
ngVLA Memo No. 59:
QAC: Quick Array Combinations with CASA

Peter Teuben
University of Maryland, College Park, MD

teuben@astro.umd.edu
January 3, 2020

Abstract

QAC is a simple python layer in CASA, developed to aid in writing scripts for array (sin-
gle dish and interferometric) combinations and simulations. Although initially developed for
TP2VIS, running simulations and comparing with other array combination methods, this pack-
age turned out to be useful for array design studies as well. Both ALMA and ngVLA simu-
lations are already supported, but extending to more generic arrays is straightforward. This
memo complements ngVLA memo 54, where QAC V0.31 was used for an array design study.
QAC is probably less useful for real data, where more CASA flexibility might be needed, but
does contain some useful functions that do not depend on the simulation environment.

1 Introduction
CASA ([1], [2]) is a general purpose python interface to radio astronomy software. It handles inter-
ferometric as well as single dish data, all the way from ingestion, calibration and imaging to analysis.
Most ALMA and VLA data are now routinely processed with CASA using a custom built pipeline.
CASA uses object oriented “tools”, as well as the more classic python functions, called “tasks” in
CASA. One can write very complex procedures this way, and in fact, the ALMA/VLA pipeline is
an example of such an interface. The QAC interfaces we discuss in this memo were also designed
with a specific goal of testing the combination of single dish and interferometric data. They are
also a convenient method to study array design, in this case for the ngVLA. Some results have been
published in ngVLA memo 54 [3].

The development of QAC started in 2017 with the TP2VIS project [4], to provide a more easily
programmable interface, orchestrate simulations and provide a reproducable baseline using regres-
sions. It can be obtained from https://github.com/teuben/QAC and is also registered in the ASCL
as ascl:1908.001.

We first summarize the different methods how CASA can be extended by using your own custom
built python code, then how QAC is installed, and a typical usage. We also give a short summary
of the API, and publish a benchmark in the Appendix. Given that QAC is available in github, you
will likely find updates to QAC (and this memo) in this repository.

Several other efforts have been going on wrapping CASA tasks and tools in a more convenient
environments, e.g. casanova 2, ADMIT 3, and the calibration and imaging pipelines for ALMA and
VLA 4

1this memo describes QAC v0.6 as of December 2019, please update as versions change
2https://github.com/kaspervd/casanova
3http://admit.astro.umd.edu/
4Included with CASA via https://casa.nrao.edu/casa_obtaining.shtml

1

https://github.com/teuben/QAC
https://github.com/kaspervd/casanova
http://admit.astro.umd.edu/
https://casa.nrao.edu/casa_obtaining.shtml

2 Running python code in CASA
CASA interacts with the user in an interactive python (ipython) session. For most users adding C++
code to CASA is a complex operation, but installing new python interfaces to ease writing CASA
scripts is usually fairly straightforward, and nowadays most users are familiar with this language.
Several methods (and hybrid between these) exist for CASA:5

1. buildmytasks

This is the native CASA method of installing a real CASA task. The CASA Cookbook describes
a procedure to install new CASA tasks, but at the same time warns this method may get
deprecated. Nonetheless, this so-called “buildmytasks” has been used by other teams, most
notably by the Nordic ARC node6. This is typically run once inside the directory where your
foo.py, foo.xml, and other material is present, after which the code, and documentation, gets
installed at the right place inside the CASA tree. Users can then run this task with the CASA
command

foo(1,’b’,[1,2,3])

Note that in this example foo() is now a true CASA task, with its default / inp / go /
tget / tput interface.

2. import foo

The traditional way a user includes software to a python based system would be the python
import command. This is fine for stable software, and can be installed with python’s setuptools
in CASA. In the future CASA6 one should be able to use virtualenv to test out software like
this without the need to write into CASA’s personal space. One can also consider the use of
using $PYTHONPATH to point to the directory where foo.py is present, but this method can
easily conflict with other installation methods (in fact, is strongly discouraged in a CASA
environment).

foo.bar(1,’b’,[1,2,3])

In this, and all following examples below, foo() is just a python function, not a CASA task.

