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Abstract. We describe in this memorandum some initial measurements, using accelerometers,
of the vibrations induced by random excitations of the partially completed GBT structure. For
the present study, the excitation of the structure has been passive in nature: due to natural
disturbances, such as wind gusts, and to construction activity. Improvements to the instru-
mentation which have been incorporated since the October, 1996, "shaker test" are described.
Time series of measurements and derived power spectra, obtained during the first five months
of 1997, are presented. Newly obtained estimates of the damping coefficient associated with
the dominant modal resonance range between 0.40% and 0.48%, and are in close agreement
with the results of the shaker test reported on in GBT Memo. No. 159.

1. Introduction. Previously, in GI3T Memorandum No. 159, we reported the results of
an experiment which was undertaken in October 1996 to investigate the dominant modal
resonances of the GBT alidade structure. In this so-called "shaker test," a moving mass
controlled by a hydraulic servo-mechanism was used to excite the structure, and a pair of
accelerometers were used to measure the decay rate of the structural vibrations, enabling
an estimate to be made of the coefficient of viscous damping associated with the dominant
modal resonance. It is unlikely that we will be able to conduct any additional shaker tests
during the construction phase of the G13T, because of the bulk and intrusiveness of the
shaker mechanism.

However, the sensitivity of the accelerometers is such that random excitations of the
structure—due, say, to wind gusts and construction activity—result in significant accelerom-
eter output. The response of the structure to random excitations is of twofold interest: first,
because such excitations are similar in nature to those which will occur when the telescope
is in operation; and, secondly, because—to the extent that the power spectrum of the exci-
tation is "white"—the power spectrum of the response should, to close approximation, be
the same as that which would result from a unit-impulse excitation, since the latter type of
excitation also has a white spectrum [2], [3]. We have been working, since the beginning of
this year, on improvements in instrumentation and data collection, so that now it is possible
at nearly all times to obtain very high-quality spectra from the time series of accelerometer
data. It was necessary, in particular, to implement additional amplification, shielding, and
filtering, and better analog-to-digital conversion, and to provide the means for recording
substantial amounts of data.

Since January of this year we have recorded, every couple of weeks or so, one to
three hours' worth of data from the accelerometers. As before, the accelerometers were
mounted on the housing of one of the telescope's elevation bearings. Data were taken under
varied conditions, including calm conditions of light wind and during periods of significant
construction activity. The individual time series and the spectra derived from them are
described in Section 2. Some data are of sufficiently high signal-to-noise ratio to obtain



estimates of the coefficients of viscous damping associated with the lowest-frequency modal
resonances.

In our previous analysis of data from the shaker test, estimates of the damping co-
efficient were derived in two different ways: by fitting the time series of decay data via
nonlinear least-squares; and by measuring the line width in the computed power spectrum.
In Section 3, below, a third method—based on the Hilbert transform—is described. It
yields a result which is essentially identical to that of the nonlinear least-squares analysis.
This technique can also be used in passive vibration analysis. In Section 4, autocorrelation
functions of the time series are presented, and the Hilbert transform is used to obtain modal
parameter estimates.

From the analysis of passive vibrations, estimates of the damping coefficient associated
with the dominant modal resonance range between 0.40% and 0.48%. This is in close
agreement with the data from the shaker test, where the estimates ranged from 0.37% to
0.49%.

All of the data analysis, apart from the autocorrelation calculations, was done within
the Mathematica software package.

2. Vibration Spectra from Random Excitations of the Structure. Measurements
were taken on several occasions during the first five months of this year, beginning in early
January. These data were obtained with the same two accelerometers as were used in the
shaker test of October, 1996 (G13T Memo. 159). The instruments were mounted in the
same locations—and with the same orientations—as used previously: that is, on one of the
elevation-bearing housings, with the sensitive axis of the Channel 1 accelerometer aligned
parallel to the elevation shaft and that of the Channel 0 accelerometer aligned perpendicular
to the shaft and in the horizontal plane. The first useful data were acquired on January 10.

