0) - the expectation of the correlator

c output when the true correlation rho=0. Note that r(0)=0 whenever

c the quantization functions possess odd symmetry and the mean signal

c input levels are zero. Otherwise, in general, r(0).ne.0.

use quantizerdeclarations

double precision :: rt2,sx,sy

integer i,j

rt2=sqrt(2d0)

sx=qx(2,1)*(erf(qx(1,1)/rt2)+1d0)

if (nx.gt.2) then

do i=2,nx-1

sx=sx+qx(2,i)*(erf(qx(1,i)/rt2)-erf(qx(1,i-1)/rt2))

end do

end if

sx=sx+qx(2,nx)*(1d0-erf(qx(1,nx-1)/rt2))

sy=qy(2,1)*(erf(qy(1,1)/rt2)+1d0)

if (ny.gt.2) then

do j=2,ny-1

sy=sy+qy(2,j)*(erf(qy(1,j)/rt2)-erf(qy(1,j-1)/rt2))

end do

end if

sy=sy+qy(2,ny)*(1d0-erf(qy(1,ny-1)/rt2))

r0=.25d0*sx*sy

return

end

c*************************************************************************

c This is the end of the custom code.

c*************************************************************************

c All the code that follows is standard mathematical software library

c code, namely, the relevant QUADPACK code. Glish/AIPS++ probably have

c a suitable quadrature routine that could be substituted for dqags.

c Similarly, Glish/AIPS++ already have suitable cubic natural spline

c interpolation codes, so I haven’t supplied them

c

c - F. Schwab, Dec. 3, 2001

c*************************************************************************
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Appendix B. Fortran Code for Approximation of the 3-Level and

9-Level van Vleck Curves in Terms of the Bivariate Normal Integral

As described in Section 3, the correlator response r(ρ) may be expressed in terms of the
bivariate normal integral. The two Fortran subroutines, r3 and r9, listings of which appear
below, may be used to approximate the 3-level × 3-level and 9-level × 9-level van Vleck curves,
for the special case of equi-spaced quantizer input voltage thresholds and equi-space output
levels. Here, the mean input levels (mux and muy) and the first positive input thresholds (v1x
and v1y) are assumed to be given in units of the respective r.m.s. input levels µx and µy.

The subroutine BVND, written by Alan Genz of the Department of Mathematics at Wash-
ington State University, and based on the algorithms given in [9], [10], is used for computation
of the bivariate normal integrals. This code may appropriate for use with the GBT, especially
if it should happen that the code of Appendix A is too slow for that application.

double precision function r3(mux,muy,v1x,v1y,rho)

double precision mux,muy,v1x,v1y,rho,L,h,k,r,bvnd,rt2

L(h,k,r)=bvnd(h,k,r)

rt2=sqrt(2d0)

r3=.5d0*(erf((-mux+v1x)/rt2)-erf((mux+v1x)/rt2)+

& erf((-muy+v1y)/rt2)-erf((muy+v1y)/rt2))+

& L(-mux-v1x,-muy-v1y,rho)+L(-mux-v1x,-muy+v1y,rho)+

& L(-mux+v1x,-muy-v1y,rho)+L(-mux+v1x,-muy+v1y,rho)-1d0

return

end

double precision function r9(mux,muy,v1x,v1y,rho)

double precision mux,muy,v1x,v1y,rho,L,h,k,r,bvnd,rt2

L(h,k,r)=bvnd(h,k,r)

rt2=sqrt(2d0)