3. execfile(’foo.py’)

Will execute the code, after which an API is available (note this will not work in python3
anymore). This is the method we used in QAC. Notice that no command line parameters can
be passed into the code. The code, and variables, defined through execfile() are immediately
available in the CASA session.

foo_bar(1,’b’,[1,2,3])

Incidentally, if these are combined and only one script needs to be executed and then analyzed
outside of CASA, a very efficient way it to use could be to call casa from the command line,
e.g. directly from bash (or via a Makefile):

5some of these methods are expected to become more common in CASA6
6https://www.oso.nordic-alma.se/software-tools.php

2

https://www.oso.nordic-alma.se/software-tools.php

% casa --nogui -c foo.py a=1 b=’"b"’ c=’[1,2,3]’ > foo.log 2&>1

The overhead of setting up CASA before this script really starts work varies a lot depending
on cashing and what’s in the casa init files, but can be anywhere from 5 to 20 seconds. If many
of these scripts are to be run, and each only takes a short time, the overhead will be too large,
and alternative method will need to be employed (see below).

4. run foo.py p1 p2 p3

Since CASA is essentially an ipython shell, the ipython run command can be used to execute
a script, including conveniently parsing “command line arguments”. This will need a parser for
p1=sys.argv[1], p2=sys.argv[2], etc. note this is an ipython interface, not python, though
it’s similar to running in the unix shell python foo.py p1 p2 p3, but note this is different
from the CASA method where local python variables can directly be set via the commandline
without the need for a parser.

run foo.py 1 ’b’ [1,2,3]

5. %run -m foo

Runs the foo module (from sys.path). In the current CASA manipulating sys.path is not
recommended, the arguments similar to those of not using $PYTHONPATH

Miles Lucas made his summer-2018 toolkit Radio Imaging Combination Analysis (RIKA) avail-
able7. He uses the 4th (run) method. In QAC we decided to use the 3rd (execfile) method.

2.1 Installing QAC
QAC needs CASA to be installed, and the user can opt either to install a version of CASA from
within QAC, or assume a version of CASA that is present on the system, i.e. there is a existing
command called “casa”. Since CASA startup can be controlled by ˜/.casa/init.py we choose this
file to execfile the correct startup script, aptly named casa.init.py in the QAC distribution:

execfile(os.environ[’HOME’] + ’/.casa/QAC/casa.init.py’)

in this example QAC was installed inside the ˜/.casa directory (or as a symlink to another
location).
In our casa.init.py you will find a few examples of common packages loaded by CASA in casa.init.py.

3 Design Issues
QAC needs to be lightweight, and easy to install,

• Easy to install, ideally a one liner

• Easy to pass parameters into functions of scripts

• Consistent naming convention of functions and parameters
7https://gitlab.com/mileslucas/RICA

3

https://gitlab.com/mileslucas/RICA

• Procedural. Although python has great support for a object oriented programming style, and
plenty is used under the hood in CASA, for this simple interface a simple procedural path was
chosen.

• clean vs. tclean. Although clean is formally not supported anymore, occasionally the two are
compared, and this gives that option. See qac_clean1(t=False) to run the old clean.

• QAC works similar to CASA’s simobserve, where all the work is done inside a designated
directory. This is different from the CASA philosophy where users have more fine grained
control over directories and filenames.

The use of a script with parameters is very useful for re-use, especially if the script also defines
defaults. A drawback of the execfile approach is the lack to change these parameters. Add to this that
execfile is not supported in python3, is a no-brainer not to use it, or at least switch to “run”. There
is another important difference, as was remarked before: execfile() causes code and variables to
be shared (potentially overwritten), whereas run is the more pythonic approach, like import.

4 Example
A typical command line usage would be

% casa --nogui -c myscript.py scale=2.0 nants=46 niter=’[0,1000,10000]’

5 Scripts
A typical simulation script might look as follows.

qac_ptr(phasecenter,"test123.ptg")

qac_vla("test123","skymodel.fits", 4096, 0.01,ptg="test123.ptg",phasecenter=
↪→ phasecenter)

qac_clean1("test123/clean1",phasecenter=phasecenter)

6 Timing and Regression
Because QAC deal almost exclusively with image type data, a regression test can be invoked auto-
matically with the statistics report, if a regression string is given, viz.

r = "0.0038324084555372423␣0.021439742878458009␣-0.048513446003198624␣
↪→ 0.41929447650909424␣383.60327838373536"

qac_stats(test+’/clean/tpint.image’)
qac_stats(test+’/clean/tpint_4.tweak.image’, r)
qac_stats(test+’/clean/tpint_4.tweak.image’, r, eps=1e-6)

where in the first instance only the statistics are reported, the second instance will also flag any
deviations from the expected string. The numbers represent the mean, std, min, max and total flux
of the image. The last example regresses these values within a relative accuracy of eps.

