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ABSTRACT

We consider the capabilities of current and future large facilities operating at 2 mm to 3 mm wave-
length to detect and image the [CII] 158µm line from galaxies at the start of cosmic reionization,
and into the cosmic ‘dark ages’ (z ∼ 10 to 20). The [CII] line may prove to be a unique tool in
determining spectroscopic redshifts, and galaxy dynamics, for the first galaxies at the end of the
dark ages. We emphasize that the nature, and even existence, of such extreme redshift galaxies,
remains at the frontier of open questions in galaxy formation. In 40 hr, ALMA has the sensitivity
to detect the integrated [CII] line emission from a moderate metallicity, active star forming galaxy
(ZA = 0.2Z�; star formation rate (SFR) = 5M� yr−1), at z = 10 at a significance of 6σ. In 40 hr,
the next-generation Very Large Array (ngVLA) has the sensitivity to detect the integrated [CII] line
emission from a Milky-Way like star formation rate galaxy (ZA = 0.2Z�, SFR = 1M� yr−1), at
z = 15 at a significance of 6σ. Recent studies suggest that the [CII] luminosities increase rapidly with
both metallicity and star formation rate. We perform imaging simulations using a plausible model
for the gas dynamics of disk galaxies, scaled to the sizes and luminosities expected for these early
galaxies. The ngVLA can determine rotation dynamics for active star-forming galaxies (≥ 5 M� yr−1

at z ∼ 15), in reasonable integration times, if they exist. Based on our very limited knowledge of the
extreme redshift Universe, we calculate the count rate in blind, volumetric surveys for [CII] emission
at z ∼ 10 to 20. The detection rates in blind surveys will be slow (of order unity per 40 hr pointing).
However, the observations are well suited to commensal searches on all programs employing the very
wide bands that may be available in the future.
Subject headings: galaxies: formation, radio/FIR lines, dust, Lyman Break; cosmic reionization

1. INTRODUCTION

The most sensitive observations with the largest tele-
scopes at γ-ray through radio wavelengths are now dis-
covering galaxies, AGN, and explosive phenomena in the
redshift range z ∼ 6 to 10, some 940 Myr to 500 Myr
after the Big Bang. This epoch corresponds to ’cos-
mic reionization’, when light from early galaxies and
accreting black holes reionized the neutral intergalac-
tic medium (IGM) that pervaded the post-recombination
Universe. Measurements of the cosmic microwave back-
ground (Planck Collaboration et al. 2016), the Gunn-
Peterson effect and related phenomena in the spectra of
z > 6 quasars (Bañados et al. 2016), the Lyα emission
line properties of z > 6 galaxies (Ouchi et al. 2017), and
most recently, limits to the HI 21cm emission from the
neutral IGM at z > 6 (Parsons et al. 2014; Ali et al.
2015), are narrowing the redshift range for cosmic reion-
ization. It is becoming clear that the z ∼ 6 to 10 range
corresponds to the period during which the IGM transi-
tions from mostly neutral, to highly ionized, driven by
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early galaxy formation (Fan et al. 2006; Robertson et al.
2015; Greig & Mesinger 2017; Dayal et al. 2017).

With the advent of the James Webb Space Telescope
(JWST ) and 30m-class ground-based optical and near-
IR telescopes, as well as implementation of the full fre-
quency range and capabilities of the Atacama Large Mil-
limeter Array (ALMA), we expect this important period
of Universal evolution to be well characterized over the
coming decade.

What lies beyond? As we move toward the middle
of the 21st century, the redshift frontier will push back
to z ∼ 10 to 20, corresponding to the epoch when the
first stars and black holes form, beginning the process of
reionization, thereby ending the cosmic Dark Ages (Loeb
& Furlanetto 2013).

In this paper we explore the possibility of studying
z = 10 to 20 galaxies using the 158µm fine structure
line of ionized Carbon with existing and future facilities
operating at mm wavelengths. Specifically, we consider
the capabilities of the ever-improving ALMA, as new re-
ceiver bands open the relevant redshift windows on the
[CII] line, in particular in the z ∼ 10−15 range. Pushing
even further out, to z ∼ 15−20, we consider the capabili-
ties of the ‘Next Generation Very Large Array’ (ngVLA)
– a facility being considered for 2030 and beyond. The
ngVLA takes the next order-of-magnitude leap in sensi-
tivity and resolution relative to the current cm and mm
facilities, required to study these first galaxies (Carilli et
al. 2015; McKinnon et al. 2016).

The z ∼ 15 Universe is at the edge of our current un-
derstanding. A handful of theoretical studies have spec-
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ulated on the cosmic star formation rate (SFR) density
at these redshifts, in the context of early reionization
(Mashian et al. 2016; Duffy et al. 2017; Chary & Pope
2010; Dayal et al. 2014; Yue et al. 2015). The main dif-
ference with lower redshift galaxy formation scenarios
is probably related to lower dynamical masses charac-
terizing earlier structures. This fact makes them much
more susceptible to supernova feedback which could par-
tially or totally suppress their star formation via gas ejec-
tion and heating. In addition, radiative feedback due to
photo-ionizing radiation emitted by nearby sources in-
creases the Jeans length in the intergalactic medium,
therefore hampering the formation of the smallest galax-
ies with circular velocities below ≈ 50 km s−1 (Yue et al.
2016; Castellano et al. 2016). All these effects become
increasingly important towards higher redshift.

Existing constraints on extreme redshift galaxies are
poor, based on extrapolation of the few galaxies and
AGN known at z ∼ 7 to 8, and the even fewer galaxy
candidates at z ∼ 8 to 11. An encouraging observation is
the indication of a relatively mature interstellar medium
(ISM; dust and metals), in a few of the extreme redshift
sources discovered to date. For instance, the most dis-
tant quasar currently known is at z = 7.5, with a host
galaxy that has been detected in both dust and [CII]
158µm emission (Bañados et al. 2017; Venemans et al.
2017).