r9=-16d0+2d0*(-erf((mux-7*v1x)/rt2)-erf((mux-5*v1x)/rt2)-

& erf((mux-3*v1x)/rt2)+erf((-mux+v1x)/rt2)-

& erf((mux+v1x)/rt2)-erf((mux+3*v1x)/rt2)-

& erf((mux+5*v1x)/rt2)-erf((mux+7*v1x)/rt2)-

& erf((muy-7*v1y)/rt2)-erf((muy-5*v1y)/rt2)-

& erf((muy-3*v1y)/rt2)+erf((-muy+v1y)/rt2)-

& erf((muy+v1y)/rt2)-erf((muy+3*v1y)/rt2)-

& erf((muy+5*v1y)/rt2)-erf((muy+7*v1y)/rt2))+

& L(-mux-7*v1x,-muy-7*v1y,rho)+L(-mux-7*v1x,-muy-5*v1y,rho)+

& L(-mux-7*v1x,-muy-3*v1y,rho)+L(-mux-7*v1x,-muy-v1y,rho)+

& L(-mux-7*v1x,-muy+v1y,rho)+L(-mux-7*v1x,-muy+3*v1y,rho)+

& L(-mux-7*v1x,-muy+5*v1y,rho)+L(-mux-7*v1x,-muy+7*v1y,rho)+

& L(-mux-5*v1x,-muy-7*v1y,rho)+L(-mux-5*v1x,-muy-5*v1y,rho)+

& L(-mux-5*v1x,-muy-3*v1y,rho)+L(-mux-5*v1x,-muy-v1y,rho)+

& L(-mux-5*v1x,-muy+v1y,rho)+L(-mux-5*v1x,-muy+3*v1y,rho)+

& L(-mux-5*v1x,-muy+5*v1y,rho)+L(-mux-5*v1x,-muy+7*v1y,rho)+

& L(-mux-3*v1x,-muy-7*v1y,rho)+L(-mux-3*v1x,-muy-5*v1y,rho)+

& L(-mux-3*v1x,-muy-3*v1y,rho)+L(-mux-3*v1x,-muy-v1y,rho)+

& L(-mux-3*v1x,-muy+v1y,rho)+L(-mux-3*v1x,-muy+3*v1y,rho)+

& L(-mux-3*v1x,-muy+5*v1y,rho)+L(-mux-3*v1x,-muy+7*v1y,rho)+

& L(-mux-v1x,-muy-7*v1y,rho)+L(-mux-v1x,-muy-5*v1y,rho)+

& L(-mux-v1x,-muy-3*v1y,rho)+L(-mux-v1x,-muy-v1y,rho)+

& L(-mux-v1x,-muy+v1y,rho)+L(-mux-v1x,-muy+3*v1y,rho)+

& L(-mux-v1x,-muy+5*v1y,rho)+L(-mux-v1x,-muy+7*v1y,rho)+
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& L(-mux+v1x,-muy-7*v1y,rho)+L(-mux+v1x,-muy-5*v1y,rho)+

