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Abstract

Corrections are given to the laser scanner position coordinates of retrore-
flector targets to be tracked by a GBT laser ranger as a function of the
deviation from perpendicularity of the elevation and azimuth scan axes.

1. Definition Of The Scan Tracking Problem

The task of tracking a target retroreflector on the Green Bank Telescope may be
stated in the following way:

The scan mirror of each laser range station mounts on an elevation rotor shaft
which is coupled, through bearings. to an elevation rotation yoke which is part of
a machined azimuth rotor shaft. The azimuth rotor is coupled via bearings to the
base plate of the station, to which other optical components are attached. The
relative orientation of the elevation and azimuth scan axes is determined by the
quality of machining of the azimuth rotor piece, because the bearing seats for the
rotation shaft bearings are machined into this piece.

Given a tracking program describing the coordinates of a target retroreflector
mounted on the Green Bank Telescope, relative to some ground-fixed coordinate
system, a set of laser mirror elevation scan angle and azimuth angle coordinates
is computed for each laser range station. The elevation and azimuth scan angle
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coordinates are used as input data to drive elevation and azimuth servomecha-
nisms to point the laser beam of each station, from the center of its scan mirror
towards the retroreflector target.

Each ranging station is provided with a local station-based coordinate system.
This system is also a ground-fixed system for those stations that are used as ground
stations, after they are surveyed into place and aligned with respect to a survey
control network. The relation of feed arm stations to earth-fixed coordinates
is determined dynamically. In the present discussion, it is assumed that laser
pointing is described by a local station-based cartesian coordinate system, which
can be related to ground-based coordinates, by means which we do not mention
explicitly. The local station coordinate system is a cartesian , n system.
This coordinate system is defined in GBT drawing D35420M051, and shown in
Fig.l. The i-coordinate is directed along the rotation axis of the azimuth rotor,
pointing from the scan mirror towards the detector, through the detector lens.
The optical axis of the detector lens is coincident with the i-axis. The "±"- and y-
coordinates are perpendicular to the i-axis. and unit vectors in the directionsdirections
in that order form a right-hand triple. The -i-axis lies parallel to the base plane
of the station. For ground stations. the azimuth rotation axis will be set close to
horizontal when the station is mounted into position at its ground location; the
Y-axis will be set to lie close to vertical upwards.

The origin of this coordinate system is defined to be the intersection point of
the azimuth and elevation scan axes. We assume here that the scan axes, which
are defined mechanically by two sets of bearing seats machined into the azimuth
rotor piece do, in fact, intersect. This definition of the local coordinate system
origin is independent of any assumptions made regarding perpendicularity of the
azimuth and elevation axes.

We assume that the station scan mirror is mounted so that its plane of reflec-
tion contains the elevation axis.

The axes of elevation and azimuth for each station are determined by the
two sets of bearing seats machined into the azimuth rotor piece. The two axes
should be, ideally, mutually perpendicular to one another and intersect. If the
axes intersect, but deviate from perpendicularity, software corrections will have
to be made to the target's scan coordinates computed assuming perpendicularity.
Errors of the order of an arc-minute will lead to several centimeters error, for
target distances near 100 meters. The present memo is a computation of the
target pointing errors to be corrected for when the azimuth and elevation axes
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intersect, but deviate from perpendicularity

2. Computation Of Target Coordinates.

In this section we compute the retroreflector target's local station-based coordi-
nates as a function of the station elevation and azimuth angles and the offset angle
of the azimuth and elevation axes from perpendicularity. The scan geometry is
shown in Figure 1.

We use the following notation to describe the scan geometry and kinematics:
The local cartesian coordinate system at a given ranging station is defined to

be an (55,Y,i) coordinate system, with i-axis along the azimuth rotor axis, and
the origin at the intersection point of the azimuth and elevation axes.

Motion of the azimuth rotor is described by a rotation angle A about the
positive scan azimuth axis. The "start position of the azimuth rotor" is defined
to be the rotor position such that the elevation axis lies in the (,)-plane and
the elevation axis' positive direction (from scan mirror center towards the angle
encoder) points in the sense of the positive x-axis. (When the scan azimuth and
elevation axes are accurately perpendicular, the positive elevation axis will point
along the positive -i-axis). The azimuth angle A 0 when the azimuth rotor is
in its start position.