Time series recordings from one of the accelerometers (Ch. 1) are shown in Figure 1.
Hour-long observations were taken on the first five dates, January 10 through February 19;
three-hour observations on the next three dates, February 26 through March 27; and one-
and-a-half-hour observations on the final three dates, April 8 through May 3. The data
(not shown) from the Channel 0 accelerometer are qualitatively similar. The sampling rate
was 100.16026 Hz. Data recording was done by a Model 286 PC, and the quantity of data
was limited to three hours by the capacity of the floppy-disk drive. No Channel 0 data were
recorded on the occasions of three hours of Channel 1 data recording. The majority of the
data were taken on weekdays when workers were present on the structure and construction
activity was in progress. The exceptional dates are March 15, April 13, and May 3 a
Saturday, a Sunday, and a Saturday, respectively); winds were light on the earlier two of
those dates, whereas storm conditions prevailed toward the end of the May 3 observations.
On days when workers were present, operation of the elevator was the cause of many of the
strongest of the sporadic excitations seen in the data.

The ordinates of the time series plots show the output, in volts, from the analog-
to-digital (A/D) converter, rather than actual acceleration. This is because the system
gain was not well calibrated until April 8. Calibration was poor before the installation of
an instrumentation amplifier, since the A/D converter had been presenting too low an
impedance load to the accelerometer. On April 8 the system sensitivity was adjusted
accurately to 1.0 mG/V, and on April 13 it was re-adjusted to 0.5 InG/V.

Figure 2 shows one of the time series, from April 8, in greater detail. The uppermost
plot shows the entire one-and-one-half-hour span of data; the middle plot, a one-thousand-
second segment of the data; and the lower plot, twenty-five seconds of data. The dominant
modal resonance in the Channel 1 data of April 8 is at f•-, 1-Hz. Its signature is clearly
evident in the lowermost plot, where one can count approximately twenty-five cycles.
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Figures 3, 4, 5, and 6 show spectral estimates derived from each one of the time
series. These estimates were computed using Welch's method of weighted and overlapped,
segmented averaging of periodograms (WOSA) [4], [5]. The sampling interval of At
9.984 ms allows the estimation of spectral components at frequencies up to 1/(2.6,0 fr:dd
50 Hz. The spectra shown in these four figures were computed using a 16,384-point sliding
data window, 62.5% overlap, and a Hanning taper which was applied in the time domain.
Figures 3 and 4 show the low-frequency end of the spectra-0 to 5 Hz—from the Channel 1
and Channel 0 accelerometer data, respectively. Figures 5 and 6 show the entire frequency
range, from 0 to 50 Hz. Since only the data from April 8 onward were accurately calibrated,
the ordinate scales of these plots, representing the power spectral densities, differ from one
date to another. The first fifteen minutes of the January 29 data were omitted from the
spectral computation because the telescope structure was moving in azimuth during that
time.1

In Figure 3 we see, for the Channel 1 accelerometer, the dominant modal resonance
frequency starting out at ,,,1.25 Hz on January 10 and remaining near that value until
February 26. By March 15 it has shifted down to ,1 Hz, and between April 8 and April 13
it has shifted back up to ,1.25 Hz. The second-lowest-frequency modal resonance wan-
ders considerably and is typically near 1.8 Hz. David Parker kindly furnished us with the
following chronology of construction activity:

• January 8, 1997: The left feed-arm modules C and D are in place;
• February 3, 1997: Actuator room is in place;
• February 25, 1997: Right feed-arm modules C and D are in place;
• April 11, 1997: The tipping structure is moved from 77° elevation to 66° elevation;
• April 29, 1997: Feed-arm section F is in place.

It seems likely that the cause of the upward shift in the dominant resonance was the elevation
change on April 11. (The cause of the earlier downward shift might have been the completion
of installation and welding of the right feed-arm C and D modules, combined with removal
of crane support—but this inference is somewhat speculative.)

In Figure 4, for the Channel 0 accelerometer data, we see the dominant modal resonance
typically at r,,1.8-1.9 Hz. Frequently a line appears at the same frequency as the Channel 1
dominant resonance. We have not determined whether this is a spurious response due to
misalignment of the accelerometer. Also, the Channel 0 spectra show significant evidence
of aliased high-frequency electrical interference, especially the data from January 29 and
February 19. Figure 6 shows strong spectral energy at the higher frequencies, typically
including some clutter around ,20 Hz and ,42-46 Hz.