& L(-mux+v1x,-muy-3*v1y,rho)+L(-mux+v1x,-muy-v1y,rho)+

& L(-mux+v1x,-muy+v1y,rho)+L(-mux+v1x,-muy+3*v1y,rho)+

& L(-mux+v1x,-muy+5*v1y,rho)+L(-mux+v1x,-muy+7*v1y,rho)+

& L(-mux+3*v1x,-muy-7*v1y,rho)+L(-mux+3*v1x,-muy-5*v1y,rho)+

& L(-mux+3*v1x,-muy-3*v1y,rho)+L(-mux+3*v1x,-muy-v1y,rho)+

& L(-mux+3*v1x,-muy+v1y,rho)+L(-mux+3*v1x,-muy+3*v1y,rho)+

& L(-mux+3*v1x,-muy+5*v1y,rho)+L(-mux+3*v1x,-muy+7*v1y,rho)+

& L(-mux+5*v1x,-muy-7*v1y,rho)+L(-mux+5*v1x,-muy-5*v1y,rho)+

& L(-mux+5*v1x,-muy-3*v1y,rho)+L(-mux+5*v1x,-muy-v1y,rho)+

& L(-mux+5*v1x,-muy+v1y,rho)+L(-mux+5*v1x,-muy+3*v1y,rho)+

& L(-mux+5*v1x,-muy+5*v1y,rho)+L(-mux+5*v1x,-muy+7*v1y,rho)+

& L(-mux+7*v1x,-muy-7*v1y,rho)+L(-mux+7*v1x,-muy-5*v1y,rho)+

& L(-mux+7*v1x,-muy-3*v1y,rho)+L(-mux+7*v1x,-muy-v1y,rho)+

& L(-mux+7*v1x,-muy+v1y,rho)+L(-mux+7*v1x,-muy+3*v1y,rho)+

& L(-mux+7*v1x,-muy+5*v1y,rho)+L(-mux+7*v1x,-muy+7*v1y,rho)

return

end

DOUBLE PRECISION FUNCTION BVND( DH, DK, R )

*

* A function for computing bivariate normal probabilities.

*

* Alan Genz

* Department of Mathematics

* Washington State University

* Pullman, WA 99164-3113

* Email : alangenz<place an "at" symbol here>wsu.edu

*

* This function is based on the method described by

* Drezner, Z and G.O. Wesolowsky, (1989),

* On the computation of the bivariate normal inegral,

* Journal of Statist. Comput. Simul. 35, pp. 101-107,

* with major modifications for double precision, and for |R| close to 1.

*

* BVND - calculate the probability that X is larger than DH and Y is

* larger than DK.

*

* Parameters

*

* DH DOUBLE PRECISION, integration limit

* DK DOUBLE PRECISION, integration limit

* R DOUBLE PRECISION, correlation coefficient

*

DOUBLE PRECISION DH, DK, R, ZERO, TWOPI

INTEGER I, IS, LG, NG

PARAMETER ( ZERO = 0, TWOPI = 6.283185307179586D0 )

DOUBLE PRECISION X(10,3), W(10,3), AS, A, B, C, D, RS, XS, BVN

DOUBLE PRECISION PHID, SN, ASR, H, K, BS, HS, HK

* Gauss Legendre Points and Weights, N = 6

DATA ( W(I,1), X(I,1), I = 1,3) /

& 0.1713244923791705D+00,-0.9324695142031522D+00,

& 0.3607615730481384D+00,-0.6612093864662647D+00,

& 0.4679139345726904D+00,-0.2386191860831970D+00/
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* Gauss Legendre Points and Weights, N = 12

DATA ( W(I,2), X(I,2), I = 1,6) /

& 0.4717533638651177D-01,-0.9815606342467191D+00,

& 0.1069393259953183D+00,-0.9041172563704750D+00,

& 0.1600783285433464D+00,-0.7699026741943050D+00,

& 0.2031674267230659D+00,-0.5873179542866171D+00,

& 0.2334925365383547D+00,-0.3678314989981802D+00,

& 0.2491470458134029D+00,-0.1252334085114692D+00/

* Gauss Legendre Points and Weights, N = 20

DATA ( W(I,3), X(I,3), I = 1, 10 ) /

& 0.1761400713915212D-01,-0.9931285991850949D+00,

& 0.4060142980038694D-01,-0.9639719272779138D+00,

& 0.6267204833410906D-01,-0.9122344282513259D+00,

& 0.8327674157670475D-01,-0.8391169718222188D+00,

& 0.1019301198172404D+00,-0.7463319064601508D+00,

& 0.1181945319615184D+00,-0.6360536807265150D+00,

& 0.1316886384491766D+00,-0.5108670019508271D+00,

& 0.1420961093183821D+00,-0.3737060887154196D+00,

& 0.1491729864726037D+00,-0.2277858511416451D+00,

& 0.1527533871307259D+00,-0.7652652113349733D-01/

SAVE X, W

IF ( ABS(R) .LT. 0.3D0 ) THEN

NG = 1

LG = 3

ELSE IF ( ABS(R) .LT. 0.75D0 ) THEN

NG = 2

LG = 6

ELSE

NG = 3

LG = 10

ENDIF

H = DH

K = DK

HK = H*K

BVN = 0

IF ( ABS(R) .LT. 0.925D0 ) THEN

HS = ( H*H + K*K )/2

ASR = ASIN(R)

