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I. INTRODUCTION

Currently it is envisioned that the information needed for active surface control
and pointing of the Green Bank Telescope will be derived from distance measure-
ments obtained by laser ranging. Laser rangefinders attached to solid ground would
monitor the positions of other rangefinders attached to the feed support structure,
and these, in turn, would monitor the deformation and relative motion of the pri-
mary reflector and the position and orientation of the subreflector. This concept is
described in a recent memo by John Paymne, Pointing and Surface Control of GBT
(GBT Memo No. 36), and in an earlier memo by John W. Findlay, Notes on Mea-
suring Distances (GBT Memo No. 24), where alternative possibilities are considered
as well.

Findlay comments in his memo that “The tasks of deciding the layout of a
ranging system and the computing needed to derive the information of the surface
and sub-reflector locations can be attacked by computation.” Here I want to take a
first step in that direction, by considering the dependence of the potential accuracy
of the determination of the location of a point upon the geometry of the rangefinding
setup.

II. METHOD OF ANALYSIS

Suppose that we have some number n of rangefinders, located at different,
known, positions {P; = (z,¥i,2)|¢ = 1,...,n} and that we wish to determine
the position (z,y,2) of a point P, based on n measured distances, Jl, I (one
per rangefinder), each of r.m.s. accuracy o. The actual distances are given by
di(z,y,2) = |P; — P| = \/(¢; — )? + (yi — y)* + (2 — 2)%. In order to design com-
petently a surface metrology scheme, it would be helpful to know the accuracy to
which the coordinates of a point P are determinable, for every P near the nominal
design paraboloid, as a ‘function’ (so to speak) of the geometrical arrangement of
the rangefinders. [The nominal design paraboloid is given by 2(z,y) = f(r) = %,
where ¢ (= 60 meters) is the focal length and r = /22 + y2.]

Payne proposes that three rangefinders be used to locate positions on the pri-
mary reflector. Clearly, at least three are required (in the absence of any prior
information—e.g., that lateral displacements of points on the surface are negligi-
ble). But my analysis is formulated for the case of arbitrarily many rangefinders,
just in case that a number greater than three is settled upon.

Given the n measurements d;, and assuming normally distributed errors, a
maximum-likelihood estimate of the coordinates of P is obtained by solving for
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those coordinates (&, , 2) which minimize the expression
1o/ ; S\ 2
S(x,y’2)= §Z(di(x,y,z)—d,-) . (1)
i=1

This solution can be obtained by solving for a zero of the gradient, V.§, of S:
s
oz
vs=|%]. (2)
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oz

For present purposes (i.e., until the telescope is built), the method of solving for
this zero is unimportant, since all we are interested in now is a statistical analysis of
the error that is incurred, assuming that the zero has been located by some means
or other. The gradient of the gradient of § (the so-called Hessian matriz of §) is
given by

9’s  9*s  a8%s

2% dzx 8y Oxrbz

— | 9*s @8*s | a's
B=|s55 % @ )

a’s  8%s  @%s

dxrdz dyoz Erz

Estimates of the variances and covariances of the solution (%, §, #) can be obtained
by evaluating H somewhere in the neighborhood of the solution, inverting, and
scaling by o?; i.e., the variance—covariance matrix, to good approximation, is given
by

VeaolH, (4)

The standard errors of the estimate of (z,y,2) are 0, = /Vi1, 0y = /V23, and
0, = v/Va3. Off-diagonal elements of V represent the covariances of the estimated
parameters, and correlation coefficients can be obtained by dividing each element
Vi; of V by the product of the ¢th and jth standard errors.

Solving for distance from paraboloid, rather than for Cartesian coordinates.
Instead of wanting to know the Cartesian coordinates of P, we might be primarily
interested in knowing the distance § between P and the nominal design paraboloid.
The surface normal N(z, y) equals —::i,:i,:c) , and so the Cartesian coordinates of a
point a distance § away from the nominal design surface are given by

2
r
P(éa To, yO) = (370, Yo, ﬁ) + 6N($05 3/0)
(5)

; 6(*-’130,—y0,20)
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with 6 measured along the surface normal intersecting the surface at (zo, %o, f(70)).
In this case, the distance to the ith rangefinder is

di(5,.$0,2/0) = IP(6a manO) - (a:i,yiazi)l ) (6)
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where |v| = /v - v. Having redefined the functional dependence of the d;, we can
rewrite Equation 1 as

5(6,0,%0) = . i (d.‘(57 o, Yo) — Ji)z (7

i=1

[N

and now proceed as before, but with different solution parameters.

