
LB ESMMONOI éMO

IBM PC VLBA recording terminal control software working under MS-DOS.

Alexander Novikov and Vitaly Promislov
February 1992

Astro Space Center

Profsoyuznaya st., 84/32
Moscow, 117810
Russia, USSR

FAX: 095-310-7023
PHONE: 095-333-21-89
E-MAIL: ikimaileesoci..bitnet

INTRODUCTION.

This memo is concerned with description of the original NRAO VLBA
station control software to MS DOS working on IBM PC. This work is a
part of preparation of the space OBLVI Radioastron project. In practice
it was initiated to carry out the satellite decoder/VLBA recording
terminal interface test and make some VLBI ground test observations at
Ussuriisk station. For this purpose we need only Data Acquisition Rack
(DAS) and Recorder Rack since as a first step now VLBA PC software
controls these two racks. However developing the VLBA PC software for
this particular purpose we overcame all principal problems such as:
multitasking inside the MS-DOS, screen package adaptation and system's

on MCB doesn't occur any DOS compatibility problems. VLBA PC software
provides all features of the original NRAO VLBA station control .software
including the loading the observation parameters from standard VLBA
schedule file. In addition likely INTERFERROMETRICS version the VLBA PC
software produces MKIII log-file.
The main instrument to develop VLBA PC software under MS-DOS is program

language C++ and in following section it is presented more detail
consideration the software problems that were appeared during this work.

I. MULTITASKING INSIDE MS-DOS.

At first to discard the question why some of PC multitasking operational
systems C0S2, Xenix, Venix etcD didn't use it should emphasize that the
next reasons pushed to use MS-DOS:
- in case using "non-MS-DOS" operational systems it was needed to spent
additional money and time to buy and learn it;
- more simple task than controlling all radio telescope permitted to
expect a success for less powerful MS-DOS software and IBM PC hardware
than VXWorks and Motorola 68020 CPU;
- first steps on MS-DOS VLBA PC software implementation way were made by
several teams in INTERFERROMETRICS company, Jodrell Bank, MPIfR Bonn and
Socorro NRAO AOC.
All above mentioned teams except INTERFERROMETRICS were working with a
single screen menu approach when you can't watch more than one a screen
at the same time. The multiscreen approach was selected as main goal in
developing VLBA PC software under MS-DOS in order do not intersect with
another teams.

1.1. Why C++ ?

The original VLBA station control software was written and is being
written now on Unix C language by Barry Clark's team in NRAO AOC
Socorro. It consists of about more a half million lines of C code. The
main problem of adaptation the existing software is to control the
change in the line in the one module wouldn't occur any crashing in any
far modules. The second problem concerns with the developing the
original VLBA software is not completed else and in addition to own
MS-DOS adaptation changes it will be necessary insert the last B.Clark's
team changes to completed VLBA PC software in future.

a

This situation forced to keep line to line compatibility and design the
multitasking kernel as a separate independent part that have to work in
VXWorks style formally. In developing the multitasking kernel we
followed to the tendency to define all of the access functions in single
module as an attempt to achieve data encapsulation. Access from other
modules to object of type Task in our case should be through one of the
access functions CinitTaskC), currentTaskO, killTaskO, taskStatusC),
unsuspendTaskCD, startSchedulerC), stopSchedulerC 3 f killSelfC),
setReturnValueC), getReturnValueC), etc). Concentration of access
functions narrows the area in which the programmer must look if a
problem occurs in the handling of Task objects. Once the program is
completed, if the structure of a Task changes, the programmer will know
the location of the functions that will have to be changed and retested.
However, since C doesn't limit access to the internal of an object of
type Task the programmer cannot be certain that other modules will not
be affected as well. While it is possible to “teach" any of existing
functions or operators how to operate on this new type. Each new type
structure must have a different set of access functions with unique
names. In C++ the access functions can be defined as part of the
structure it self. These member functions become a part of the structure
like member data elements. Not only is the association between the
structure and its access functions more explicit, but parts of the
structure can be defined to be accessible only to the member functions.
Access to the member of the structure is strictly controlled in new type
of structure called class in C++. Use of the access functions is no
longer voluntary.

i.i. Task Class.