For measurement set data it will use statistics on the amplitudes, but the flux is reported at 0
(which technically is correct for most interferometers).

4

7 Benchmarks
In QAC/test the command “make bench” will activate a benchmark, which should last about 2-3
mins. It uses a subset of the M100 casaguide data, but due to a variety of CASA problems, we don’t
expect the regression to be accurate until we release QAC V1.0.

8 API
Here we list the most important functions available in QAC, without further details except for
arguably descriptive parameter names and defaults. The full and updated documentation can be
seen online on https://github.com/teuben/QAC/blob/master/docs/qac.md.

Adminstrativia

qac_argv(sysargv)

qac_begin(label=’QAC’, log=True, plot=False)

qac_end()

qac_log(message, verbose=True)

qac_project(projectdir, chdir=False)

qac_version()

Simulation routines

qac_vla(project, skymodel, imsize, pixel, phasecenter, freq, cfg, ptg, noise)

qac_alma(project, skymodel, imsize, pixel, phasecenter, freq, cycle, cfg, ptg)

qac_carma(project, skymodel, imsize, pixel, phasecenter, cfg, ptg, times)

qac_noise(noise, *args, **kwargs)

qac_clean1(project, ms, imsize, pixel, niter, weighting, startmodel, phasecenter,
↪→ t, do_concat, **kwargs)

qac_clean(project, tpms, mslist, imsize, pixel, weighting, startmodel,
↪→ phasecenter, niter, do_concat, do_int, do_cleanup, **kwargs)

qac_tp_otf(project, skymodel, dish, label, freq, template)

qac_smooth(project, skymodel, label, niteridx)

qac_tp_vis(project, imagename, ptg, pixel, niter, phasecenter, rms, maxuv, nvgrp,
↪→ fix, deconv, **kwargs)

5

https://github.com/teuben/QAC/blob/master/docs/qac.md

qac_tweak(project, name = "dirtymap", niter = [0], **kwargs)

qac_vp(vp=False, schwab=False)

qac_tpdish(name, size=None)

qac_feather(project, highres, lowres, label, niteridx, name="dirtymap")

qac_ssc(project, highres, lowres)

Analysis and Plotting routines

qac_stats(image, test=None, eps=None, box=None, pb=None, pbcut=0.8, edge=False)

qac_beam(im, normalized=True, chan=-1, plot=None)

qac_phasecenter(im)

qac_ptg(ptg, ptgfile=None)

qtp_im_ptg(phasecenter, imsize, pixel, grid, im=[], rect=False, outfile=None)

qac_ms_ptg(msfile, outfile=None, uniq=True):

qac_summary(tp, ms=None, source=None, line=False)

qac_math(outfile, infile1, oper, infile2)

qac_mom(imcube, chan_rms, pb=None, pbcut=0.3, rms=None)

qac_plot(image, channel=0, box=None, range=None, mode=0, title=None, plot=None)

qac_flux(image, box=None, dv=1.0, plot=’qac_flux.png’)

qac_niter_flux(dirname, box=None, flux=True, plot=None)

qac_fidelity(model, image, figure_mode=5, diffim=None, absdiffim=None, fidelityim
↪→ =None, absmodelim=None, interactive=False)

qac_psd(image, plot=’qac_psd.png’, fit=False, pixel_s=None)

qac_line(im)

qac_fits(image,outfile=None,overwrite=True)

qac_ds9(image, cleanup=False)

6

qac_ingest(tp, tpout = None, casaworkaround=[1,3], ms=None, ptg=None)

9 Pros and Cons
As was outlined above, using QAC should result in shorter and simpler scripts, but can easily
orchestrate large sets of simulations from the commandline or inside another python script. However,
users would have to install QAC and learn to use this interface. With the complexity of CASA this
is another hurdle. Also, we found CASA bugs that show up in QAC can be harder to explain to the
CASA developers. Certainly giving a code example using QAC is not an accepted practice. Finally,
QAC is great for simulations, but does not always expose all the rich parameters that full CASA
tasks have.