The "start position of the scanning station" is defined by the conditions that
the azimuth rotor is in its start position and, simultaneously, the plane of the scan
mirror is perpendicular to the (x,z)-plane.

Motion of the elevation rotor is described by a rotation angle E about the
positive elevation axis. Elevation angle E 0 when the scanning station is in its
start position. We will say that "the elevation rotor will be in its start position"
in the general case that E = 0 , for arbitrary values of A .

We note that the station will be in its starting position when both the azimuth
and elevation rotors are in their start positions.

We assume that the optical position encoders used to sense the rotor elevation
angle E and azimuth rotor angle A will be set in the following manner when the
scanning station is in general position (A, E) :

105 (A+ 7—T--)
Na (A.) = Nao 

27-1-
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105(—E) 
(Lib) Ne (E) = Neo  .

27-1-

The encoders each have a count increment of 10 5 counts per rotor shaft revo-
lution.

The allowed range for scanning will be limited to the intervals:

(1.2a) —7r- < A < 71

71
(1.2b) < E < 0 .

2 —

We call e; , , the unit vectors along the positive y - and i-axes.

When the azimuth and elevation rotors are both in home position, we call the
unit vector pointing along the positive elevation axis e—E, , and call a unit vector
pointing along the azimuth axis JT.i. . Since the azimuth axis is fixed with respect
to the ( - ,Y,Ti) coordinate frame, CI = "e ,

-; . not only when the azimuth rotor is in
start position, but also in general position A 0 .

When the station and rotors are in start position. the elevation axis lies in the
( ,)-plane. We define the angle between the " si-axis and the positive elevation
axis in home position to be V) . This angle is the deviation from perpendicularity
of the two scan axes. The geometry is illustrated in Figure 1.

We let FA be the unit vector pointing in the positive direction of the azimuth
axis. This is a fixed vector and

(2.1) eA = —ez
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We call the unit vector pointing in the positive direction along the eleva-
tion axis, in the case that the station is in start position.

We call en, the unit normal to the scan mirror surface, in the case that the
station is in start position. This vector lies in the (x.z)-plane.

When the scan mirror is in general position, we define the unit vector pointing
along the elevation axis to be e—E (A., E, .

When the elevation rotor is in its start position, A H- 0 ; then
e."--k (A = 0, E = 0,0) = el—E0 . We have,

(2.2) eTk7, = (cos 1/))e; ± (sin/) ..

When the scan mirror is in general position we define the unit vector pointing
along the normal to the mirror to be e—n (A, E .

When the elevation rotor is in its home position, (;) 0; then
(A = 0, E = 0, = "6-

7; . We have,

(2.3) e„ = (— sinO)e; ± (cos) .

We now rotate the mirror in azimuth, about 6;1 = "e; , by angle A .

The mirror unit normal and unit elevation axis direction vector are then moved

(2.4) en, ertA ==- [Rot(e . A)]

(2.5) eE0 eEA ---- [Rot(e—A
 , A)] ë .

We use the result (A2.1) of Appendix II to compute these vectors.

Starting from (2.4) , and using (2.1) and (2.3) we have
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(2.6) er
-7:4 = (cos A)e—A + (1 — cos A.)(e—A • -6,,--;) E;) + (sin A)(eA x eno) giving

(2.7) en,A = [(— sin 0) (cos A)E; -I- (cos 0) (cos A)e-:] [(1 — cos A) c s -6;1
+[(sin A)(6; x

which simplifies to

(2.8) enA = (— sin 0) (cos A)6; (— sin 0) (sin AK + (cos 77b)

Starting from (2.5) , and using (2.1) and (2.2) we have

(2.9) eEA = (cos A.)eA + (1 — cos A)(eA eE0) eE0 (sin A) (CI x CE) ) giving

•  •••

(2.10) eEA = [(COS 0) (COS AK -I- (sin '0 (cos A)ez]

+[(1 — cos A)(sin O)eTz ] + [(sin A)(  X eT0)}

which simplifies to

(2.11) eEA = (cos 0) (cos 46; + (cos 0) (sin A) e; -I- (sin 'b) .