Considering star forming galaxies at extreme redshifts,
a very recent result is the detection of the dust continuum
and [OIII] 88µm fine structure line emission from a candi-
date galaxy at z = 8.4 (Laporte et al. 2017). The galaxy
is lensed modestly (µ ≈ 2), with an intrinsic star forma-
tion rate of 20M� yr−1, a stellar mass of 2×109M�, and
a dust mass of 6 × 106M�. The star formation rate to
stellar mass ratio places this galaxy more than an order of
magnitude above the standard ‘main sequence’ for star-
forming disk galaxies in the nearby Universe. The most
extreme redshift candidate remains the z ∼ 11 galaxy of
Oesch et al. (2016). If the source is at the stated redshift,
the stellar mass is ∼ 109M�, and the star formation rate
is 24M� yr−1. While encouraging, observations remain
sparse and uncertain, and the most basic questions re-
main on the nature, and even existence, of galaxies at
z ∼ 15.

Given the uncertainty in our knowledge of galaxies at
extreme redshifts, in this paper we focus on a few simple
of questions: if such extreme redshift galaxies exist, what
kind of facility is required to detect, and possibly image,
the [CII] 158µm line emission? How do the prospects
depend on basic galaxy properties, such as metallicity
and star formation rate? Based on what little we know
of galaxy demographics at very early epochs, what kind
of numbers can we expect in blind cosmological spectral
deep fields? We do not consider lensing as a tool, but
make the obvious point that lensing can only help go to
fainter galaxies (e.g., Gullberg et al. 2015)

The paper is organized as follows: In §2 we describe
the importance of the [CII] 158µm fine structure and its
promise as a way to identify and characterize galaxies
at z & 10. Then, in §3 we describe existing and future
telescope capabilities to detect such high-z galaxies. Our
results and the implications are presented and discussed
in §4. Finally, our main conclusions are then summa-

rized in §5. All calculations are made assuming a Hub-
ble constant H0 = 71 km s−1 Mpc−1 and a flat ΛCDM
cosmology with ΩM = 0.27 and ΩΛ = 0.73.

2. WHY THE [CII] 158µM LINE?

As we continue to push observations to more and more
distant galaxies, the standard rest-frame optical and UV
spectral lines used historically to determine redshifts
move through the optical into the near-IR windows. At
z > 10, the Lyα line redshifts to an observing wave-
length λ ≥ 1.3µm, and becomes increasing difficult, or
impossible, to observe from the ground. Moreover, even
in Space, the Lyα line may be problematic due to the
strong resonant damping wings of Lyα absorption by the
pervasive neutral IGM at the end of the Dark Ages (Fan
et al. 2006).

The [CII] 158µm line is the brightest of all spectral
lines from star-forming galaxies at far-infrared wave-
lengths and longer, typically by an order of magnitude,
in terms of integrated luminosity, carrying between 0.1%
to 1% of the total far IR luminosity of star forming
galaxies (Stacey et al. 1991). The [CII] fine structure
line traces both neutral and ionized gas in galaxies, and
is the dominant coolant of star-forming gas in galax-
ies (Pineda et al. 2013; Velusamy et al. 2015; Langer et
al. 2014). Moreover, while the line is only visible from
space in the nearby Universe, it becomes easier to observe
with increasing redshift, moving into the most sensitive
bands of large ground based millimeter telescopes, such
as NOEMA7, and the ALMA8.

The last few years have seen an explosion in the num-
ber of [CII] detections at high redshift, including high
resolution imaging of the gas dynamics on kpc-scales in
distant galaxies. The [CII] line is now routinely detected
in both AGN host galaxies and in more normal star-
forming galaxies at z ∼ 5.5 to 7.5 (Willott et al. 2015;
Jones et al. 2017; Pentericci et al. 2016; Capak et al. 2015;
Maiolino et al. 2015; Venemans et al. 2016; Bañados et
al. 2017; Carilli & Walter 2013; Bradač et al. 2017; Riech-
ers et al. 2013, 2017; Watson et al. 2015; Gullberg et al.
2015; Strandet et al. 2017; Decarli et al. 2017; Venemans
et al. 2017).

Another important characteristic of the [CII] 158µm
line is that the ratio of [CII] luminosity to far-IR dust
continuum luminosity increases with decreasing metallic-
ity (Pineda et al. 2013). The simple point is that, once
even a small amount of Carbon is present, it becomes the
dominant gas cooling line, hence balancing the heating
by star formation.

Considering emission line strength relative to the dust
continuum emission and the broad band sensitivity, the
[CII] line to continuum ratio (in terms of flux density),
for z ∼ 6 galaxies, has been observed to be between 10
and 50 (Willott et al. 2015; Capak et al. 2015; Pentericci
et al. 2016). The bandwidth for the line will be limited
to the line width, of order 100 km s−1, or some 40 MHz
at 110 GHz observing frequency. Modern spectrometers
are achieving tens of GHz bandwidth, so the sensitivity is
roughly 10001/2 better in the dust continuum, or a factor
30. Hence, the detection capabilities might be compara-
ble for the line and continuum. However, we focus on

7 http://iram-institute.org/EN/noema-project.php
8 http://www.almaobservatory.org



NGVLA MEMO 15: Galaxies into the Dark Ages 3

the [CII] line and not dust continuum for the following
reasons. First, the formation of dust within 500 Myr of
the Big Bang remains highly uncertain, certainly not via
mass loss from evolved AGB stars (Micha lowski et al.
2010; Dwek 2014; Marassi et al. 2015; Schneider et al.
2015). Carbon is an α element, and hence rapid ISM
enrichment from the first generation of massive stars is
plausible on timescales ≤ 100 Myr. And second, the goal
is not just to detect the galaxy, but to determine its red-
shift, and possibly the dynamics of the first galaxies.

2.1. [CII] Luminosity, Metallicity, SFR, Redshift
Relations

As a predictor for the [CII] 158µm luminosity from
early galaxies we use the Vallini et al. (2015) relationship
(their equation 12). This theoretical and observational
analysis is the most extensive consideration of the rela-
tionships between star formation rate, galaxy metallicity,
and [CII] luminosity to date. We adopt a few represen-
tative galaxy characteristics, including the main param-
eters of: star formation rate, metallicity, redshift, and
[CII] luminosity, and compare these to the capabilities
of the given facilities. We emphasize that the detailed
relationship between [CII] 158µm luminosity and star
formation rate is complex, and remains an area of ac-
tive debate in the literature (Dias-Santos et al. 2017; De
Looze et al. 2014).