Analog lowpass filtering—with a cutoff frequency at 20 Hz—was applied to all of the
data, for anti-aliasing. A very-sharp-cutoff active filter was installed on March 27 because
interference problems had become apparent. In Figures 5 and 6 the sharper response of
this filter is clearly evident. This is a six-pole Chebyshev filter with 0.5 dB maximum
passband ripple. Its phase characteristics are probably not good enough for possible future
applications, such as time-domain mode tracking. Welding was occurring during the time
of many of our observations; this probably accounts for much of the interference. Figure 7
shows an interesting set of data from a three-hour period on February 26, when very major
construction activity was taking place. The apparent splitting of the dominant resonance
line in this plot is probably due to aliased high-frequency interference.

Figure 8 shows spectra from another three hours of data taken on March 27, just after
installation of the active filter. The improvement in data quality is apparent; moreover, the

1
Those data may, in fact, be of interest in their own right.
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noise in the computed spectra averages down much better than in the earlier observations.
Typically our spectra show about 50 dB dynamic range. The noise floor, which in Figure 8
is at about —80 dB, is due, we believe, to quantization noise from the 16-bit A/I) conversion.

Excellent-quality data were obtained again on April 8 and 13. High-resolution (Ch. 1)
spectral estimates derived from these data are shown in Figures 9 and 10. These spectra
were computed via the WOSA method with a 32,768-point data window, uniform weighting,
and 50% overlap. Here the signal-to-noise ratio is sufficient to obtain reasonable estimates
of the full-width at half-maximum of the dominant resonance. The corresponding estimates
of the viscous damping ratio associated with the dominant resonance are ( -/d, 0.0040 (or
0.40%) and ( 0.0048 (or 0.48%) for the two dates—which is in reasonable agreement with
our results from the shaker test (Memo. 159).

Finally, the Mathematica software developed during the course of our work can also be
used for the computation of cross-spectra. An example is shown in Figure 11. Cross-spectral
estimates based on data from multiple sensors will likely be essential for the identification
and characterization of structural vibration modes.

It would have been interesting to compare the computed spectra with predictions from
finite-element modeling, but this was not possible because the only modeling that has been
done (or which is planned) is modeling of the complete telescope design. It would be some-
what impractical to model the telescope at very many phases of completion, because of the
computational expense and the manpower requirements. Also, whenever large substructures
happen to be hinged into place but not completely welded—and perhaps partially supported
by crane lines—the observed spectra appear to be significantly altered, and therefore any
detailed analysis is easily confounded by practical realities.

3. Re-Analysis of Data from the Shaker Test. In the so-called "shaker test" which
we reported on in G13T Memorandum No. 159, a moving mass controlled by a hydraulic
servo-mechanism was put into sinusoidal motion and used to excite the dominant modal
resonance of the structure. The Channel 1 accelerometer was used to observe the decay of
the vibrations. Estimates of the viscous damping coefficient associated with the dominant
resonance were derived in two different ways: by fitting the time series of decay data via
nonlinear least-squares, and by measuring the line width in the computed power spectrum.
The time-domain method (in this case, nonlinear least-squares) is expected to have yielded
a more accurate estimate of the damping coefficient. This is because any frequency-domain
spectral width estimate is artificially broadened because of the finite duration of the time
series (in the present case, 100 seconds).

After Memo. 159 was written, the thought occurred to one of us that a different time-
domain method could have been used: namely, one based on the (discrete) Hilbert trans-
form. The Hilbert transform 

ft 
of a function (t) can be defined either via the Principal

value integral
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f (t') dt
I t

or, via the Fourier transform, according to the formula PI (t) [f (7) sign(7)] v (t), where
A denotes Fourier transformation and v denotes inverse Fourier transformation (see, e.g.,
[6], [7]). The discrete Hilbert transform is defined analogously, via the Fourier transform
formula, in terms of the discrete Fourier transform. The instantaneous envelope  of a real-
valued signal f (t) is given in terms of the Hilbert transform by 
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The envelope of the time series of decay data from the shaker test, computed via the
discrete Hilbert transform, is shown, on a semi-log scale, in Figure 12. A straight line was fit
to the computed envelope via linear least-squares. The best-fitting slope of —0.0286 yields
an estimate of ( =--- 0.00370 for the viscous damping ratio. This agrees to within about
one-percent with the value (( 0.00374) that was derived by nonlinear least-squares in
Memo. 159. The Hilbert transform method is much simpler and much less computationally
expensive (by at least a factor of 100, or so) than the nonlinear least-squares approach. The
use of Hilbert transform techniques in the context of structural vibration analysis is also
discussed in [8] and references cited therein.