We now rotate the mirror by an elevation angle E about the elevation axis
eEA . The elevation rotor axis remains fixed in direction, that is

(2.12) eEA eE [Rot ( e—EA E )] eEA = eEA

Under this rotation, the mirror normal now points in the direction of the unit
vector e—n

 where,

enA =.=- [Rot(enA E)] enA is computed using (A2.1):

en = (cos E)enA (1 — cos E)(8EA . enA) eEA + (sin E) (
\ eEA x en A

(2.13)

(2.14)

The middle term in equation (2.14) vanishes because GT4 and ê are per-
pendicular to one another. After some algebraic manipulation one gets:

6



(2.15) = [(sin E)(sin A) — (cos E)(cos A)(sinO)jJ;

sin E) (cos A) + (cos E) (sin A) (sin it,b)le; + (cos E) (cos 0-6-; .

In Appendix I the reflected unit ray, F;:. from a plane mirror is computed in
terms of the incident ray 6-

i and the unit normal eT,, to the mirror,

(A1.2) = —e, • ) -67-
7 .

We now compute the unit vector in the direction of the reflected laser beam
from the scan mirror.

Using (A1.2), with67, -, • E; = (cos 0)(cos E) , we get

(2.16) = 2(cos E) (cos Jo{ [(sin E) (sin A) — (cos E) (cos A) (sin 7,01E;

d-R— sin E) (cos A) + (cos E) (sin A) (sin 0)] 6;-1- [(cos E) (cos 0)] .

Consider the situation where the scan mirror has been moved from its home
position to an azimuth angle A and elevation angle E . A laser beam directed
initially along the negative z axis towards the mirror will reflect at the scan cen-
ter point, which is the intersection of the scan azimuth and elevation axes, in the
direction of E-

7: . A field target point along the reflected ray, at range distance R
from the scan center point, will have local , ) station coordinates:

(2.17) 1- (A, E, = ( . ) R = [(sin 2E) (sin A) (cos 0)— (cos 2 E) (cos A) (sin 2w)]R.

(2.18) E, = R = [(— sin 2E) (cos A) (cos 0)+(cos 2 E) (sin A) (sin 20)]R

(2.19)2.7(A, E, = (E; • E;) R = [2(cos2 E ) (co s2 	— 1} , where

(2.20) R2 = + .

If the azimuth rotor is properly machined. so that J = 0 , then these reduce to:

(2.21) (A, E = 0) = [ (sin 2E)(sin ]R,
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(2.22) E , = o) = [ (— sin 2E)(cos A) IR .

(2.23) io E, = 0) = (cos 2E) R , where

(2.24) R2 = + .

3. Computation Of Corrected Azimuth And Elevation Co-
ordinates.

We solve the following pointing problem, using the results of Section 2.

We wish to point the laser beam of a ranging station at a distant target, given
-- tthe local station coordinates (- ) of the target center. If the elevation and

azimuth axes determined by the azimuth rotor piece are mutually perpendicular,
then the pointing azimuth angle At and the pointing elevation angle E t of the
target are computed using (2.21) through (2.23).

For each station, the deviation angle from perpendicularity of the azimuth
and elevation axes, , is measured. Typically th is found to range from 0.2 to 1.5
arc- minutes. A one minute arc of a 100 meter radius circle has an arc length of
71 (0.6 x 1.8) cm = 2.909 em. For targets at •100 to 200 meters distance, which
are typical for laser ranging the beam landing at target range could typically be
several centimeters off target systematically. if values .--t t and Ei computed using
equations (2.21)-(2.23) were used to set the pointing of the station's scan mirror.

Instead, pointing angles, Ap and Ep , should be used to set the scan mirror.
where Ap and Ep satisfy equations (2.17)-(2.19) using the given values of 11) and

it •

Equation (2.19) can be solved explicitly for Ep . Using R2 = i t
2 -14+4 , we get

(2.25) Ep = —(112){cos- 1 {-1 (R it )(sec 2 12R] :
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here we choose the solution where Ei„ is negative (-712 < Ep < 0).

Equations (2.17) and (2.18) are linear in sin Ap and cos Ap , after Ep and R
have been computed from the known values of,th, it and .