One of the chief unknowns is the metallicity of very
early galaxies. The obvious assumption would be low
metallicity. However, there is growing evidence for rapid
build-up of metals in the early Universe, at least in the
denser regions of active structure formation. Quasars
are seen with super-solar metallicity to z ≥ 6 (Juarez
et al. 2009). Likewise, there are galaxies, and galaxy
candidates, with well developed ISM characteristics, as
seen through dust, CO, and atomic fine structure line
emission, at z ∼ 7 to 8.4 (Bañados et al. 2017; Ven-
emans et al. 2016, 2017; Laporte et al. 2017; Riechers
et al. 2017; Watson et al. 2015). The most likely sce-
nario is that the very early Universe is highly inhomoge-
neous on sub-Mpc-scales, with the densest regions build-
ing up metals quickly, and lower density regions remain-
ing pristine (Wilkins et al. 2017). Consequently, in the
present analysis we investigate a similarly wide metal-
licity range to that used in Vallini et al. (2015), i.e.,
ZA ∼ 0.04, 0.2, and 1.0Z�.

3. TELESCOPES

In the following section we consider the relevant capa-
bilities for the Atacama Large Millimeter Array, and the
planned Next Generation Very Large Array to detect the
[CII] 158µm line at z & 10 (see Table 1).

3.1. ALMA

We assume that all the ALMA bands will be com-
pleted. In this case, the relevant bands are 3, 4, and
5, corresponding to frequencies of 84 − 116 GHz, 125 −
163 GHz, and 163− 211 GHz, respectively. These bands
then cover the [CII] line (1900.54 GHz rest frequency),
between z = 10 and 20, almost continuously. There is a
gap due to atmospheric O2 absorption at 118 GHz with
a width of a few MHz, and a second strong atmospheric
water line at 183 GHz, with about twice the width. The

TABLE 1
Facilities

Facilities Redshifts Frequencies rmsa Bandwidth
(GHz) (µJy beam−1) (GHz)

ngVLA 15 − 20 116 − 90 2.0 40
ALMA 10 − 15 173 − 116 21 8 (32)

a rms per channel in 40 hr and 100 km s−1 channel.

maximum frequency we consider is 173 MHz. The cur-
rent bandwidth for ALMA is 8 GHz, although an increase
to 32 GHz is being considered as a future development.

For ALMA sensitivity, we employ the ALMA sensitiv-
ity calculator, under good weather conditions (3rd oc-
tile), with 50 antennas. For the sake of illustration, we
adopt a fiducial line width of 100 km s−1 (see below), an
integration time of 40 hr, and a nominal observing fre-
quency of 110 GHz. In this case, the system temperature
is Tsys ≈ 75 K, and the rms sensitivity per channel is
21 µJy beam−1 channel−1. Adopting the best weather
(1st octile), only decreases Tsys to ≈73 K. The sensitiv-
ity of the array degrades with increasing frequency, due
to changing system temperature and system efficiency.
However, the line width also increases with frequency, in
terms of MHz for a fixed velocity width. These factors
roughly offset over the frequency range in question, im-
plying comparable sensitivity across the frequency range
to within 10%. For simplicity, we adopt the value at
110 GHz. Lastly, we note that ALMA has multiple con-
figurations, all of which are designed to achieve a roughly
Gaussian synthesized beam shape for natural weighting
of the visibilities (= optimal sensitivity). We assume that
the ALMA array chosen is optimized for signal detection
of the integrated emission from the galaxies.

3.2. A Next-Generation VLA

The ngVLA is being considered as a future large radio
facility operating in the ∼ 1.2 − 116 GHz range9. The
current design involves ten times the effective collect-
ing area of the JVLA and ALMA, with ten times longer
baselines (∼300 km) providing milliarcsecond resolution,
plus a dense core on a 1 km-scale for high surface bright-
ness imaging. The ngVLA opens unique new parameter
space for imaging thermal emission from cosmic objects
ranging from protoplanetary disks to distant galaxies, as
well as unprecedented broad band continuum polarimet-
ric imaging of non-thermal processes (McKinnon et al.
2016; Carilli et al. 2015).

We employ the “Southwest” configuration – one of the
proposed configurations for the ngVLA (Carilli et al.
2015, Greisen, Owen, & Carilli in prep). This array has
300 antennas distributed across New Mexico, Chihuahua,
and Texas. The array includes 40% of the antennas in a
core of diameter ∼ 1 km, centered on the VLA site. Then
some 30% of the antennas out to VLA A-array baselines
of 30 km, and the rest to baselines as long as 500 km, into
Northern Mexico and Texas to enable AU-scale imaging
of protoplanetary disks in nearby star forming regions.

For the ngVLA noise calculation, we adopt the inter-
ferometric radiometer equation (Thompson et al. 2017),
using an 18 m diameter antenna, with 70% efficiency,

9 https://science.nrao.edu/futures/ngvla
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80 K system temperature, a 40 hr observation, and a
100 km s−1 channel width. We assume observations
from 90 − 115 GHz, implying a redshift range for [CII]
of z ∼ 15 to 20. The ngVLA bandwidth will cover
this entire range instantaneously. Under these assump-
tions, we calculate a naturally-weighted noise level of
1.3µJy beam−1 channel−1.

While the issue of reconfiguration of the ngVLA re-
mains open, for this exercise we conservatively assume
a non-reconfigurable array. The current design of the
ngVLA has a very non-uniform antenna distribution.
The naturally-weighted beam for this centrally con-
densed distribution leads to a PSF with a high resolu-
tion core of a few mas width at 90 GHz, plus a broad,
prominent pedestal or plateau in the synthesized beam
with a response of ∼ 50% over ∼ 1′′ scale. The goal in
imaging is to adjust the relative weighting of the data on
different baselines lengths to obtain the best the sensitiv-
ity, while maintaining a well behaved synthesized beam
(point spread function), relative to expected source sizes
(likely a few kpc, or 0.′′1 to 1′′). In our array simulations
below, we find that such a compromise can be reached
on angular scales relevant to the expected source sizes
(∼ 0.′′2 to 0.′′4), with a loss of about a factor ∼ 1.5 in sen-
sitivity relative to natural (optimal) weighting (Carilli et
al. 2015).