DO I = 1, LG

DO IS = -1, 1, 2

SN = SIN( ASR*( IS*X(I,NG) + 1 )/2 )

BVN = BVN + W(I,NG)*EXP( ( SN*HK - HS )/( 1 - SN*SN ) )

END DO

END DO

BVN = BVN*ASR/( 2*TWOPI ) + PHID(-H)*PHID(-K)

ELSE

IF ( R .LT. 0 ) THEN

K = -K

HK = -HK

ENDIF

IF ( ABS(R) .LT. 1 ) THEN

AS = ( 1 - R )*( 1 + R )

A = SQRT(AS)

BS = ( H - K )**2

C = ( 4 - HK )/8
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D = ( 12 - HK )/16

ASR = -( BS/AS + HK )/2

IF ( ASR .GT. -100 ) BVN = A*EXP(ASR)

& *( 1 - C*( BS - AS )*( 1 - D*BS/5 )/3 + C*D*AS*AS/5 )

IF ( -HK .LT. 100 ) THEN

B = SQRT(BS)

BVN = BVN - EXP( -HK/2 )*SQRT(TWOPI)*PHID(-B/A)*B

& *( 1 - C*BS*( 1 - D*BS/5 )/3 )

ENDIF

A = A/2

DO I = 1, LG

DO IS = -1, 1, 2

XS = ( A*( IS*X(I,NG) + 1 ) )**2

RS = SQRT( 1 - XS )

ASR = -( BS/XS + HK )/2

IF ( ASR .GT. -100 ) THEN

BVN = BVN + A*W(I,NG)*EXP( ASR )

& *( EXP( -HK*( 1 - RS )/( 2*( 1 + RS ) ) )/RS

& - ( 1 + C*XS*( 1 + D*XS ) ) )

END IF

END DO

END DO

BVN = -BVN/TWOPI

ENDIF

IF ( R .GT. 0 ) BVN = BVN + PHID( -MAX( H, K ) )

IF ( R .LT. 0 ) BVN = -BVN + MAX( ZERO, PHID(-H) - PHID(-K) )

ENDIF

BVND = BVN

END

DOUBLE PRECISION FUNCTION PHID(Z)

*

* Normal distribution probabilities accurate to 1.e-15.

* Z = no. of standard deviations from the mean.

*

* Based upon algorithm 5666 for the error function, from:

* Hart, J.F. et al, ’Computer Approximations’, Wiley 1968

*

* Programmer: Alan Miller

*

* Latest revision - 30 March 1986

*

DOUBLE PRECISION P0, P1, P2, P3, P4, P5, P6,

& Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,

& Z, P, EXPNTL, CUTOFF, ROOTPI, ZABS

PARAMETER(

& P0 = 220.20 68679 12376 1D0,

& P1 = 221.21 35961 69931 1D0,

& P2 = 112.07 92914 97870 9D0,

& P3 = 33.912 86607 83830 0D0,

& P4 = 6.3739 62203 53165 0D0,

& P5 = .70038 30644 43688 1D0,

& P6 = .035262 49659 98910 9D0 )

PARAMETER(

& Q0 = 440.41 37358 24752 2D0,
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& Q1 = 793.82 65125 19948 4D0,

& Q2 = 637.33 36333 78831 1D0,

& Q3 = 296.56 42487 79673 7D0,

& Q4 = 86.780 73220 29460 8D0,

& Q5 = 16.064 17757 92069 5D0,

& Q6 = 1.7556 67163 18264 2D0,

& Q7 = .088388 34764 83184 4D0 )

PARAMETER( ROOTPI = 2.5066 28274 63100 1D0 )

PARAMETER( CUTOFF = 7.0710 67811 86547 5D0 )