Calculation of the Hessian matriz. Denoting by p and ¢ any two (not necessar-
ily distinct) elements of the set of possible solution parameters (either {z,y, z} or
{6,z0,%0}, depending on whether Eq. 1 or Eq. 7 is selected ), we see, from Equation 3,
that H is composed of elements of the form

925 & . 0%,  Od; dd;
dpdq 2 ((di ~ 45500t 8_pa_q) ' ®

i=1

If the r.m.s. error o of the rangefinding measurements is sufficiently small, then an
adequate approximation to H is obtained by ignoring the second-order derivatives.
(With ¢ = 50 pum we are, I believe, well within this regime; 50 um is the r.m.s.
rangefinding accuracy that is realistically achievable, according to Payne.) When
simulating the measurement scheme we may evaluate the needed partial derivatives
at the exact solution of the estimation problem, since the exact solution is known. In
practice, of course, we would evaluate the Hessian, and its inverse, at the calculated
solution, since in that case the true answer would be unknown.

For the minimization problem defined by Equation 1, with d; defined as in
the first paragraph of this section, the required partial derivatives are %%i = (z -
x;)/d;, %‘;‘L = (y — vi)/di, and %dzi = (z — 2;)/d;. Analytic expressions for the
derivatives %’L, %—(”L, and g—z; required for the problem defined by Equations 6 and 7
are straightforward, but tedious, to calculate (I used the algebraic manipulation
program MACSYMA on my Sun workstation). Since they are quite messy, I do
not include them here (they can be ferreted out of the program listing given in the

Appendix).

All the foregoing analysis is standard fare in nonlinear parameter estimation.
Textbook treatments of nonlinear least-squares methods, for example, follow a par-
allel development.

III. RESuLTS

In this section I present the results of an analysis of three possible configurations
of those rangefinders whose task would be to survey the primary reflector. These
configurations are illustrated in Figure 1. I assume the r.m.s. accuracy o of each
rangefinding measurement to be 50 um, as in Payne’s and Findlay’s memoranda.
All results of this section are based on calculations performed by a simple Fortran
program whose listing is given in the Appendix.
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In practice, the positions of the rangefinders would not be known to exact pre-
cision. Approximate positions would be established by measurements obtained by
other, ground-based rangefinders anchored to solid foundations. In this prelimi-
nary analysis I have not taken into account the uncertainties in the positions of the
rangefinders, but my method of analysis could be extended to do so.

Figures 2 and 3 show contour plots of the estimated errors for the configuration
(A, B, B") proposed in Payne’s memorandum.! There are obvious problems (i.e.,
singularities, except in determining the y-coordinates) along the line of intersection
of the paraboloid with the plane in which the three rangefinders lie. Over a region of
perhaps two-thirds the area of the primary reflector, o5, the error in determining the
distance of a point from the paraboloid, would be less than approximately 100 pm—
something close to our goal. However, the errors along the line of singularity, and
possibly those toward the far edge of the dish, would be excessive.

Figures 4 and 5 illustrate the improvement that would be achieved by adding
a fourth rangefinder at an intermediate position (labeled D in Fig. 1) on the main
feed arm. The improvement is dramatic in the areas adjacent to the previous lines
of singularity; elsewhere the improvement is minor, but not insignificant.

Figures 6 and 7 show the effect of moving the rangefinders that would be located
on the feed arm support legs (at B and B') to lower positions (C and C') on those
legs. The result, I believe, would represent a net improvement. The plots of o5 and
o, show significant improvement near the far edge of the dish, where it was most
needed. Errors in the determination of § and z are, however, slightly increased near
the vertex of the paraboloid. Figure 8 is an enlarged plot of o4 for this configuration
(A,C,C", D).

IV. CONCLUSIONS

If the rangefinders for surface metrology are to be located on the main feed
arm and on the feed arm support legs, then there evidently would be a distinct
advantage in using more than three rangefinders, so that they would not all have
to lie within a plane that cuts the reflector. The performance of a 4-rangefinder
system looks much superior to that of a 3-rangefinder system. The 4-rangefinder
configuration (A4, C,C’, D) would apparently achieve our goal of 100 um accuracy
for surface setting, given range measurements good to 50 um.

1 Greg Morris provided the coordinates of the rangefinder locations shown in Figure 3 of Payne’s
memorandum. It might be useful for others to be aware that the structural engineering group, in
their computer-aided design (CAD) work for the GBT, measure distances in inches, in a rectangular
(z',9',2')-coordinate system whose origin is near the middle of the backup structure. The (z', z')-
plane faces the backup structure, and the y'-axis is directed skyward. Coordinate calculations
provided by the CAD programs can be converted to the vertex-centered coordinate system of my
memorandum via:

z cos§ 0 —sind z! 2278.5315
y = 0.0254 0 1 0 z! + 0 g
Z / (meters) sind 0 cosé y (inches) 549.4567

where § = arctan(9/20).
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In Section III of this memo I concentrated on the problem of surface metrology.
However, the methodology for error analysis developed in Section II would apply
also to our other major problem—pointing.