Call:
1)1 = '95 tIR b2 =

(2.28) = (sin 2Ep ) (cos 0) a 12 = (- COS
2
 Ep)(sin 20)

a21 = (cos2 Ep ) (sin 20) a22 = (— sin 2Ep ) (cos 0)

b1 = (sin Ap ) ai2 (cos Ap)
b2 = (sin Ap ) a22 (cos Ap

where a21 = —a12 and a22 = —an,

which is solved directly to give:

Then

(2.29)

(2.30)

b2a12
= n 2 ,2

'
4
'11 `-'12

b 1 a12 b2a11

sin Ap

(2.31) Ap = atan2 (sin Ap , cos Ap ).

Angles Ep and Ap are in radians. and convert to shaft encoder counts by sub-
stituting them into equations (1.1a) and (1.1b).

4. Small Angle Correction.

Since the angle is small, typically below 2 arc-minutes, it is convenient to
compute the uncorrected pointing angles A t and Et from the cartesian target
coordinates t, t, it using the equations (2.21)-(2.24) which hold for the case of
perpendicular rotor axes, and making a first order small correction in 1,b . This
is allowable, provided the elevation angle of the target is not near zero. As an
example, it is easily seen geometrically that for a target situated on the azimuth
axis, one would have to rotate the azimuth angle by a large value, 7r/2, as an

COS
a2 _ a2
12 11

The angle Ap is computed from the relation
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we cdil

azimuth correction, before making a small elevation angle correction to point the
beam, when V) 0 . In this case the first order correction in rci) of the azimuth
angle is divergent. Due to scan angle limiting in the scanner structure such a case
will not occur physically, and a first order correction in of the pointing angles
At and Et is adequate.

We compute the first order corrections as follows:

Given a target point T = (x t gt ) where :±'? -ilt2 + =
the scan angle coordinates required to point the laser beam, from the coordinate
origin (the scan axis intersection point) to this point. Ap and Ep . Let

(4.1) = ri =gt/R,

Then from (2.17)-(2.19),

(4.2) = (sin 24) (sin Ap ) (cos — (cos 2 Ep ) (COS Ap) (sin 20)

(4.3) ij = (sin 2Ep ) (cos Ap )(— cos 0) (cos 2 Ep )(sin Ap ) (sin 20)

(4.4) C = 2(cos 2 Ep)(cos 2 	- 1 , where

(4.5) 2
T1

2
 + (

2 .

= 2-t/R •

As b is departs from zero the scan angles Ap and Ep required to point to the
fixed target point T become functions of u. That is. .4p = A(b) and

Ep = E(0) . The derivatives of these functions. with respect to iti) are deter-
mined by the conditions that e , 71 and should not change as varies. That is:

(4.6) <14 = 0 , &IMO = 0 c1( dIP 0.

The last equation of (4.6) also follows from the first two and (4.5).

We then have:
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(4.7a) 0 = (3610Ap )
d 

+ (8;laEp )
dEp

 -I- (8- 80 ) .
diti) dth

(4.7b) 0 = (ail laA,p) dAP ± (0q1(9Ep )
dEp

 + (tho) .
do dth

For small 101 , when Ep o , we have the first order corrections:

(4.8a) 4(0 = A t + (ddAP 
ip=o

(4.8a) E(b) = Et ± (
dEp\
clO j w=0

The derivatives appearing in equations (4.8) are computed by calculating the
partial derivatives of equations (4.2) and (4.3) to obtain the coefficients appear-

ing in equations (4.7), then solving the pair of equations (4.7) for 
dA

P
 
and 

dE

P
CIO CIO

using 4p (0 -= 0) = At and Ep (17b = 0) = E.

After some extended manipulation and trigonometric simplification, we get:

(4.9a)
=

p 
(1 ± sec 2Et )(cos 2.4 t ) (cot 2E)

)

(4.9b) 
(dEp 1

chp 0_0 (1 + sec 2Et) (sin 2At)

The shaft angles for pointing are, to first order in z: (7/) in radians). then:
(4.1.0a) A(b) = At + 0(1 + sec 2Et)(cos 2At)(cot 2E)

(4.10b) Ep (0) = Et + + sec 2E , (sin 2At) -

In Appendix III it is demonstrated that the pointing angles A t and Et , re-
quired when the scan axes are perpendicular. can be expressed in a very simple
way, in terms of the spherical polar coordinates of the target point T .