*

ZABS = ABS(Z)

*

* |Z| &gt; 37

*

IF ( ZABS .GT. 37 ) THEN

P = 0

ELSE

*

* |Z| &lt;= 37

*

EXPNTL = EXP( -ZABS**2/2 )

*

* |Z| &lt; CUTOFF = 10/SQRT(2)

*

IF ( ZABS .LT. CUTOFF ) THEN

P = EXPNTL*( ( ( ( ( ( P6*ZABS + P5 )*ZABS + P4 )*ZABS

& + P3 )*ZABS + P2 )*ZABS + P1 )*ZABS + P0 )

& /( ( ( ( ( ( ( Q7*ZABS + Q6 )*ZABS + Q5 )*ZABS

& + Q4 )*ZABS + Q3 )*ZABS + Q2 )*ZABS + Q1 )*ZABS + Q0 )

*

* |Z| &gt;= CUTOFF.

*

ELSE

P = EXPNTL/( ZABS + 1/( ZABS + 2/( ZABS + 3/( ZABS

& + 4/( ZABS + 0.65D0 ) ) ) ) )/ROOTPI

END IF

END IF

IF ( Z .GT. 0 ) P = 1 - P

PHID = P

END
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Appendix C. A Fortran Code to Compute Quantizer

Threshold Spacing from Measured Zero-Lag Autocorrelation

This code is described in Section 4. Valid inputs are integer n > 3 and real zero-lag auto-

correlation values r(1) satisfying either 0 ≤ r(1) ≤
(

n−1
2

)2
, for n odd; or 1 ≤ r(1) ≤ (n − 1)2,

for n even. v1 is the first positive quantizer input threshold.
For the n = 3 case, v1 =

√
2 erfc−1(r(1)), where erfc−1 is the inverse of the complementary

error function. For this case, the inverse error function code of Appendix E could be used instead.

double precision function thresh(n,zerolag)

implicit double precision (a-h,o-z)

pi=3.1415926535897932d0

x=0d0

if (mod(n,2).eq.0) x=1d0

itmax=30

tol=1d-8

do i=1,itmax

f=zerolag

fp=0d0

if (mod(n,2).eq.1) then

do k=1,(n-1)/2

f=f-(2*k-1)*erfc((2*k-1)*x/sqrt(2d0))

fp=fp+sqrt(2d0/pi)*(2*k-1)**2*exp(-.5d0*((2*k-1)*x)**2)

end do

else

f=f-1d0

do k=1,(n-2)/2

f=f-8*k*erfc(k*x/sqrt(2d0))

fp=fp+8*k**2*sqrt(2d0/pi)*exp(-.5d0*(k*x)**2)

end do

end if

deltax=-f/fp

deltax=sign(1d0,deltax)*min(.5d0,abs(deltax))

x=x+deltax

if (mod(n,2).eq.1) x=max(0d0,x)

c print *,i,x,deltax

if (abs(deltax/x).lt.tol) go to 1

end do

1 thresh=x

return

end
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Appendix D. Mathematica Code to Derive 3-Level or 9-Level

Quantizer Thresholds from Quantizer Zone Population Counts

(* Given the population counts, n1, n2, and n3, in the quantization

level zones (corresponding to outputs -1, 0, and 1, respectively) of

a three-level quantizer, this procedure deduces the mean input level

as a fraction of the r.m.s. input level - assuming Gaussian statistics -

then deduces the input thresholds of the quantizer, and finally

constructs the effective quantization function, for use within the

van Vleck correction code.

n=n1+n2+n3 is the total number of samples, p1 is the fractional

population within the -1 level zone, and p3 is the fractional

population within the +1 zone. (p2=1-(p1+p3) then is the fraction

in the middle zone.) muoversigma is the estimate of the population

mean, divided by the r.m.s. 2*v1 is the spacing of the quantizer

input thresholds.

