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1.0 Introduction

At each OVLBI earth station, the residual delay over the two-way path to and from the spacecraft
will be measured frequently. These measurements must be processed so as to produce two different time
series for later use: First, an estimate is needed of the timing error on the spacecraft induced by the
imperfect compensation of the uplink signal for the uplink delay; we call this the uplink delay residual.
It will be used during correlation to correct the time tags written on the signal tape, since the latter
times are tied to the sampling times on the spacecraft. Second, an estimate is needed of the change in
total delay that would be measured over successive intervals on a two-way link that did employ uplink
compensation. That is, the effects of the uplink delay compensation and the downlink delay prediction
should be removed. The result, known as the “integrated Doppler,” simulates conventional Doppler
tracking, making it convenient for use in orbit determination.

In this report, I first examine the nature of the available measurements (section 2); then I consider
a rather simple estimator of the uplink timing residual, evaluate the errors in this estimator, and explore
whether more sophisticated estimators might overcome some of the errors (section 3); and finally I
consider the obvious estimator for the integrated Doppler and evaluate its inherent errors (section 4).

Background material on the overall objectives can be found in [1-2]. An earlier analysis by
Linfield 3] led to results similar to those of section 3, but from a much different and more restricted
viewpoint. Additional details on the transfer process and on some of the hardware designs are given by
Springett in {4].

2.0 The Measurements

Consider the downlink signal being received at the earth station now. This signal was transponded
at the spacecraft somewhat earlier, when it was tracking the uplink signal that was transmitted still
earlier. The path is illustrated by the solid line in Figure 1, where the uplink path delay is A and
the downlink path delay is B. Neglecting any delay within the spacecraft, the true two-way time is
A + B. However, the earth station has knowledge only of the predicted orbit. From this it can compute
a predicted signal path with predicted uplink time C and downlink time D. This path is shown as
a dashed line in Figure 1. Note that it is based on the predicted spacecraft position at the predicted
transponding time ¢3, not the true transponding time ¢. But the signal being received now was actually
transmitted A + B earlier, not C + D earlier; at the true transmission time, the predicted uplink and
downlink times were C’ and D', respectively, and were calculated from the predicted spacecraft position
at a different predicted transponding time ¢;.

The design of our OVLBI earth station involves compensation for the up- and downlink delays
based on the predictions. This means that the uplink waveform is advanced in time by the amount of
the predicted uplink delay.f The time of the received downlink waveform is then measured relative to a
predicted waveform, resulting in the measured residual delay

r=(A-C')+(B-D)-ébn (1

where 679 accounts for any measurement ambiguities. In the present designs, the residual delay cannot
be measured unambiguously because the nominal signals are periodic. In this situation, we adopt an

f In the present systems, the uplink and downlink signals are nominally sinusoids, so the time delays and advances
are equivalent to phase shifts. Specifically, nominal signal sin 27 ft advanced by T becomes sin 27 f(t + T), which is a phase
change of 27 fT. Note that in the last expression f is the nominal frequency, not the instantaneous frequency f(1+dT/dt).
In this report, the discussion will be in terms of times rather than phases or frequencies, since it then applies equally well
to the general case of non-sinusoidal signals.
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Fig. 1: Schematic of the two way link geometry. Solid line is the true signal path, and dashed lines are various paths
computed from the predicted orbit.

assumed value of 7 (typically zero) at some initialization epoch; the error in this assumed value is then
619. This error, although unknown, remains constant for all subsequent measurements provided that
they are made often enough to avoid introducing additional ambiguity (“cycle slip”). Notice that the
present value of the predicted uplink delay C is not involved in (1).