10 Future
CASA is a development project, with frequent updates. The next release (V6) will have a major
overhaul how python and the C++ libraries are integrated, and this will likely have some effect how
QAC is installed, although less on its API. Ideally we like to switch to the import or run method
once the CASA imports are standardized. I expect QAC will avoid software rot and adopt the new
style. Look out for QAC V2.0

Acknowledgements: Jordan Turner and Sara Negussie have been patient contributers and users.
Part of QAC was developed under the ALMA development study “TP2VIS” (PI: Jin Koda) and the
“ngVLA” array combination study (ngVLA memo 54).

References
[1] J. P. McMullin, B. Waters, D. Schiebel, W. Young, and K. Golap. CASA Architecture and

Applications. In R. A. Shaw, F. Hill, and D. J. Bell, editors, Astronomical Data Analysis Software
and Systems XVI, volume 376 of Astronomical Society of the Pacific Conference Series, page 127,
October 2007.

[2] B. Emonts. CASA Architecture and Applications. In P. J. Teuben, M. W. Pound, B. Thomas,
and E. M. Warner, editors, Astronomical Data Analysis Software and Systems XXVIII, volume
376 of Astronomical Society of the Pacific Conference Series, page 127, October 2019.

[3] Jordan Turner, Peter Teuben, and Daniel Dale. Short Spacing Issues for Mapping Extended
Emission: Milky Way Case Study. Technical Report 54, Jan 2019.

[4] Jin Koda, Peter Teuben, Tsuyoshi Sawada, Adele Plunkett, and Ed Fomalont. Total Power Map
to Visibilities (TP2VIS): Joint Deconvolution of ALMA 12m, 7m, and Total Power Array Data.
Publications of the Astronomical Society of the Pacific, 131(999):054505, May 2019.

7

Appendix A: Sample Code
To run a large suite of simulations, it can be very useful to call CASA from the Unix command line,
and loop over many parameters, or organize them in a Makefile (see e.g. QAC/test/Makefile). For
example:
casa --nogui -c vla1.py pixel_m=0.05 niter=’[0,5000,15000]’ dish=45 pdir=’"exp102

↪→ "’

As one of the products of the “tp2vis” ALMA development study ([4]) we continued the develop-
ment of the QAC toolkit that simplifies writing some of these complex scripts. It also allow us to use
a different combination method (feather, tp2vis, ssc etc.) with minimal changes to the simulations
scripts.

As an example, consider the simplenoise procedure8 to add a given noise to a simulation. Here
is the example calling qac vla() twice, in the end generating a Measurement Set with the correct 1
mJy/beam noise:
rms = 0.002 # request 2 mJy/beam RMS noise (NA)
ms1 = qac_vla(pdir,model, noise=-rms) # noise<0 triggers it to compute the rms
sn0 = qac_noise(noise,pdir+’/noise’, ms1) # get scaling factor from rms in ms1
ms2 = qac_vla(pdir,model, noise=sn0) # MS that with correct "rms" in Jy/beam

In the first Measurement Set a noise level is computed for a fixed 1 Jy noise per visiblity on a zero
model. The noise in the resulting dirty map, computed in qac noise(), is then the scaling factor
(sn0 that needs to be applied to get the correct requested noise level in the second Measurement Set.

8See simulator.setnoise

8

Appendix B: Sample Simulation
Here we show how Figure 1 was made. Using a complex molecular cloud structure, what is the fidelity
of the combined image when a single dish measurement was feathered into the interferometric array
data

Figure 1: Fidelity (higher is better) of feathering the single dish
image of given Dish Size with the simulated ngVLA array.

casa -c mapping2.py niter=’[0,10000,20000]’ dish=50 pixel_m=.02 pdir=’"exp1"’ >
↪→ exp1.log 2>&1

casa -c mapping2.py niter=’[0,10000,20000]’ dish=50 pixel_m=.01 pdir=’"exp2"’ >
↪→ exp2.log 2>&1

casa -c mapping2.py niter=’[0,10000,20000]’ dish=50 pixel_m=.015 pdir=’"exp3"’ >
↪→ exp3.log 2>&1

casa -c mapping2.py niter=’[0,10000,20000]’ dish=50 pixel_m=.026 pdir=’"exp4"’ >
↪→ exp4.log 2>&1