4. Correlation Analysis of Passive Vibration Measurements. Plots of the computed
autocorrelations of the accelerometer time series provide a very direct portrayal of the decay
rates of the dominant modes—more so, we believe, than do plots of the line shapes in the
spectra (see Fig. 13). (In [3], [9], it is shown that the autocorrelation of the response of a
lightly damped system to white-spectrum random excitation decays at the same rate as the
impulse response of the system.) Figure 13 shows autocorrelation functions r(r) computed
from the 11-hour time series of accelerometer data of April 8 and April 13, plotted for
time lags r between 0 and 500 seconds. Noise in the response—for example, sensor noise,
amplifier noise, and A/D quantization noise—causes a spike which is concentrated near the
zero lag, r = 0, [3]. Since the Channel 0 data are significantly noisier than the Channel 1
data, the spikes have been suppressed in the Channel 0 plots in order to allow an enlarged
view of the more interesting part of the data. Relatively stronger damping is apparent in the
Channel 0 data than in the Channel 1 data. An expanded view of the Channel 0 data, for T

between 0 and 100 seconds, is shown in Figure 14, where the absence of a single dominant
mode is evidenced by the strong modulation of the envelope of the autocorrelation.

In the case of the Channel 1 data, which are dominated by a single modal resonance,
the Hilbert transform can be used to compute the envelope of the autocorrelation, and the
damping coefficient then can be estimated by fitting to the data from the initial time lags,
say I rj < 50 or 80 seconds. The autocorrelation function computed from the Channel 1 data
of April 13 is shown in Figure 15, together with the computed en-v91ope and the best-fitting
exponential-decay curve. The estimated damping coefficient is ( = 0.0042 (or 0.42%) for the
1.25-Hz modal resonance._ The fit to the data from April 8—which is shown in Figure 16—is
not quite as good. Here the estimate of damping is ( = 0.0047 (or 0.47%). We have not
quoted error bars because the formal error estimates appear to be unrealistically small.

It would be possible to extend this type of analysis. The Hilbert transform method
can be used to obtain damping estimates for higher-order modes, if notch filters are first
_applied to the time series [8]. Alternatively, various algebraic decomposition methods can
be used in correlation analysis; such an approach was taken in a study of one of the JPL
Deep Space Network tracking antennas [10];

In this part of our work, we used a direct computation—via a Fortran program—of
the autocorrelation functions, and equal numbers of lagged products were taken in each
summation. There was no tapering of the autocorrelations, either direct or (as would have
occurred if the WOSA method had been used) indirect.

5. Plans for Future Work. To date, the accelerometer data acquisition has been handled
by a dedicated PC. Within the next few months it should be possible to integrate this task
within the GBT Monitor and Control System. For the recent data we have used 16-bit
A/D conversion and a 100-Hz sampling rate. This results in relatively large volumes of
data, and we will need to investigate what limitations there may be in the ability to record
and archive this type of data within the Monitor and Control System.
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Don Wells, in GBT Memorandum No. 161, advocates equipping the C413T with multiple
accelerometers and discusses the possibility of using less expensive units than the inertial-
navigation-grade Allied Signal QA-2000's which we have used to date. Allied Signal has
recently introduced an accelerometer designed for industrial applications: the QLC-400,
with technical specifications approaching those of the QA-2000, but only one-fifth as ex-
pensive. We have purchased a few of these units, and plan to test them thoroughly. In the
case of multiple accelerometers, the data sampling should be synchronous (simultaneous
sample-and-hold) to eliminate systematic biases in estimates of the phases of the signals [12].

There has been some discussion (e.g., in Memo. 161) of building an active-mass-driven
damping system to control the feed-arm oscillations. The control algorithm for such a sys-
tem would likely employ acceleration feedback. If higher-order modes need to be tracked_
and controlled, then stringent requirements may be imposed upon the instrumentation asso-
ciated with the accelerometers. In particular, the programmable antialising filters which are
used by the Notre Dame group who work in aseismic protection are described as follows [14
"The XFM82 series filters offer programmable pre-filter gains to amplify the signal into the
filter, programmable post-filter gains to adjust the signal so that it falls in the correct range
for the A/D converter, and analog antialiasing filters which are programmable to 25 Hz.
The high-quality elliptic low-pass filter has a 0.001 dB pass-band ripple, a stop-band mag-
nitude of —90 dB, and a 90 dB/oct roll-off above the cutoff frequency. The filters on all
8 channels are magnitude/phase matched to within 0.1 dB/1 degree to 90% of the cutoff
frequency." This amounts to considerably more sophisticated signal conditioning than we
have implemented. We plan to establish contact with other researchers, in order to benefit
from their experiences.