3.0 Estimation of Uplink Residual

Since the timing of all signal processing on the spacecraft is tied to the received uplink signal,
the error in this timing is the uplink residual

Tap=A-C". (2)
Our task is to estimate this value from the available measurements of . Begin by re-writing (1) as
r=(Ag+ Ai - C")+ (By + B; = D) - érg (3)

where A,, By are the purely geometric (vacuum) parts of the delays and A;, B; are the additional delays
due to the medium. Further re-arrangement gives

r=2Ay + Ai — C") = [(Ag — C) = (By — D)] = (4; = B;) = (C — C") = b75. (4)

The first term is 27, and the other terms may be regarded as errors. In that case, we can use the very
simple estimate
Tup = 7/2

(3)

= Tup — € — € — €p — 07 /2
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where ¢, = 1[(4, — C’) - (By - D)] is the geometrical error due to earth station motion during the
round-trip time; ¢; = 2(A, — B;) is the effect of non—recxproclty in the medium (such as ionospheric
dlspersmn), and e, = 3(C — C’) is the effect of the error in predicted transponding time (i.e., the
difference in predicted positions at the two predicted transponding times).

We now evaluate the approximate size of each of the error terms and consider whether any of
them can be mitigated by using a more sophisticated estimator than (5).

3.1 Geometrical Error

The error €, arises because the position error Z(t) ~ &,(¢2) (see Figure 1 for notation) is slightly
different when projected onto the uplink and downlink paths, whereas the simple estimator assumes that
the uplink and downlink time residuals are equal. Since earth station motion is due to earth rotation,
the error is maximized when the spacecraft is on the local meridian. The transmitting and receiving
locations then subtend an angle at the spacecraft of approximately

¢ =2Rgwgcosi/c (6)

where Rp,wEg are the radius and angular velocity of the earth; { is the station latitude; and c is the speed
of light. Since ¢ is normally small, the worst error occurs when the position error is nearly perpendicular
to the propagation paths. Then

[

leglmax & =|&(t) — Fp(t2)|sin ¢
y (7)

4 - -
;2-ng5 cos H{E(t) — Zp(t2)|.
Taking the worst prediction error magnitude to be 1000m and using ! = 38° (Green Bank), this gives

leglmax = 15.4 psec.

It appears to be impossible to correct for this error using only the measured residuals. A correction
may be possible in later processing if a substantially better orbit is then available (see 3.3 below for
a discussion of similar calculations). However, since this is one of the smallest known errors, I do not
consider it further here.

3.2 Medium Non-Reciprocity Error

Any difference between the true uplink and downlink delays beyond that due to the geometrical
length difference is attributed to non-reciprocity in the medium. This can be due to traversing a different
portion of the medium in the two directions, which in turn can be due to either local changes in the
medium (turbulence) or relative motion of the medium and the earth-space vector during the round trip
time. It can also be due to dispersion, since the signals are on different frequencies in the two directions.t
The medium consists essentially of the troposphere and the ionosphere. Both are usually much closer to
the earth station than to the spacecraft for the orbits of interest (except that VSOP’s perigee of 1000 km
approaches the outer edge of the ionosphere). Both are subject to turbulence, winds, and other time
variability. Dispersion in the troposphere is negligible at microwave frequencies, but in the ionosphere
it is significant for the frequencies being used for Radioastron and VSOP.

The longest round trip time currently of interest is 0.57 sec (Radioastron at 86,000 km range).
Thus, medium variability on this and shorter time scales is of concern. The effects of turbulence are a bit
too complicated to treat here. Data for the troposphere are quite sparce for the time scales of interest;
the best data are from radio interferometers like the VLA, but little is available at sampling intervals
less than 10sec. Data for the ionosphere is extensive; nearly all is at low frequencies (<1 GHz), but
extrapolation is possible since the frequency dependence is well known. Springett [4] has calculated the
effects of both tropospheric and ionospheric turbulence on the coherence loss in a 300sec integration at

'|’ Dispersion is here attributed to the medium, mainly the ionosphere, but there can also be other causes of
dispersion, such as multipath interference. All such effects are lumped together in this model. Future OVLBI spacecraft
should be designed with the uplink and downlink frequencies essentially coincident.
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22 GHz, based on reasonable extrapolations of published data, and finds that the results are acceptable
for Radioastron and VSOP. I will not consider turbulence effects any further here.