It is naturally to assume for multitasking developing that object task
is declared as Task Class in C++ terms. Each object of class Task is an
independent execution thread capable of receiving control CPU. The task
comes into existence when the object is created and ceases to exist when

3

the object goes out of scope. Task could be initialized in C by defining
a function TasklnitO, and then invoking the function after the object
is declared but before it is used. A similar approach was used in C++
since initialization can be a member function with access to the private
members.
To facilitate this process, C++ allows the programmer to define a
special method known as constructor. A constructor is a special member
function that is automatically invoked whenever an object of that type
is created.
C++ aiso allows the programmer to define a member function that is
called by name distructor when an object is destroyed. So the-
constructor and distructor initiates and terminate tasks. The
constructor automatically allocates the memory that the task will
require. It then adds the object to the scheduling linked list and
prepares the object to run when the rescheduler reaches it. The
distructor removes the task from the scheduler list and returns any
dynamically allocated memory to the heap. The Task Class is a sub class
of linked list. The task objects reside in a circular linked list. The
currently active task is the object pointed at by current Task-ptr.
Rescheduling always begins with the next object in the list after
*current Task-ptr. The following status bits of object Task are declared
in Task Class: READY, SUSPENDED, DEAD, RUNNING.
So you can see that the multitasking kernel development has a great
support from such special C++ features as: class, constructor,
destructor, class inheritance Csee below) and more object oriented
style of syntax. We made some overview of modern C++-books and found
very nice example of Task Class implementation in book “Hands on Turbo
C++" by Stefen R. Davis. We used code from this book as a base for our
multitasking implementation.

1.3. The main restriction of the multitasking inside the DOS.

The biggest limitation of our multitasking approach is that implements

4

voluntary or non preemptive scheduling. That is once a task gains
control of the CPU it retains that control until the rescheduler
function is called.
DOS was written as a single-tasking operational system and is inherently
non - reentrant. When an application task is in the middle of a DOS
system call, another task cannot start a DOS call without crashing the
first task. It is the main reason that doesn't develop complex
preemptive task scheduler based on DOS with great work at precautions to
prevent one task from making a DOS call when another DOS call is being
executed. In addition a number of problems such as data collision would
be required efforts compared to develop new multitasking operational
system.
So one of the key of adaptation the single task written originally for
multitasking VXWorks OS to non preemptive multitasking application
inside the MS-DOS is to determine point for task switching. The task
switching mechanism is naturally realized by setjmpC) and longjmpC)
functions from Turbo C++ run time library. To save task context at task
creation, a small area of memory is reserved and assigned for use ais the
task stack. The address of the stack is retained in the task object.
Automatic and register variables are not shared. Task scheduling path is
shown in Fig.1.

1.4. Task Initialization.

When any task's object is being created it will be included in
linked-list.
EXAMPLE 1:

Task taskCfun,0x200,"FUN_NAME"3; // create object type of task
where

fun is C function type of void funCvoid)

0x200 is size of the new stack

5

"FUNJIAME" is task's name Cuniq}

EXAMPLE 2:
Task task(fun_param,argc,argv, 0x200, "FUNJfAME");

where
fun is C function with parameters
type of void funCint argc,char *argv[33

0x200 is size of the new stack

“FUN_NAME" is task's name (uniq)
Task's function should have the general structure shown in Fig.2.

1.5. The main two rules to adopt the NRAO C-code.

When we compiled the original NRAO C-code by Borland Turbo C++ v. 2.0
compiler we made some obvious changes concerned with more strong syntax
of C++ and difference between 32 bit Motorola integer word and 16 bit
Intel word. Short overview the rules of these changes presents below.

1.5.1. Function definition.
The '‘C++" programming languages has more strong restriction in function
definition than "C" and we have to make corresponding changes in VLBA
software.
EXAMPLE: We have C function definition as:

void funC intarg,chararg)
int intarg;
char chararg;
<

/* some code here */

>

In the "C" language this function can have the following prototype:

6

void funC); /* OK in C */
in the C++ programing language it will produce a compiler error.
and we replaced such lines as:
void funCint,char); // OK in C and C++

I.5.2. Length integer variables.
Some changes are connected with different length of word on VME and IBM
PC computer.