This function may be of use with the GBT correlator - which

computes the quantizer level populations for a brief period period

of time (20 msec, I believe) at the beginning of each integration -

if there is any "d.c. offset" in the correlator input. It would

be preferable, though, if the population counts for the whole

integration period could be made available.

The ideal value of the quantizer thresholds, for optimal efficiency

in the weak correlation limit, is v1=.612003 sigma. For that case,

with no d.c. offset, the fractional populations are p1=p3=27.0268% and

p2=45.9464%.

Normally, if there were no suspicion of d.c. offsets, one would

deduce the quantizer threshold values from the unnormalized zero-lag

autocorrelation measurement and not use this procedure at all. *)

qf3[n1_,n2_,n3_]:=Module[{n,p1,p3,t1,t3,muoversigma,aoversigma,v1},

(* For error trapping, check that n1>0, n2>=0, and n3>0. (If any is

negative, the inputs are nonsense. If n1=0 or n3=0, the inputs

are not necessarily nonsense - i.e., these cases are possible,

but the solution is indeterminate.) I don’t know how one would

want to handle error trapping in glish. *)

n=n1+n2+n3;

p1=N[n1/n];

p3=N[n3/n];

t1=InverseErf[1-2p1];

t3=InverseErf[1-2p3];

muoversigma=(t1-t3)/Sqrt[2];

v1=aoversigma=(t1+t3)/Sqrt[2];

{{-v1,v1}-muoversigma,{-1,0,1}}]

(* This function, qf9, is like the one above (qf3), but for the

case of 9-level quantization. The GBT correlator does not provide

occupancy counts for each of the nine quantization zones, but rather

only the counts in the lowermost three, middle three, and uppermost

three zones.

Given these population counts, n1, n2, and n3, respectively,

this procedure works as described above.
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The ideal values of the quantizer thresholds for the 9-level case

are (-7v1,-5v1,-3v1,-v1,v1,3v1,5v1,7v1), with v1=.2669111 sigma.

For that case, with no d.c. offset, the fractional populations are

p1=p3=21.1643% and p2=57.6714%. *)

qf9[n1_,n2_,n3_]:=Module[{n,p1,p3,t1,t3,muoversigma,aoversigma,v1},

(* For error trapping, check that n1>0, n2>=0, and n3>0. (If any is

negative, the inputs are nonsense. If n1=0 or n3=0, the inputs

are not necessarily nonsense - i.e., these cases are possible,

but the solution is indeterminate.) I don’t know how one would

want to handle error trapping in glish. *)

n=n1+n2+n3;

p1=N[n1/n];

p3=N[n3/n];

t1=InverseErf[1-2p1];

t3=InverseErf[1-2p3];

muoversigma=(t1-t3)/Sqrt[2];

aoversigma=(t1+t3)/Sqrt[2];

v1=aoversigma/3;

{{-7v1,-5v1,-3v1,-v1,v1,3v1,5v1,7v1}-muoversigma,

{-4,-3,-2,-1,0,1,2,3,4}}]
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Appendix E. A Mathematica Code for the Inverse of the Error Function

In this Appendix I present Mathematica code that can be used to approximate the inverse
of the error function and the inverse of the complementary error function. Since (more accurate)
approximations to these functions are already built in to Mathematica, I have named my versions
MyInverseErf and MyInverseErfc. My purpose in writing this code was to provide templates
appropriate for coding in Fortran or C, as would be needed by AIPS++. This code is based
upon approximations published by Blair, Edwards, and Johnson [11].

The approximations given in [11] are best uniform rational approximations to erf−1 (i.e.,
“minimax”, or so-called Chebyshev approximations), which are best in the sense that they min-
imize the maximum relative error over the given interval of approximation.