(A3.3.1) At = 0 — 71-
2

(A3.3.2) Et -= --
2 .
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The pointing angles then become, to first order in 0, in terms of the target
point spherical angle coordinates e and 4):

(4.11a) Ap (t,b) = — 
7F 

+0(1 + sec 4)) (cos 28) (cot 4))

(4.11b) Ep (0) = — — ( 312-2
 ) (1 + sec .1)) )(sin 2e) .

The shaft encoder setting counts become, to first order in i,b, in terms of the
target point spherical angle coordinates 0 and 4):

(4.12b) AVG , , =

105 (0 -I- 0[(1 + sec )(cos 20) (cot 4)) 1) 
27r

10 5 (4) -I- 0[(1 + sec 4)) (sin 29)])
Neo

(4.12a) Na (0, .1) , = N ao

47r

Equations (4.12) are the results we are seeking.

The count increments to be added to the encoder settings are then:

(4.13a) AN,,(8 , , b) =
1050[0. +sec 4)) (cos 28) (cot 4))1 

it, 
27r

10 50 [(1 + sec 4)) (sin 28)]
(4.131)) ANe(e qc. ,7,b) = where is in radians.

471-

If '11) is given in arc-minutes (1 arc-minute = 71- ( )radian), then the
180 60

encoder count increments are:
(4.13a) ANa (0 , , b) = 4.63(th, minutes ) [ (1 sec ')(cos) 28) (cot 4))

(4.13b) AN,(0 , , = 4.63(bminutes)R1 ± sec .1)) (sin 20)] .

Equations (4.13) give the count increments to be added to the shaft encoders,
to correct for non-perpendicularity of the scan angle axes.
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5. Discussion.

The corrections (4.13) for the scanner shaft angles should, in principle, improve
the laser pointing and tracking of target reflectors. In practice this will depend
strongly upon correct knowledge of the initial angle encoder counts Nao and Neo.

These count values are typically determined by laboratory optical bench measure-
ments using one or more autocollimators. One measures encoder counts when the
station is in start position, or when one or both shafts are 180 degrees from start
position, and notes changes in the autocollimated return spot. The measurements
are complicated by the fact that the scan mirror is in a two axis gimbal mount,
when mounted in the scanning station, and one has to adjust four angles properly
to set up the measurements. The encoder offset counts Nao and Ne, must be deter-
mined independently of the first order angle corrections, which are invalid when E
is near zero. To do the laboratory measurements of .N,,, and Neu , one must be able
to set the azimuth rotor's axis coincident with or parallel to a known i-axis, also
set the plane of the azimuth and elevation rotor axes coincident with or parallel
to a known (th" ,i)-plane, and set the scan mirror to both contain the elevation
axis and lie perpendicular to the i)-plane. Careful attention to the technique
of measurement is needed. Offset error in AC, or N„ -will produce a constant shift
in the pointing azimuth or elevation angle, respectively, which may compare in
size with the computed counts corrections (4.13). We do not discuss any details
of the initial scan mirror and angle encoder alignment and setting measurements
in this note. This is a topic for a separate. extended treatment. But it is im-
portant to observe that errors in setting the scan mirror or shaft angle encoders
can produce pointing errors large as or larger than the error corrected in this note.

The corrections (4.13) are easily entered into the software controlling the scan-
ning unit's pointing commands. The angle /1) is available for each scanning unit,
as a single measured number. The angles 8 and .4) are provided to command the
scanner. Instead of commanding the scanner to rotate its shafts to generate the
count signals Na (8 , ) and ./Ve (e 43. ) specified by equations (A3.4) one com-
mands the scanner to move its shafts to give the count signals Na (e , , 0) and
/Me +I 0) given by equations (4.12), a modification of two lines of code.
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6. Appendix I. Ray Reflection From A Plane Mirror.

Here we compute the unit vector along the reflected ray when an incident ray is
reflected from a plane mirror. We assume that"e;, is the unit outward normal to
the plane mirror surface and Fi is the unit vector along the incident ray direction.

We call the unit reflection ray vector. Referring to Fig. 2,

OC = OA+ AD + DC = OA+ 2(AD: . Also E; = OC .