Even if the medium is static in an earth-rotating frame, motion of the earth-space vector through
the medium during the round trip time can produce significant non-reciprocity. When the elevation
angle at the earth station is low, the path length within the medium varies rapidly with elevation, and
this effect is worst if the spacecraft is at it highest speed (perigee) and will pass overhead. In that case,
and assuming that A; = A;o/sine for elevation e and zenith excess delay A;0, geometrical calculations
give

dA;
LA+ B =~ 2 TR (R ¥ ) (®)

where v is the spacecraft velocity and h is its altitude. At e = 5deg, v = 9.1km/sec, and A;p = 8.3 nsec
(typical sea level value), this is always less than 70 psec. With local meteorological data, the actual value
could be known to within 20%, allowing a correction to f,p in post processing with a residual error of
about 14 psec.

Next, consider dispersion in the ionosphere. The phase delay on an earth-space path at frequency
f is given to good accuracy by

sine

Ai = ——=N 9)

where K = 40.3m — sz(e/mz)‘l, and N is the integrated electron density or “total electron content”
(TEC) along the line of sight. Because of the f=? dependence, the effect is greater for Radioastron’s
timing links than for VSOP’s; using f = 7.215GHz for the uplink and 8.472 GHz for the downlink, we
find

€& = 3(Ai — By) = (7.09 x 10”28 sec-m?) N. (10)

The zenith TEC at any fixed earth station is highly variable, with a typical diurnal change of a
factor of six at mid latitudes and additional variations with season and the sunspot cycle. The TEC
at the horizon is typically three times the zenith value. Furthermore, short term variations (time scale
of minutes to hours) occur because of traveling ionospheric disturbances (TIDs). The overall long-term
variability is thus several orders of magnitude, and is larger near the geomagnetic equator and poles.
At mid latitudes, the maximum value (horizon) is about 10'®e/m? [6-7], in which case Radioastron’s ¢;
is 709 psec. This is fairly large, and it can vary rapidly as the earth-space vector crosses the day-night
terminator in the ionosphere. Nevertheless, the behavior is rather well understood and can be accurately
modeled. Although the variation can be rapid on a moving path, the electron density distribution is
stable for long periods of time (many days) when viewed in a frame fixed to the earth-sun vector.
Exceptions to the latter statement occur after solar flares and in the presence of TIDs. Still, even at
solar maximum, the daily variation from the monthly average for a fixed location and time of day is
rarely more than 10'7 [7] (Radioastron ¢; = 71 psec), allowing correction to this level based on model
parameters updated no better than weekly. In fact, such model parameters are broadcast by the GPS
satellites in order to allow their users to make range corrections [8] and are updated about every few
days.

Local observations of the ionosphere at the OVLBI earth stations would allow creation of improved
models. Two-frequency observations of a GPS satellite’s carrier phases (on 1.2276 and 1.57542 GHz)
allow determination of TEC in that satellite’s direction to about 4 x 10!® or ¢; = 28 psec absolute [9],
but since the errors are predominantly systematic calibration effects the measurement of variations over
several hours is at least an order of magnitude better. By observing many satellites at once, a spatial
model can be derived that allows estimation of the TEC in any direction of interest; errors in the spatial
model are not well known, but seem to be a few times 1016, GPS receivers capable of making the
necessary measurements are commercially available [10].

From the above results, it seems clear that the post processing should include the calculation of
a correction for the ionospheric dispersion based on a model that yields the TEC along the earth station
to satellite path as a function of time. At least the GPS broadcast model [8] can be used, but it should
be possible to do somewhat better, especially if local data is available. The improved estimate of the
uplink delay residual then becomes

‘f'up =i+ € (11)
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where é; is the estimate of ¢; derived from the model.

3.3 Effect of Discrepency in Predicted Transponding Times

The error term ¢, = 3(C — C") arises because the uplink delay compensation and downlink delay
prediction were computed for different positions along the predicted orbit, corresponding to the predicted
transponding times at transmission and reception, respectively (see Figure 1). The worst error occurs
when the true position Z(t) and the two predicted positions Z,(2;), £,(t2) are all along the line of sight
from the earth station. (This situation occurs in practice when the spacecraft is near the horizon.) In
that case,

1 dz
lep| = %ﬂz =] ik

and since t; —¢t; = A —C'+ B — D, we have

dz

1
[€pimax = §|A —C' + B = Dlmax T

(12)

max

Again taking the worst range error to be ¢(4 — C’) = ¢(B — D) = 1000m, and using |d&/dt|max =
9.1km/sec (VSOP at perigee), we find

lep|max = 101 psec.