Bandwidth, command-and-control, and signal-conditioning requirements, in general,
for various uses of the accelerometer data need to be established.

Once the construction of the GI3T is completed, we will want to study very carefully and
intensively the spectra of the structural vibrations and compare them with finite-element
model predictions.
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Figure 4. Spectral estimates from the Channel 0 accelerometer, mounted perpendicular to the elevation
shaft, plotted over the range 0-5 Hz. The spectra for January 29 and February 19 appear to be severely
corrupted by aliased high-frequency interference (cf. Fig. 6).
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Figure 5. Spectral estimates from the Channel 1 accelerometer, mounted parallel to the elevation shaft,
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spectra taken after that data, the evidence of 60-Hz power-line noise (which aliases in at 40 Hz) is still quite
apparent.
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Figure 'T. Spectra for three consecutive one-hour periods, obtained with the Channel 1 accelerometer on
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filter; many of the spectral features are extraneous and due to aliased high-frequency interference. The
apparent splitting of the dominant modal resonance probably is not real.
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Figure 8. Spectra for three consecutive one-hour periods, obtained with the Channel 1 accelerometer on a
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Figure 9. (Top) Spectral estimate derived from the April 8, 1997, Channel 1 accelerometer data, plotted
over the range 0-5 Hz. The dominant modal resonance is at  Hz. This spectrum was computed from
90 minutes of data using a 32,768-point sliding data window, 50% overlap, and no tapering. (Bottom)
Detailed view of the 1-Hz modal resonance line. The 3-dB width of —,0.008 Hz yields an estimate of

0.004 (or 0.4%) for the viscous damping ratio.
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Figure 10. (Top) Spectral estimate derived from the April 13, 1997, Channel 1 accelerometer data, plotted
over the range 0-5 Hz. The dominant modal resonance is at rs-4.25 Hz. This spectrum was computed from
90 minutes of data using a 32,768-point sliding data window, 50% overlap, and no tapering. (Bottom)
Detailed view of the 1.25-Hz modal resonance line. The 3-dB width of ,, ,0.012 Hz yields an estimate of

0.0048 (or 0.48%) for the viscous damping ratio. The shift in the resonance line from ,s1 Hz to ,,1.25 Hz
(since April 8) is likely due to the fact that the tipping structure was moved from 77° elevation to 65° on
April 11.
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Figure 11. A sample cross-spectral estimate, derived from the April 8, 1997, data. (Top) The Channel 0
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Figure 13. Autocorrelation functions computed from the time series of accelerometer data of April 8 and
April 13, 1997, for time lags T between 0 and 500 seconds.
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Figure 14. Autocorrelation functions computed from the time series of Channel 0 accelerometer data
of April 8 and April 13, 1997, for time lags r between 0 and 100 seconds. Relatively stronger damping
is apparent, compared with the Channel 1 data. The absence of a single dominant modal resonance is
evidenced by the strong modulation of the envelope of the autocorrelation.
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Figure 15. The autocorrelation function computed from the time series of Channel 1 accelerometer data
of April 13 is shown in the top panel, plotted in blue. The envelope of the autocorrelation, computed via
the discrete Hilbert transform, is shown in the lower panel, in red, on a semi-log scale. The best-fit slope of
—0.03295 (for lags T between 2 and 80 seconds) yields an estimate = 0.00420 (or 0.42%) for the damping
coefficient associated with the dominant modal resonance, which is at , ,,1.25 Hz. The corresponding envelope
of the exponential-decay curve is drawn in red in the top plot.
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Figure 16. The autocorrelation function computed from the time series of Channel 1 accelerometer data
of April 8 is shown in the top panel, and the computed envelope of the autocorrelation in the lower panel.
More curvature is evident in this case than in Figure 15. The best-fit slope of —0.0295 (for lags T between
2 and 50 seconds) yields an estimate = 0.0047 (or 0.47%) for the damping coefficient associated with the
dominant modal resonance, which is at Hz. The corresponding envelope of exponential decay is shown
in the top plot.
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