EXAMPLE:
Let’s consider the following description:
int int_var;
int_var <<=20;
If you run it on the VME computer the result will always be OK, because
the type int has 32 bit length. But the int has only 16 bit length on
the IBM PC computer and it causes known problems. We have to rewrite
such description as:
long int_var; /* 32 bit length on the IBM PC */
int_var <<=20; /* OK as on the VME as on the IBM PC */

II. NRAO Screen package implementation for MS-DOS version.

Every screen's program consists from two task running as parent
task with its children task. The parent task is responsible for operator
random key-input and sending MCB command/monitor messages to
corresponding equipment. The children task updates the device screen
information. One task pass control to another by calling rescheduler
function as shown in Fig.3.
For multiscreen implementation all the single screen task are contained
in circular linked-list of rescheduler. Every time the rescheduler
(task's switcher) loads the next task from linked-list and passes it
the control.

III. Implementing the VXWorks task's variables

VXWorks has special type of the variables - the task's variables. It
means that a value of the each such variable depends from which task now
is running. VXWorks switches the content of this variable every time
when it pass control to the new task.

We provide the full emulation of this feature without noticeable
difference for user. The special class task's variables provides it.
Every task may has more than one task's variable at the same time. The
task's variable creation is connected with the initialization of special
taskVar class. Let us examine the task's variable implementation in the
screen package. There is the common pointer pmcbmsg to the structure
mcbmsg. Each task contained in scheduler list can initialize itself the
own structure.

extern struct mcbmsg *pmcbmsg; /* pointer definition */
/* some code here */

struct mcbmsg mcbmsg;
/* structure belongs some task */

pmcbmsg=&mcbmsg;
/* initialize extern pointer */

taskVar(Cvoid*)C&pmcbmsg) ,C void*) C pmcbmsg));
/* create task's variable */

IV. Formatter/PC time tagging.

We changed the main time tagging logic when control computer is a master
for Formatter time setting. Previously operator should set the Formatter
time by Formatter screen seeing on station timer. After that Formatter
is became the master timer for PC DOS time. To tag the PC DOS time to
Formatter time we designed the special single screen program STIME,
which catch the Formatter 1 sec transition asking Formatter time through
the MCB bus. You should run STIME program before VLBA PC software

8

running called PCASTR. Each formatter setting during observation the
modified NEWD module check the alignment between Formatter and DOS 1 sec
tick and in negative case NEWD will be realign the DOS time Formatter
time.

V. Shorten Log-file creation in MS-DOS version.

Our PC software support the binary log file creation. But the PC
interpretation package has not been completed to emulate the same
functions likely in B. Grechky package. We inserted to NEWD module the
generation special MKIII-log file by copying F.Ghigo's C-code from Green
Bank which is used for NRL correlator.

VI. Conclusion.

We try to demonstrate how we designed our PC VLBA software and hope that
our approach can be useful not only for Radioastron project and may be
for some VLBI station where will want to replace the expensive Motorola
control computer to common PC. In addition we thing that our software
may be powerful instrument for VLBA terminal engineering staff.

3

T a s k 1

Save c o n t e x t

with setJ m p ()

F i n d n e x t

task to s c h e d u l e

long. mp ()

t o 1 t

g . l . T a s k 5 w I t c h I

FTjvd n e x t

tosk to s c h e d u l e

______N l ^
'ongjmp O
to it

g w i t h s c h e d u l e r (

E n t r y p o i n t

F i g . 2. S t r u c t u r e of the
I n d e p e d e n t s c r e e n
module

S t a r t tas k s w I t h e r

1
P a r e n t T a s k

e n t r y p o i n t

P a s s c o n t r o l to the p a r e n t
t a s k

>

C r e a t e new T ask obj ec +

(c h i l d r e n Task)

j C a l 1 r e s c h e d u l e r j

n p u t,

y e s "___________
*| T r e a t o p e r a t o r Input

C h i l d r e n T a s k
e n t r y p o i n t

Pass control
.to the c h i l d r e n

*.as k

S c r e e n c o n t e n t s
u p d a t I n g

—..... i::i..1 r:~.
Call r e s c h e d u l e r Pass c o n t r o l

to the p a r e n t task

S t a r t u p f u n c t i o n b o d y

--- ^ B e g i n l o o p

________ \ U

M a i n f u n c t i o n b o d y

l

P e r f o r m s o me o p e r a t i o n s

??
e t c o n t r o l

C o l 1 r e s c h e d u l e r p a s s c o n trol

>
om p r e v i o u s task

E n d o f l o o p

to the nex-fc task
In l i n k e d list

Fig. 3. The g e n e r a l s t r u c t u r e of the t a s k b ody