Although this is fairly small, it is not necessarily negligible; it is more than 2 cycles at 22GHz. The
significance of this error depends on the time scale of its variation, as well as on the phase stability needed
for the astronomical observations being done. The rate of change of ¢, is to first order proportional to
the error in predicted orbital velocity; if |£(F — &,)| <1 m/sec, then |de,/dt| <0.1 psec/sec. The error
variation then corresponds to 1 radian at 22 GHz after about 70 sec of integration.

Estimators which avoid or mitigate this error are therefore worth studying. In an earlier report
(5], I devised a scheme that I believed would in fact avoid the error. It involved using a slightly different
method of calculating the downlink delay prediction, thus modifying both D and the measured residual
7. Unfortunately, that memo was incorrect; whatever downlink delay prediction is used in real time can
be undone later, so the final error in estimating 7, is unaffected by it. Only the estimation algorithm
is ultimately important.

The only approach so far discovered for reducing this error requires estimating it from the position
error & — &p. This might be possible in post-pass processing if the improved, reconstructed orbit is then
available, even though it was not available in real time. In such post-pass processing, it would be
necessary to reconstruct precisely the predictions that were applied in real time and then to recompute
them in accordance with the improved orbit. Specifically, the error involves C’, the uplink prediction
actually used, and C, the uplink prediction appropriate to the reception time. In the post-processing, we
assume that certain data from the real time operation is available, including the predicted orbit actually
used and the algorithm actually used to compute the uplink predictions. Then C can be accurately
recomputed (or was recorded in real time) and C’ could be computed if the true transponding time t
were known. Using the reconstructed orbit Z,.(t), we compute an estimate of the true transponding time
from

R 1. - -
t=1t4n — ;Izr(t) - g(tdn)l - B; (13)

where tqn = ty + D is the true reception time, § is the earth station position, and B; is an estimate of
the medium delay on the downlink (although neglecting the latter will have a very small effect). Notice
that (13) must be solved recursively for {. From this we can estimate the true transmission time { — A

and then the corresponding predicted uplink time C’, finally yielding an estimate of the error
& = 3(C-C"). (14)

We can apply the latter as a correction to the uplink residual estimate (5). The final uplink residual
estimate is

Tup = §7+ &+ ép. (15)
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4.0 Estimation of Integrated Doppler
The two way integrated Doppler over the time interval [t,,t;] is defined as

I'=[A(t) + B(ts) - A(ta) ~ B(ta))fa (16)

where fy4 is a fixed reference frequency, typically the nominal uplink frequency; that is, I is the change in
two-way propagation time over the interval, measured in cycles of the reference frequency. An obvious
and straightforward estimator of this is obtained by letting T = 7 + C + D, and taking

I=T(t) - T(t,). (17)

Then, from (1), R
I'=T1+[C(t)~C'(t)] - [C(ta) - C'(ta)], (18)

so that this estimator is subject to the same type of error as was discussed in section 3.3, namely that
induced by the difference in predicted position at the two predicted transponding times. This error
arises only because of the need to undo the uplink compensation, and does not arise in conventional
Doppler tracking in which no such compensation is used. Although the error gets arbitrarily small for
a sufficiently small interval ¢, — ¢, this is not helpful because the estimate is required at successive
intervals covering as much of the orbit as possible. By an analysis similar to that in section 3.3, we
conclude that the peak-to-peak error over an orbit with maximum predicted position error 1000 m and
maximum spacecraft velocity 9.1km/sec is

|- flmax ~ (204 psec) fy. (19)

This corresponds to a light distance of 61 mm that should be included in the error budget of any orbit
determination process based on this data. Of course, (19) gives the worst-case error; a statistical analysis
of the distribution of such errors over particular orbits is beyond the scope of this report.

Computation of the estimator (17) requires knowledge of the compensation and prediction delays
C, D actually used in real time. Therefore, the post-processing software must be able to re-compute
these accurately (using an algorithm implemented in precisely the same way as used for the real time
system), or the values actually used must have been recorded.
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