I have outlined here two solution schemes.? In considering the surface metrology
problem, I believe that the error estimates o4 are of primary interest, because the
surface actuators will act in directions approximately normal to the surface. For
the pointing problem, the errors (05, 0y,0;) in all the Cartesian components of the
observed point P would be of interest.

I have assumed that the r.m.s. accuracy o of the rangefinding measurements
would be independent of distance; of course that will not be the case in practice.
Combined with the systematic increase of o5 with radial distance r (see Fig. 8), this
could be a source of difficulty. (And do we know the consequences of random surface
errors whose r.m.s. levels have a systematically varying spatial dependence?)

Besides providing the error estimates that were discussed above, the program
given in the Appendix also provides estimates of the error of each parameter assum-
ing prior knowledge of one or both of the other parameters. For example, it prints
O5|(zo,y0)» the error in estimating 6 if zo and yp are (precisely) known a priori. I
may later work on the problem of estimating o5 for the case in which there is some
approzimate prior knowledge of z¢ and yo. It might be that structural inhibitions
of lateral motions of the surface would help us out, because they would translate
into constraints on z¢ and yo. (Because of this, the singularity problem evident in
Figures 2 and 3, for the 3-rangefinder configuration, might, in reality, vanish.)

2The errors in estimating 6, zo, and yp could have been obtained by first finding the covariance
matrix of the estimates of the coordinates z, y, and z of P, and then applying the usual formula
for error propagation (Hald, Statistical Theory with Engineering Applications, p. 118):

v~ (L) v+ (L) v+ (2) ve

oz dy
af of of of of of
2— =V 2—~ —=V(=, 2—=——=—V(y,2).
t oz dy (,9) + 0z 0z (2,2)+ dy Oz (v2)

I chose instead to re-parametrize, and solve directly for (6, zo, yo) and for estimates of (a4, 054, Ty, ).
The contour plots of ¢z, and gy, differ slightly from those of ¢; and oy because of the slight
difference in the definitions of the parameters (zo,yo) and (z,y). Supposing that one is interested
only in the single parameter §, one might ask why it is necessary to estimate two additional
parameters. The answer is that it is not possible to measure the distance of a point from the
paraboloid without also knowing, at least implicitly, along which surface normal that distance
should be measured; this implies a knowledge of all our parameters: zo, o, 7, ¥, and z, in addition
to 6.

(2]
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Figure 1. Possible locations for the rangefinders that would be used to survey the primary
reflector. Points A and D are on the main feed arm, B and C are on the nearer feed arm support
leg, and B’ and C’ are on the opposite leg. Payne’s memo proposed locating rangefinders at A,
B, and B’. In this memo, I consider three cases: (1) Payne’s arrangement (A, B, B'); (2) the same
arrangement, augmented by one additional rangefinder, — (A4, B, B', D); and (3) the configuration
(A, C,C', D).
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Figure 2. Contour plots of the standard errors o, oy, and o, as functions of (z,y), for the
configuration (A, B, B') of three rangefinders. The circles represent the (z, y)-projection of the rim
of the reflector. The contour interval is 5 pm.


lutley
Pencil

lutley
Pencil

lutley
Pencil

lutley
Pencil

lutley
Pencil

lutley
Pencil

lutley
Pencil


60

Figure 3. Contour plots of the standard errors o4, 05,, and oy,, as functions of (z,y), for the
configuration (A4, B, B’) of three rangefinders. The contour interval is 5 pm.
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Figure 4. Contour plots of the standard errors oz, oy, and ¢, as functions of (z,y), for the
configuration (A, B, B’, D). This configuration is like that of Figures 2 and 3, but angmented by
one additional rangefinder on the main feed arm. The contour interval is, again, 5 pm.

9


lutley
Pencil

lutley
Pencil

lutley
Pencil

lutley
Pencil


i i

20 40

100

Figure 5. Contour plots of the standard errors o, Os4, and oy,, as functions of (z,y), for the
configuration (A, B, B', D). The contour interval is 5 pm.
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Figure 6. Contour plots of the standard errors o5, oy, and o, as functions of (z,y), for the
configuration (A,C,C’, D). This counfiguration is like that of Figures 4 and 5, but with lower
positions of the rangefinders on the feed arm support legs. The contour interval is 5 pm.
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Figure 7. Contour plots of the standard errors o, 0zo, and oy,, as functions of (z,y), for the
configuration (A, C,C’, D). The contour interval is 5 pm.
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Figure 8. An enlarged contour plot of the standard error o, as a function of (z,y), for the
configuration (4,C, C', D).
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