April 23, 1986

MEMORANDUM:

TO: A. Dowd FROM: S. Weinreb A. (Usune)

SUBJECT: Theoretical RMS for Hybrid Correlator

I have computed the theoretical spectral fluctuation in terms of the weighting factor, A, defined in Technical Note #165. The technical note also defined a weighting variable B, which we have absorbed into one weighting variable, A', used in the program as,

If A' < 0	A = A'	B = 0
If A' ≥ 0	A = A'	B = 2A - 1

Also note that Table I of Technical Note #165 has errors. Column 1, Uniform Weight, should read from top to bottom: 1, 0, 1, 1.

The rms fluctuation can be calculated from equation 66 of my thesis which, unfortunately, also contains an error (only one I have found in 23 years!); the left hand side should read $\alpha^2/\Delta f$, instead of $\alpha/\Delta f$. The steps are:

$$\frac{\alpha^2}{\Delta f} = \int_{-\infty}^{\infty} w^2(\tau) d\tau - \sum_{n=-(N-1)}^{N-1} w^2(n) \cdot \Delta \tau$$

 $w(n) = A + (1-A) \cos(\pi n/N)$

$$\sigma = \frac{2\alpha\beta}{\sqrt{\Delta f \cdot T}} \qquad \beta = 1.235$$

The summation can be evaluated to give

$$\mathbf{o} = \frac{2.47}{\sqrt{1}} \sqrt{N(3A^2 - 2A + 1) - 4A^2 + 4A - 1}$$

The above is a convenient form since it does not involve the half-power resolution, Δf , which is also a function of A.

The difference in rms fluctuation between standard and modified transforms will be small and should be ignored; use |A'| in the above expression in place of A.

The quantity you should plot in the program is σ_{χ}/σ , where σ_{χ} is the experimental rms, on a default scale of 0 to 2.

Some typical numerical values for $fs = 10^8$, N = 32, and T = 60 sec are:

A	σ	α	Δſ	Peak Sidelobe
			MHz	
1 •5	253 x 10 ⁻⁶ 168 x 10 ⁻⁶ /56	1.099 0.936	1.91 3.16	- 5.8 dB - 15.7 dB

cc: R. Escoffier

R. Freund

NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia

June 30, 1986 (Corrected)

MEMORANDUM:

TO: A. Dowd

FROM: S. Weinreb

SUBJECT: Theoretical RMS for Hybrid Correlator

I have computed the theoretical spectral fluctuation in terms of the weighting factor, A, defined in Technical Note #165. The technical note also defined a weighting variable B, which we have absorbed into one weighting variable, A', used in the program as,

> If A' < 0 A = |A'| B = 0If $A' \ge 0$ A = A' B = 2A - 1

Also note that Table I of Technical Note #165 has errors. Column 1, Uniform Weight, should read from top to bottom: 1, 0, 1, 1.

The rms fluctuation can be calculated from equation 66 of my thesis which, unfortunately, also contains an error (only one I have found in 23 years!); the left hand side should read $\alpha^2/\Delta f$, instead of $\alpha/\Delta f$. The steps are:

$$\frac{\alpha^2}{\Delta f} = \int_{-\infty}^{\infty} w^2(\tau) d\tau - \int_{n=-(N-1)}^{N-1} w^2(n) \cdot \Delta \tau$$
$$w(n) = A + (1-A) \cos(\pi n/N)$$
$$\sigma = \frac{2\alpha\beta}{\sqrt{\Delta f \cdot T}} \qquad \beta = 1.235$$

The summation can be evaluated to give

$$\sigma = \frac{2.47}{\sqrt{rst}} \sqrt{N(3A^2 - 2A + 1) - 4A^2 + 4A - 1}$$

The above is a convenient form since it does not involve the half-power resolution, Δf , which is also a function of A.

The difference in rms fluctuation between standard and modified transforms will be small and should be ignored; use |A'| in the above expression in place of A.

The quantity you should plot in the program is σ_{χ}/σ , where σ_{χ} is the experimental rms, on a default scale of 0 to 2.

Some typical numerical values for $fs = 10^8$, N = 32, and T = 60 sec are:

A	σ	a	Δſ	Peak Sidelobe
			MHz	
1	253×10^{-6}	1.099	1.91	- 5.8 dB
•5	156 x 10 ⁻⁶	0.936	3.16	- 15.7 dB