3.3. Simulations and Galaxy Parameters

For the purpose of estimating the sensitivity of the
ngVLA for realistic observations, and to explore the
imaging capabilities in the event of the discovery of any
relatively luminous sources, we have employed the CASA
simulation tools(Carilli et al. 2015, 2017), developed for
the ngVLA project10. We simulate a 40 hr observation,
made up of a series of 4 hr scheduling blocks around tran-
sit.

For imaging, we employ the CLEAN algorithm with
Briggs weighting. We adjust the robust parameter, the
(u, v)-taper, and the cell size, to give a reasonable synthe-
sized beam and noise performance. Our target resolution
is ∼ 0.′′4 for detection, and ∼ 0.′′2 for imaging. The latter
corresponds to 0.6 kpc physical, at z = 15.

We adopt as a spatial and dynamical template, the
observed CO 1-0 emission from the nearby star-forming
disk galaxy, M 51. M 51 is one of the best studied galax-
ies in cool gas dynamics (Helfer et al. 2003; Schinnerer
et al. 2013) with a total observed line width of about 150
km s−1, and a disk radius in CO of about 5 kpc. We
assume that rotational dynamics is the same for all gas
constituents (e.g., CO or [CII]). We also arbitrarily re-
duce the physical size of the disk by a factor three, with
the idea that very early galaxies are likely smaller than
nearby galaxies. Again, this exercise is for illustrative
purposes, and the input model is just a representative
spatial/dynamical template for a disk galaxy, with the
relevant parameters being size, velocity, and luminosty.
We employ the publicly available BIMA SONG CO 1-
0 data cubes (Helfer et al. 2003), as the starting point
of the models. These data have high spatial resolution
(37 pc) and excellent signal to noise.

10 https://science.nrao.edu/futures/ngvla/documents-
publications

We then adjust the line luminosity per channel per
beam, to achieve a given integrated [CII] 158µm lumi-
nosity at a given redshift. The predicted luminosities as
a function of basic galaxy properties are discussed in the
following section.

4. RESULTS

In this section we present the results of our analysis to
both detect and characterize z & 10 galaxy candidates
using ALMA and the ngVLA, as well as searching for
such high-z sources via their [CII] emission.

4.1. Spectroscopic Confirmation of z & 10 Candidates

An obvious application of the [CII] 158µm line search
will be to determine spectroscopic redshifts for near-IR
dropout candidate galaxies at z ∼ 10 to 20. Such spec-
troscopic verification using [CII] may prove to be fun-
damental to the study of the earliest galaxies, since de-
termining spectroscopic redshifts using the Lyα line in
the near-IR may be impossible, even from space, due to
the strong resonant damping wings of Lyα absorption
by the neutral IGM, while other standard rest frame UV
and optical lines redshift into the less sensitive mid-IR
bands. The metallicity of these galaxies remains an open
issue, but on the positive side, the galaxies most likely
to be first discovered as near-IR dropouts by JWST, ei-
ther in targeted deep fields or serendipitously, will be the
most prodigiously star-forming galaxies. These will then
be the easiest to detect with the ngVLA and ALMA in
their [CII] emission.

We start with the relationship between the [CII] ve-
locity integrated line flux, in the standard flux units of
Jy km s−1, versus redshift. We adopt a metallically of
ZA = 0.2Z�, and star formation rates of 1M� yr−1 and
5M� yr−1. Figure 1 shows the predicted [CII] line flux
versus redshift for the two models, along with the 1σ sen-
sitivity of ALMA and the ngVLA. Again, we note that
for ALMA we adopt optimal (naturally weighted) sensi-
tivity, assuming an appropriate configuration is used for
detection. For the ngVLA, we have degraded the sensi-
tivity by a factor 1.5 from optimal, due to requirements
of visibility weighting to obtain a reasonable PSF (see
section 3.2).

In 40 hr, the ngVLA will be able to detect the in-
tegrated [CII] line emission from moderate metallicity
and star formation rate galaxies (ZA = 0.2, SFR =
1M� yr−1), at z = 15 at a significance of 6σ. This sig-
nificance reduces to 4σ at z = 20.

In 40 hr, ALMA will be able to detect the integrated
[CII] line emission from a higher star formation rate
galaxy (ZA = 0.2Z�, SFR = 5M� yr−1), at z = 10
at a significance of 6σ. This significance reduces to 4σ at
z = 15. ALMA will be hard-pressed to detect a moder-
ate metallicity (ZA = 0.2Z�), lower star formation rate
(1M� yr−1) galaxy, requiring 1000 hr for a 5σ detection
of the velocity integrated line flux, even at z = 10.

We next consider dependence on metallicity. Figure 2
shows the relationship between [CII] luminosity (in Solar
units), to star formation rate, for three different metallic-
ities: ZA = 0.04, 0.2, and 1.0Z�, for a galaxy at z = 15.
Again shown are the ALMA and ngVLA sensitivities in
40 hr, 100 km s−1 channels. The Vallini et al. (2015)
model has the [CII] luminosity as a strong function of



NGVLA MEMO 15: Galaxies into the Dark Ages 5

Fig. 1.— [CII] 158µm velocity integrated line flux versus redshift
for galaxies with star formation rates of 1M� yr−1 and 5M� yr−1,
and metallicity of 0.2Z�, based on the relationship given in Equa-
tion 12 of Vallini et al. (2015). The rms sensitivity in a 100 km s−1

channel and 40 hr integration is shown for both ALMA and the
ngVLA.

