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1 Introduction

Technical requirements for ngVLA design are being driven in part by the need to support high
dynamic range imaging for deep field science.

Perley (1999) presents a comprehensive examination of issues relating to high dynamic
range imaging, including the derivation of relationships between visibility errors and image
dynamic range limits. However, the derivation does not consider the relationship between dual
polarized receivers and the output Stokes image.

Given their importance to ngVLA design, in this memo I rederive the equations that
relate visibility errors to image dynamic range limits and (in a minor contribution) complete
the derivation for dual polarized receivers. For clarity and completeness, I reproduce most of
the material from Section 3 of Perley (1999) and revise here accordingly.

The equations below are being used to drive technical requirements for aspects of ngVLA
design that contribute to the visibility error budget, such as antenna pointing and tropospheric
phase tracking capabilities.

2 The Effects of Visibility Errors on Image Dynamic Range

The following derivation uses simple arguments to allow rough calculation of dynamic range
limits given baseline-based or antenna-based errors. For simplicity, the analysis will consider
a point source at the phase center (for which all visibilities are the same) observed in a
single frequency channel. The systematics of interest here (e.g. pointing, troposphere) will
act coherently over any given observing band (which may comprise multiple channels within
a bandwidth, or even a single channel with large fractional bandwidth), in which case the

∗Revised Equations 7 and 10.
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information content can be effectively modeled using only a single channel. Furthermore, the
analysis will be performed in one dimension. The resulting equations will be valid for more
complex sky brightness distributions observed with a two-dimensional array.

Consider a single integration observation (extreme snapshot) of a unit amplitude source
located at the phase-tracking center, measured in a single polarization product (e.g. linear
basis XX or circular basis RR) in a single frequency channel. For an array with N antennas
there will be N(N −1)/2 complex visibilities. Suppose all but one are perfect. The unaffected
visibilities have unit amplitude and zero phase and are described by V (u) = δ(u − uk) for
baseline lengths uk and where δ is the Dirac delta function. The discrepant visibility from
baseline length u0 is

V (u) = δ(u− u0)e−iφb , (1)

where φb is the baseline-based phase error (in radians). The image is formed by evaluating the
transform I(l) =

∫
V (u)ei2πuldu, so for each ‘good’ baseline the integral gives a contribution

of 2 cos(2πukl). The factor of two arises because each visibility is counted twice (once at uk
and again at its complex conjugate). The ‘bad’ baseline contributes 2 cos(2πu0l − φb), which
for small φb becomes 2[cos(2πu0l) + φb sin(2πu0l)]. The resulting image is then

I(l) = 2φb sin(2πu0l) + 2

N(N−1)/2∑
k=1

cos(2πukl) , (2)

while the beam (point spread function) is

B(l) = 2

N(N−1)/2∑
k=1

cos(2πukl) . (3)

For a quasi-uniform distribution of spacings, the beam and image will both have amplitude
N(N − 1) and width ∼ 1/um for maximum spacing in wavelengths um. Deconvolution is
accomplished by subtracting the beam from the image, giving a residual R(l) = 2φb sin(2πu0l),
which is a periodic function of amplitude 2φb and period 1/u0. If the dynamic range is defined
asDpq = (peak on image)/(rms on image residual) for an image of a single polarization product
(e.g. pq = XX), then

Dpq =
N(N − 1)√

2φb
≈ N2

√
2φb

, (4)

with the approximation valid for large N .

The derivation for an amplitude error is similar. The visibility for the ‘bad’ baseline is
written as V (u) = (1 + εb)δ(u− u0) for baseline-based amplitude error εb. Following through,
the same results are recovered with the substitution

φb → εb . (5)

The results above can now be generalized. Suppose that all baselines have an independent
random error of the magnitude given above. Then, after modifying Equation 2, the dynamic
range will be decreased from the single baseline case by a factor

√
N(N − 1)/2, giving

Dpq =

√
N(N − 1)

φb
≈ N

φb
. (6)
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Suppose instead that the errors are antenna-based and that these errors are uncorrelated
between antennas. Following standard error propagation, the relationship between baseline-
based and antenna-based phase errors is given by φb =

√
2φa. The relationship for amplitude

errors is εb = εa/
√
2. If all antennas have typical phase errors of this magnitude, then the

error contribution from Equation 2 must be a multiplied by (N − 1)/
√
N − 1, reflecting a

randomized sine contribution over all baselines to a single antenna, and further multiplied by√
N , reflecting the statistical addition of such errors from N antennas. The dynamic range

limit will therefore become

Dpq =

√
N(N − 1)√

2φb
≈ N

2φa
≈ N

εa
. (7)

For antenna-based errors dominated by effects that are uncorrelated between the orthog-
onal polarizations on an antenna (e.g. X and Y ), such as thermal noise, the polarization
products (e.g. XX vs Y Y ) will be uncorrelated, in which case the dynamic range limit
Dpol-uncor
s for an image of a Stokes parameter (e.g. s = I, Q, U , or V ) will improve to

Dpol-uncor
s ≈

√
2Dpq . (8)

However, for antenna-based errors dominated by physical effects such as temperature changes
in the antenna electronics, antenna pointing errors, or the atmosphere, the errors for the
orthogonal polarizations on an antenna will be correlated. In this case, the dynamic range
limit Dpol-cor

s for an image of a Stokes parameter will remain

Dpol-cor
s ≈ Dpq . (9)

The effect of multiple integrations (multiple snapshots) can be estimated under the approx-
imation that the errors vary over time. This can arise either from a change of the error, such
as a changing atmosphere, or by rotation of the baseline, such that a particular u-v coordinate
will be measured by a different baseline with a different error. For M successive independent
snapshots, the dynamic range limit from Equation 7 becomes

Dpq ≈
N
√
M

2φa
≈ N

√
M

εa
. (10)

The value of M depends on factors such as the atmospheric coherence timescale and the
timescale for significant rotation of a baseline. Well motivated estimates for M are important
for estimating dynamic range limitations, though this is of less concern for large M where
differences are minimal due to the root dependence. Calculations to estimate M are beyond
the scope of this memo.
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