(* The following approximations to the inverse of the error function are

taken from J. M. Blair, C. A. Edwards, and J. H. Johnson, "Rational

Chebyshev Approximations for the Inverse of the Error Function",

Mathematics of Computation, 30 (1976) 827-830 + microfiche appendix. *)

(* This approximation, taken from Table 10 of Blair et al., is valid

for |x|<=0.75 and has a maximum relative error of 4.47 x 10^-8. *)

MyInverseErf[x_Real/;Abs[x]<=.75]:=Module[{t=x^2-.75^2,

p={-13.0959967422,26.785225760,-9.289057635},

q={-12.0749426297,30.960614529,-17.149977991,1.00000000}},

x*(p[[1]]+t*(p[[2]]+t*p[[3]]))/(q[[1]]+t*(q[[2]]+t*(q[[3]]+t*q[[4]])))]

(* This approximation, taken from Table 29 of Blair et al., is valid

for .75<=|x|<=.9375 and has a maximum relative error of 4.17 x 10^-8. *)

MyInverseErf[x_Real/;Abs[x]>=.75&&Abs[x]<=.9375]:=Module[{t=x^2-.9375^2,

p={-.12402565221,1.0688059574,-1.9594556078,.4230581357},

q={-.08827697997,.8900743359,-2.1757031196,1.0000000000}},

x*(p[[1]]+t*(p[[2]]+t*(p[[3]]+t*p[[4]])))/

(q[[1]]+t*(q[[2]]+t*(q[[3]]+t*q[[4]])))]

(* This approximation, taken from Table 50 of Blair et al., is valid

for .9375<=|x|<=1-10^-100 and has a maximum relative error of 2.45 x 10^-8. *)

MyInverseErf[x_Real/;Abs[x]>=.9375&&Abs[x]<1.0]:=Module[{

t=1/Sqrt[-Log[1-Abs[x]]],

p={.1550470003116,1.382719649631,.690969348887,-1.128081391617,

.680544246825,-.16444156791},

q={.155024849822,1.385228141995,1.000000000000}},

Sign[x]*(p[[1]]/t+p[[2]]+t*(p[[3]]+t*(p[[4]]+t*(p[[5]]+t*p[[6]]))))/

(q[[1]]+t*(q[[2]]+t*(q[[3]])))]

(* Finally, *)

MyInverseErf[-1.]=-$MaxMachineNumber

MyInverseErf[1.]=$MaxMachineNumber

(* Now, for the inverse of the complementary error function we’ll

generally use the relation InverseErfc[x]=InverseErf[1-x] for larger

values of x, those satisfying .0625<=x<2 : *)

MyInverseErfc[x_Real/;x>=.0625&&x<2.0]:=MyInverseErf[1-x]

(* But for smaller values of x we’ll use the approximations from
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Table 50 (again) of Blair et al., as well as Table 70. *)

MyInverseErfc[x_Real/;x>=10^-100&&x<.0625]:=Module[{t=1/Sqrt[-Log[x]],

p={.1550470003116,1.382719649631,.690969348887,-1.128081391617,

.680544246825,-.16444156791},

q={.155024849822,1.385228141995,1.000000000000}},

(p[[1]]/t+p[[2]]+t*(p[[3]]+t*(p[[4]]+t*(p[[5]]+t*p[[6]]))))/

(q[[1]]+t*(q[[2]]+t*(q[[3]])))]

(* This approximation, taken from Table 70 of Blair et al., is valid

for 10^-1000<=|x|<=10^-100 and has a maximum relative error of 2.45 x 10^-8. *)

MyInverseErfc[x_Real/;x>=10^-1000&&x<10^-100]:=Module[{t=1/Sqrt[-Log[x]],

p={.00980456202915,.363667889171,.97302949837,-.5374947401},

q={.00980451277802,.363699971544,1.000000000000}},

(p[[1]]/t+p[[2]]+t*(p[[3]]+t*p[[4]]))/(q[[1]]+t*(q[[2]]+t*(q[[3]])))]

(* Finally, *)

MyInverseErfc[0.]=$MaxMachineNumber

MyInverseErfc[2.]=-$MaxMachineNumber
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