Fig. 2.— [CII] 158µm line luminosity versus star formation rate
and metallicity, based on the relationship given in Equation 12 of
Vallini et al. (2015). Three different metallicities are shown. Also
shown is the rms sensitivity of ALMA and the ngVLA for a galaxy
at z = 15, assuming a 100 km s−1 channel and 40 hr integration.

metallicity. If the gas has Solar metallicity, the ALMA
detection threshold (4σ) reduces to a galaxy with a star
formation rate of 2.5M� yr−1 (compared to 5M� yr−1

for ZA = 0.2), while that for the ngVLA reduces to
0.4M� yr−1 (compared to 1M� yr−1 for ZA = 0.2).
Conversely, for a low metallicity galaxy of ZA = 0.04Z�,
these values increase to 100M� yr−1 and 10M� yr−1, re-
spectively.

Consequently, it appears that ALMA should be able
to spectroscopically confirm drop-out candidate galaxies
forming stars at a rate of a few solar masses per year with
metallicity ≥ 0.2 at z ∼ 10, in reasonable integration
times. The ngVLA pushes this detection limit to z ∼ 15
to 20, for star formation rates of order unity with ZA ≥
0.2. If such galaxies do exist, it seems that ALMA and
the ngVLA are excellent tools to confirm their existence.

4.2. Kinematics of z & 10 Galaxies

We investigate the potential for obtaining kinematic in-
formation from such galaxies using the ngVLA. We start
by considering visibility weighting to obtain a detection
of the integrated emission from a high redshift galaxy
with the configuration of the ngVLA. The imaging is
a complex optimization procedure, balancing the Briggs
robust weighting parameter (Briggs 1995), the Gaus-
sian tapering of the (u, v)-weighting, and the cell size
in the gridding kernel, to approach a reasonable balance
between good sensitivity and the behaviour of the PSF.
Pure natural weighting for the ngVLA leads to a PSF
‘core’ of just a few milliarcseconds due to the 300 km
baselines, which radically over-resolves the emission. See
Carilli (2016) for more details on imaging optimization
using the suite of current tools in CASA.

We have explored a few of the main parameters using
the tools available, with a goal of getting a rough esti-
mate of the loss of sensitivity when imaging with non-
optimal array configurations. We expect the search for
optimal imaging techniques for various goals (simple de-
tection or high resolution imaging), to be a long-term
exercise in interferometric imaging, with the advent of
the complex array configurations envisioned for facilities
such as the ngVLA and the Square Kilometer Array. Our
current estimates of sensitivity are likely conservative,
depending on future algorithmic development.

For reference, Figure 3 shows results for the input
galaxy model we use to explore the imaging parameters,
as discussed in Section 3.3. In this case, we have im-
aged the source with no noise added, and using imaging
parameters that result in a PSF with a FWHM = 0.′′1,
in order to show the intrinsic properties of the model
galaxy. We show both the velocity integrated [CII] emis-
sion, and the intensity weighted mean [CII] velocity. The
model shows spiral arms extending over an area of about
∼ 0.′′4, with the majority of the emission centrally con-
densed bar and nucleus in the inner ∼ 0.′′2.

Figure 4 shows the image of the velocity integrated
[CII] line emission from the ZA = 0.2Z�, and SFR =
1M� yr−1 galaxy, assuming noise appropriate for a 40 hr
observation. We adopt imaging parameters that opti-
mize detection of the integrated emission. The emission
is clearly detected using Briggs weighting with robust
= 1, a Gaussian (u, v)-taper of 0.′′2, and a cell size of
0.′′01. This yields a beam FWHM ∼ 0.′′4 and an rms
of 1.6µJy beam−1 over the 150 km s−1 velocity range (or
about 2µJy beam−1 at 100 km s−1 channel−1, compared
to 1.3µJy beam−1 for natural weighting of the visibili-
ties). The result is about a 5.5σ detection of the inte-
grated emission from Gaussian fitting.

We next consider imaging of the higher star formation
rate model, with ZA = 0.2Z�, and 5M� yr−1 galaxy
for a 40 hr observation. Given the brighter signal, we
investigate whether information on the gas dynamics can
be recovered with high resolution imaging. We employ
Briggs weighting with robust = 0.5, a Gaussian (u, v)-
taper of 0.′′15, and a cell size of 0.′′01. This yields a beam
FWHM ∼ 0.′′2. We synthesize channel images at 20 km
s−1 channel−1, for which the rms noise is about 4.5µJy
beam−1. We also generate a velocity integrated [CII]
image averaging over the full width of the line.

The resulting spectrum, integrated over the source
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Fig. 3.— Left: A simulated image of the velocity integrated [CII] 158µm emission from a z = 15 galaxy with a star formation rate of
5M� yr−1, and a metallicity of 0.2Z�. In this case, no noise is added to the simulation, but the weighting applied to the visibilities was set
to achieve a synthesized beam of FWHM = 0.′′1, to obtain a better view of the intrinsic gas distribution of the model. Left is the velocity
integrated line emission. Right: The intensity weighted mean [CII] velocity (moment 1).

Fig. 4.— A simulated image of the velocity integrated [CII]
158µm emission from a z = 15 galaxy with a star formation
rate of 1M� yr−1, and a metallicity of 0.2Z�, assuming for a
40 hr observation with the ngVLA. The contour levels are -3.2,-
1.6, 1.6, 3.2, 4.8, 6.4µJy beam−1. The rms noise on the image is
1.6µJy beam−1, and the synthesized beam FWHM is 0.′′38.

area, is shown in Figure 5. The red dash line is the
simulated spectrum at 20 km s−1 channel−1 with noise
added, while the blue line shows the integrated line
emission made from data with no noise added, and at
10 km s−1 channel−1, as a reference spectrum (Fig 3).
Clearly, the ngVLA can make a high signal to noise detec-
tion of the emission from this galaxy, with an integrated
significance for the detection of about 20σ.