AD = AO +OD .

0 D = [(6-
7;,) , AO .

These give:

(ALI.) = —2K • Fnen •

In the present memo we assume that. always, = —e; , giving

(A1.2) a; = —e, which is our desired result.

7. Appendix II. Rigid Body Rotation With One Body
Point Fixed.

We use the following result from vector analysis in computing the motion of the
normal to the scan mirror and elevation

We are given a rigid body with one point, 0, fixed and a rotation of the body
about an axis OA , through 0, by an angle a . (Figure 3).

Let eT, be a unit vector along the rotation axis. Let P be a point in the rigid
body.

The point P will be moved to a point O. The vector OP V will be trans-
formed by the rotation , a ) to the vecor [Rot(6, , a)J .

14



The following result holds:

(A2.1) [Rot(e;, , a )] -17 = (cos a) --- 7 -1- (1— cos a)( . V)6.;.-1- (sin x 17) .

This result is given in H. Goldstein, Classical Mechanics.
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8. Appendix III. Target Polar Coordinates.

On occasion it will be convenient to specify the location of a target point in spher-
ical coordinates. In the Ci , g , coordinate system let the coordinates of a scan
target point T be ("K , ), where "5-4 + = R2 . We express the coordi-
nates of T in spherical polar coordinates R 8 , and 4) :

(A3.1.1) = R(sin 4)) (cos 8)

(A3.1.2) u = R(sin ')(sin 8)

(A3.1.3) :et = R(cos

If the azimuth scan rotor were machined perfectly, so that V) 0 , then the
scan angles of the target, At and Et in this case, would be determined, from
(2.21)-(2.24), by the relations:

(A3.2.1) "th-
t = R(sin 2Et) (cos At)

(A3.2.2) gt R(sin 2Et )(— cos At)

(A3.2.3) i = R(cos 2E) .

In the case where the azimuth and elevation scan axes are accurately per-
pendicular ( so that = 0), the target scan angles are easily found in terms of
the target point spherical coordinates, by comparing equations (A3.1) and (A3.2):

(A3.3.1) At = 8 —

(A3.3.2) Et =

The shaft encoder readings can then, when b = 0, be set in terms of the polar
coordinates 8 and .1) of the target point T to be:

7F

2
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(A3.4a) Na (8 , = Nao
27r

1054)
, from (1.1a) and (1.1b) .

1058

(A3.4b) /Me , 4)) = Neo
47r

The scan ranges are then

(A3.5a) < e <

(A3.5b) o < < 7r- .

We see that the azimuth shaft's rotation angle A t and encoder count setting
Na depend only on the polar coordinate e , while the elevation shaft's rotation
angle Et and encoder count setting AT, depend only on the polar coordinate
when the scan axes are perpendicular.

This separability is not available when the scan axes are non-perpendicular.
For a given target point T (55i , whose spherical polar coordinates R

, and .1) are given by (A3.1.1)-(A3.1.3), when 0 , the shaft rotation angles
and encoder count settings become functions of all three variables e , .1) , and 0.
We let the new shaft rotation angles, in azimuth and elevation respectively, re-
quired to point the laser beam from the scan center point to point T be

(A3.6) Ap = Ap (77 ;lib) = Age ; .1)

(A3.7) Ep Ep (T, = Ep (e, , ,

The angles Ap and Ep are the corrected shaft angles to be used for pointing,
when the scan axes are non-perpendicular. We introduce angle corrections from
the

ideal settings:

(A3.8) Ap = At + AA = 8 — AAP, .1)

(A3.9) Ep = Et + AE = --
2
 AE(8, .4) ,O) .

17



The corrected shaft angles are computed in Section 3, and approximated to
first order in //) in Section 4. The corrected encoder counts then become:

27r
1. 05 (4) — 2AE(8, 4),V)))

(A3.10b) "Me , , = Neo 47r

The count increments to be added to the encoder settings when 0 are:

105AA(0, ,V) 
(A3.11a) ANci = 27r

(A3.11b) AN, = —
105 AE(0, ) 

27r

lo5(e AA(8, , V))) 
(A3.10a) Nc,(0 , 4), 1,b) = AT ao
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