9

Appendix C: Installing QAC
Here is a step-by-step example of installing QAC, but assuming CASA has been installed before.
The file QAC/docs/install.md contains an example how to install CASA within QAC, and in the
directory QAC/casa/ several examples exist how to install CASA plugins from other groups (e.g.
SD2VIS, SDINT, TP2VIS, au)

git clone https://github.com/teuben/QAC
cd QAC
make install
casa

you should now see (amongst) in the screen logs:

QAC: Root /home/teuben/.casa/QAC
QAC: Load src/qac.py
QAC: Load src/ssc.py
QAC: Load src/plot.py
QAC: Load contrib/tp2vis.py
QAC: Skip distribute/tp2vis.py
QAC: Skip tp2vis/tp2vis.py
QAC: qac: version 14-mar-2019
qac_root: /home/teuben/.casa/QAC
casa:5.4.1-32
data:/home/teuben/QAC/casa/casa-release-5.4.1-32.el7/data

notice that only the experimental contrib/tp2vis is loaded here. To activate the formal public
release of tp2vis, the following step are needed:

cd QAC
make tp2vis
casa

and now you should see that distribute/tp2vis.py is loaded. if you are a developer, you can
also load the latest developers release via QAC:

cd QAC
make dev
casa

These versions are clumsily maintained via a symlink to the existing .git repos. Break the symlink
by removing the version which you don’t want to see:

cd QAC
rm distribute
rm tp2vis

10

Appendix D: Benchmark
It is very useful to have a quick demonstration of the QAC software, and at the same time serve as
a benchmark to see how fast you current machine measures. The following example also provides a
regression test, although it should be noted within CASA they often will vary in small values.

The standard benchmark should take about 2-3 minutes to finish and produce about 300MB of
data in the QAC/test/bench/ directory. The bench.log

cd QAC
make data tp2vis
make bench

and you should now see something like this: 9

running bench.py ...
time casa --nogui -c bench.py > bench.log 2>&1
tail -4 bench.log
QAC_STATS: bench/clean/tpint_2.tweak.image 0.003761955025079131 0.021406407411194268

-0.047620095312595367 0.41968712210655212 375.9275617537877 FAILED regression
0.0038472646829610813 0.021499494640955678

-0.047635149210691452 0.4208904504776001 384.45247992991648 EXPECTED
840.24user 20.54system 2:33.76elapsed 559%CPU (0avgtext+0avgdata 1021020maxresident)k
61416inputs+3457328outputs (261major+644633minor)pagefaults 0swaps

9ignore “FAILED regression” until QAC is at version 1.0

11

Appendix E: Data Naming Conventions
Although the user is free to choose a naming convention, there is some structure imposed on certain
QAC commands. As a result of using tclean() the extensions are also often normalized (i.e. not
needed)

The typical order is first running tp2vis, then optionally running a qac clean1, creating the
clean0 hierarchy. Then qac clean in a Joint Deconvolution, creating the clean1 hierarchy. Once
INT and TPINT images have been produced, feather images can be created via qac feather etc.
This includes multiple iterations if the niter keyword was given as a python list of niter values, e.g.
niter=’[0,10000,20000]’.10

M100/
tp.ms # default name of qac_tp_vis()
clean0/dirtymap.model # default name of qac_clean1()

dirtymap.image
dirtymap.image.pbcor
dirtymap.psf
dirtymap.pb
dirtymap_2.image
dirtymap_2.image.pbcor

clean1/int.image.pbcor # default names in qac_clean()
int_2.image.pbcor
tpint.image.pbcor
tpint.image.psf
tpint.image.pb
otf.image # see qac_tp_otf
otf.image.pbcor
feather.image # see qac_feather()
feather_2.image.pbcor
skymodel.smooth.image

10this is one of the QAC features. Not to be confused with the major and minor cycles of clean, this uses the last
model as startmodel in the next entry for the niter list. Thus it runs tclean 3 times in this example.

12

	Introduction
	Running python code in CASA
	Installing QAC

	Design Issues
	Example
	Scripts
	Timing and Regression
	Benchmarks
	API
	Pros and Cons
	Future