From the channel images we generate the intensity
weighted mean velocity image (moment 1), using surface
brightnesses above 2σ. The result is shown Figure 6.
The velocity integrated intensity, and mean velocity, im-
ages can be compared to Figure 4, which again shows
the same model, but with noiseless (u, v) data, and at
higher spatial resolution. Clearly, at this signal to noise
and resolution we cannot recover the detailed structure
of the gas, such as the spiral arm features. However, the
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Fig. 5.— The red dashed line shows a simulated spectrum of
the spatially integrated [CII] 158µm emission from a z = 15
galaxy with a star formation rate of 5M� yr−1, and a metallic-
ity of 0.2Z�, assuming for a 40 hr observation with the ngVLA, at
20 km s−1 channel−1. The blue line shows the same spectrum, but
with no noise added and at 10 km s−1 channel−1.

overall velocity gradient is recovered, including the max-
imum and minimum velocity of the gas, as well as the
north-south orientation and extension of the major axis.

4.3. The Potential for Blind Searches of z & 10
Galaxies

Another application for the [CII] line will be blind cos-
mological deep fields. The advent of very wide band-
width spectrometers has led to a new type of cosmologi-
cal deep field, namely, spectral volumetric deep fields, in
which a three dimensional search for spectral lines can be
made, with redshift as the third dimension (e.g., Walter
et al. 2016).

To this aim we consider two predictions for the number
density of galaxies at these very high redshifts from the
recent literature. These predictions employ very different
methodologies. Again, we point out that the current
observational constraints are extremely limited. Both
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Fig. 6.— Left: A simulated image of the velocity integrated [CII] 158µm emission from a z = 15 galaxy with a star formation rate of
5M� yr−1, and a metallicity of 0.2Z�, assuming for a 40 hr observation with the ngVLA. Left is the velocity integrated line emission.
The contour levels are -6, -3, 3, 6, 9, 12, 15, 18, 21µJy beam−1. The rms noise on the image is about 1.8µJy beam−1, and the synthesized
beam FWHM is 0.′′22. Right: The intensity weighted mean [CII] velocity (moment 1).

models employ a Salpeter IMF from 0.1 to 100 M�.
First, we consider the galaxy number counts of Chary

& Pope (2010, CP10). These galaxy counts are based
on backward-evolving models for the infrared luminosity
function of Chary & Elbaz (2001), anchored by a vari-
ety of observational data including the deepest Spitzer
24µm imaging from the GOODS fields, the fraction of
the far-infrared background light resolved by Spitzer and
Herschel, spectroscopic redshifts of Spitzer and Herschel
sources in the deep fields, and are consistent with the
number counts as well as P (D) analysis from deep Her-
schel observations.

Second, we employ the calculation of high redshift
galaxy formation of Dayal et al. (2014, Dayal14). This
model aims at isolating the essential physics driving early
galaxy formation via a merger-tree based semi-analytical
model including the key physics of star formation, su-
pernova feedback and the resulting gas ejection, and the
growth of progressively more massive systems (via halo
mergers and gas accretion). It involves only two free pa-
rameters, the star formation efficiency threshold, f∗, and
the fraction of SN energy that drives winds, fw. The
key premise is that any galaxy can form stars with a

maximal effective efficiency, feff∗ , that provides enough
energy to expel all the remaining gas, quenching further

star formation. The value of feff∗ = min[f∗, f
ej
∗ ] where

fej∗ is the star-formation efficiency required to eject all
gas from a galaxy. Thus, low-mass galaxies form stars at
a more limited efficiency than massive galaxies.

The model has been extensively validated against avail-
able high-z data. For example, it reproduces extremely
well both the slope and amplitude of the UV LF from
z = 5 to z = 10 at the same time providing a physical
explanation for the slope evolution in terms of a faster as-
sembly of galaxies at earlier redshifts. Dayal14 also pre-
dicts that the bright-end slope of the UV LF should be
flatter than the steep drop-off implied by the Schechter
function, and actually closer to the slope of the underly-
ing dark matter halo mass function. This, in turn, might
be interpreted as a limited impact of quasar feedback at
high redshifts.

The two models predict the cummulative co-moving
number density of star forming galaxies above a given
star formation rate as a function of redshift. We show
the results in Figures 7a and 7b for the CP10 and Dayal14
models, respectively.

The co-moving number densities can be turned into the
number of observed galaxies in a given integration time,
bandwidth, and field of view, using the sensitivities of the
ngVLA and ALMA. In section 4.1, we calculated that, in
40 hr for a galaxy with ZA = 0.2, the ngVLA can detect
a SFR = 1M� yr−1 galaxy at 6σ significance between
z = 15, reducing to 4σ at z = 20. ALMA can detect a
SFR = 5M� yr−1 galaxy at 6σ at z = 10, reducing to
4σ significance between z = 15. We use these two star
formation rates for demonstrative purposes.

Figure 8 shows the number of galaxies per arcmin2 per
unit redshift for SFR ≥ 1M� yr−1 and 5M� yr−1, for
the CP10 and Dayal14 models, respectively. The models
show markedly different behaviour. The Dayal14 model
has much steeper redshift evolution. The Dayal14 model
also has a much faster drop in density with increasing
SFR. Perhaps fortuitously, at 1M� yr−1, the areal den-
sities for the two models cross at z ∼ 15.

The ngVLA can observe the 90 GHz to 116 GHz band-
width simultaneously, corresponding to z = 20 to 15.
We also consider just the number of galaxies between
z = 15 and 16. ALMA has receivers that will cover from
z = 10 to 15, or frequencies from 173 GHz to 116 GHz,
but different receivers are needed over the full redshift
range. Currently, the bandwidth is limited to 8 GHz.
We consider an 8 GHz blind search in the Band 5 from
165 GHz to 173 GHz (z = 10.5 to 10), and one covering
most of Band 4 with a 32 GHz bandwidth, from 126 GHz
to 158 GHz (z = 11 to 14).

The field of view of the ngVLA at the mean frequency
of 100 GHz is ∼ 0.38 arcmin2, adopting the FWHM of
0.70arcmin for an 18 m antenna. The field of view of
ALMA at the mean frequency of 146 GHz is ∼ 0.39
arcmin2, adopting the FWHM of 0.71arcmin for a 12m
antenna.

In Table 2, we tabulate the number of galaxies detected
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TABLE 2
Number of Detections per 40 hr Pointing

Model ngVLA z = 15 to 16 ngVLA z = 15 to 20 ALMAa z = 10 to 10.5 ALMAb z = 11 to 14

CP10, 1 M� yr−1 0.29 1.3 – –
CP10, 5 M� yr−1 0.11 0.48 0.29 0.68

Dayal14, 1 M� yr−1 0.36 0.64 – –
Dayal14, 5 M� yr−1 6.9 × 10−4 7.3 × 10−4 2.8 1.4

a Nominal ALMA bandwidth of 8 GHz
b Proposed ALMA bandwidth upgrade to 32 GHz

Fig. 7.— Comoving number density of galaxies vs. star formation
rate and redshift. The upper plot is the model of Chary & Pope
(2010). The lower plot is the Dayal et al. (2014) model.

in [CII] emission per 40 hr integration per frequency tun-
ing, for the ngVLA and ALMA, and for the different
models. For the ngVLA, and for SFR ≥ 1M� yr−1,
the models predict that one to two independent point-
ings will be required to detect one galaxy over the full
redshift range, on average. For the CP10 model, these
sources have a broader redshift distribution, with 22% of
the sources at z = 15 to 16. For the Dayal14 model, the
majority (64%), of the sources are in this lowest redshift
bin.

For ALMA and SFR ≥ 5M� yr−1, the predicted num-
ber of detections differs significantly between models.
For the 8 GHz bandwidth search in Band 5 (z = 10
to 10.5), the CP10 model requires about three point-
ings for a single detection, on average, while the Dayal14

Fig. 8.— Number of galaxies with star formation rates greater
than 1M� yr−1 per arcmin2 per unit redshift, and 5M� yr−1 per
arcmin2 per unit redshift. The upper plot is the model of Chary
& Pope (2010). The lower plot is the Dayal et al. (2014) model.

model has more low redshift, brighter galaxies, with three
sources per pointing expected. For the 32 GHz band-
width search in Band 4 (z = 11 to 14), the values
are roughly two pointings needed for a single detection
for the CP10 model, and one pointing needed for the
Dayal14 model.

Overall, the detection rates in blind surveys will be
slow (of order unity per 40 hr pointing). However, the
observations are well suited to commensal searches on
all programs employing the very wide bands that may
be available in future. Perhaps most importantly, the
very different predictions of the detection rates with re-
spect to redshift and star formation rate for the two mod-
els, both highlights our lack of knowledge of the extreme
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redshift Universe, and implies that the [CII] results may
have great leverage in constraining models of galaxy for-
mation.

As a final note, we point out that blind surveys would
be greatly facilitated by focal plane arrays. This option
is being considered for large interferometric arrays, like
the ngVLA, ALMA, and NOEMA, although it comes at
significant expense.

Large single dish telescopes are also developing large
format focal plane arrays operating in these frequency
ranges that will be relevant for high redshift [CII]
searches. The two single dish telescopes that potentially
will have the sensitivity to detect the modest star for-
mation rate galaxies at z > 10 considered herein are the
Green Bank Telescope (GBT11), and the Large Millime-
ter Telescope (LMT12). These telescopes have compara-
ble sensitivity (within a factor two or better), of ALMA
at 100 GHz. For example, if a wide-band focal plane
array with over 70 elements is deployed at the GBT,
the survey speed would then rival, and possibly surpass,
ALMA in the 90 GHz to 116 GHz band, depending on
bandwidth.

5. CONCLUSIONS

We have considered observing [CII] 158µm emission
from z = 10 to 20 galaxies. The [CII] line may prove
to be a unique tool to determine spectroscopic redshifts,
and galaxy dynamics, for the first galaxies at the end
of the dark ages, such as identified as near-IR dropout
candidates by JWST. We emphasize that the nature, and
even existence, of such extreme redshift galaxies, remain
frontier questions in galaxy formation.

In 40 hr, the ngVLA has the sensitivity to detect the
integrated [CII] line emission from moderate metallic-

ity and (Milky-Way like) star formation rate galaxies
(ZA = 0.2, SFR = 1M� yr−1), at z = 15 at a signifi-
cance of 6σ. This significance reduces to 4σ at z = 20.
In 40 hr, ALMA has the sensitivity to detect the inte-
grated [CII] line emission from a higher star formation
rate galaxy (ZA = 0.2Z�, SFR = 5M� yr−1), at z = 10
at a significance of 6σ. This significance reduces to 4σ
at z = 15. We also consider dependencies on metallically
and star formation rate. Recent studies suggest that the
[CII] luminosity increases rapidly with both metallicity
and star formation rate Vallini et al. (see 2013, 2015).

We perform imaging simulations using a plausible
model for the gas dynamics of disk galaxies, scaled to
the sizes and luminosities expected for these early galax-
ies. The ngVLA will recover rotation dynamics for active
star-forming galaxies (& 5M� yr−1 at z ∼ 15), in rea-
sonable integration times.

Lastly, we adopt two models for very high redshift
galaxy formation, and calculate the expected detection
rate for [CII] emission at z ∼ 10 to 20, in blind,
wide bandwidth, spectroscopic deep fields. The detec-
tion rates in blind surveys will be slow (of order unity
per 40 hr pointing). However, the observations are well
suited to commensal searches on all programs employing
the very wide bands that may be available in future.
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Bañados, E., Venemans, B. P., Decarli, R., et al. 2016, ApJS, 227,

11
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Bradač, M., Garcia-Appadoo, D., Huang, K.-H., et al. 2017, ApJ,

836, L2
Capak, P. L., Carilli, C., Jones, G., et al. 2015, Nature, 522, 455
Carilli, C. L., McKinnon, M., Ott, J., et al. 2015,

arXiv:1510.06438
Carilli, C. L. 2016, Next Generation Very Large Array Memo No.

12 (http://library.nrao.edu/ngvla.shtml)
Carilli, C. L. & Shao, Y. 2017, Next Generation Very Large Array

Memo No. 13 (http://library.nrao.edu/ngvla.shtml)
Carilli, C. L., & Walter, F. 2013, ARA&A, 51, 105
Castellano, M., Yue, B., Ferrara, A., et al. 2016, ApJ, 823, L40
Chary, R.-R., & Pope, A. 2010, arXiv:1003.1731
Chary, R. & Elbaz, D. 2010, ApJ, 556, 562
Decarli, R., Walter, F., Venemans, B. P., et al. 2017, Nature, 545,

457
Dayal, P., Ferrara, A., Dunlop, J. S., & Pacucci, F. 2014,

MNRAS, 445, 2545
Dayal, Pratika, Choudhury, Tirthankar Roy, Bromm, Volker,

Pacucci, Fabio 2017, ApJ, 836, 16
Diaz-Santos, T., Armus, L., Charmandaris, V., Lu, N., Stierwalt,

S. et al. 2017, ApJ, in press (arXiv:1705.04326)
De Looze, I., Cormier, D., Lebouteiller, V., et al. 2014, A&A, 568,

A62

11 http://greenbankobservatory.org/
12 http://www.lmtgtm.org/

Duffy, A. R., Mutch, S. J., Poole, G. B., et al. 2017,
arXiv:1705.07255

Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacks,
Attila; Su, Ting; Benford, Dominic J., 2014, ApJ, 788, 30

Fan, X., Carilli, C. L., & Keating, B. 2006, ARA&A, 44, 415
Greig, B., & Mesinger, A. 2017, MNRAS, 465, 4838
Gullberg, B., De Breuck, C., Vieira, J. D., et al. 2015, MNRAS,

449, 2883
Helfer, T. T., Thornley, M. D., Regan, M. W., et al. 2003, ApJS,

145, 259
Juarez, Y., Maiolino, R., Mujinca, R., Pedani, M., Marinoni, S. et

al. 2009, A&A, 494, L25
Jones, G.C., Willott, C., Carilli, C. et al. 2017, ApJ, in press
Laporte, N., Ellis, R. S., Boone, F., et al. 2017, arXiv:1703.02039
Langer, W. D., Velusamy, T., Pineda, J. L., Willacy, K., &

Goldsmith, P. F. 2014, A&A, 561, A122
Loeb, A., & Furlanetto, S. R. 2013, The First Galaxies in the

Universe, by Abraham Loeb and Steven R. Furlanetto. ISBN:
9780691144917. Princeton, NJ: Princeton University Press,

Mashian, N., Oesch, P. A., & Loeb, A. 2016, MNRAS, 455, 2101
Maiolino, R., Carniani, S., Fontana, A., et al. 2015, MNRAS, 452,

54
Marassi, S., Schneider, R., Limongi, M., et al. 2015, MNRAS,

454, 4250
McKinnon, M., Carilli, C., & Beasley, T. 2016, Proc. SPIE, 9906,

990627
Micha lowski, M. J., Murphy, E. J., Hjorth, J., et al. 2010, A&A,

522, A15
Oesch, P. A., Brammer, G., van Dokkum, P. G., et al. 2016, ApJ,

819, 129
Ouchi, M., Harikane, Y., Shibuya, T., et al. 2017,

arXiv:1704.07455



10 Carilli, Murphy, Ferrara, Dayal

Pallottini, A., Ferrara, A., Gallerani, S., et al. 2017, MNRAS,
465, 2540

Parsons, A. R., Liu, A., Aguirre, J. E., et al. 2014, ApJ, 788, 106
Pentericci, L., Carniani, S., Castellano, M., et al. 2016, ApJ, 829,

L11
Pineda, J. L., Langer, W. D., Velusamy, T., & Goldsmith, P. F.

2013, A&A, 554, A103
Planck Collaboration, Adam, R., Ade, P. A. R., et al. 2016, A&A,

594, A1
Riechers, D. A., Bradford, C. M., Clements, D. L., et al. 2013,

Nature, 496, 329
Riechers, D. A., Leung, T. K. D., Ivison, R. J., et al. 2017,

arXiv:1705.09660
Robertson, B.E., Ellis, R.S., Furlanetto, S., Dunlop, J.S 2015,

ApJ, 802, L19
Stacey, G. J., Geis, N., Genzel, R., et al. 1991, ApJ, 373, 423
Schinnerer, E., Meidt, S. E., Pety, J., et al. 2013, ApJ, 779, 42
Schneider, R., Valiante, R., Ventura, P., dell’Agli, F., & di

Criscienzo, M. 2015, Why Galaxies Care about AGB Stars III:
A Closer Look in Space and Time, 497, 369

Strandet, M. L., Weiß, A., De Breuck, C., et al. 2017,
arXiv:1705.07912

Thompson, A. R., Moran, J. M., & Swenson, G. W., Jr. 2017,
Interferometry and Synthesis in Radio Astronomy, by
A. Richard Thompson, James M. Moran, and George
W. Swenson, Jr. 3rd ed. Springer, 2017.,

Vallini, L., Gallerani, S., Ferrara, A., & Baek, S. 2013, MNRAS,
433, 1567

Vallini, L., Gallerani, S., Ferrara, A., Pallottini, A., & Yue, B.
2015, ApJ, 813, 36

Velusamy, T., Langer, W. D., Goldsmith, P. F., & Pineda, J. L.
2015, A&A, 578, A135

Venemans, B. P., Walter, F., Zschaechner, L., et al. 2016, ApJ,
816, 37

Venemans, B. P. et al. 2017, in prep
Wang, R., Wu, X.-B., Neri, R., et al. 2016, ApJ, 830, 53
Watson, D., Christensen, L., Knudsen, K. K., et al. 2015, Nature,

519, 327
Wilkins, S. M., Feng, Y., Di-Matteo, T., et al. 2017,

arXiv:1704.00954
Willott, C. J., McLure, R. J., Hibon, P., et al. 2013, AJ, 145, 4
Willott, C. J., Carilli, C. L., Wagg, J., & Wang, R. 2015, ApJ,

807, 180
Yue, B., Ferrara, A., Pallottini, A., Gallerani, S., & Vallini, L.

2015, MNRAS, 450, 3829
Yue, B., Ferrara, A., & Xu, Y. 2016, MNRAS, 463, 1968


