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Consider a simple radio telescope,

two bent wires attached to a meter,

exposed to a point source at large distance.

The rreter responds to the presence of

the source (for reasons to be discussed

below). We define D(e, 4 ) = meter deflection, where

e and q are the sky coordinates of the point source.

There will be a sky position for the point source such that

the meter deflection is a maximum. Define D = D( maxx)max max'max
and

D( 8, ) ( ) <
D
max

P is the BEAM PATTERN (or power pattern), a kind of weighting function for the

sky. It has a "zeroth" moment:

QA - bP(e, 4 ) dQ < 4ff
4f

QA is the (total) BEAM SOLID ANGLE, indicating roughly the total weighting of

the sky. One can also define

D : 4-/Q A  , the DIRECTIVITY (or GAIN)

Obviously, if is nearly 1 over a lot of the sky, then QA is larger (and D is

smaller) than if ( were nearly 1 only over a small part of the sky. We generally

try to naximize D, usually by placing cunningly fashioned pieces of metal

around our basic antenna.
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Consider that part of the beam pattern seen in i

_the plane defined by a great-circle cut through . M4 -

max' max

One can define

M - P(68,) do , the MAIN-LOBE SOLID ANGLE,

main
lobe FHPB = FULL HALF-POWER BEAMWIDTH,

and B = 0/A I, the BEAM EFFICIENCY.

Note that B = D /4ir , one of many amusing and often useless relations.

To understand the general features of the power A Er
pattern, we consider a small chunk of the

antenna. For the mcrent, we will investigate

the fields produced by the currents in this

chunk, i.e., a transmitting antenna. a.

If the current is =o e t,

with w = 2m (and assuming that we will only consider the

real parts of the final quantities), then solution of Maxwell's

equations gives

E = dAZ sin6 io
0_e o ei(t- r/c) 1 + \ ( \

2 \2/ \347rE cr r r
o

H DoAZsin is iom(t - r/c) 1

S 4 cr er

Er 1
2  

.1

E =H =H =0
r 0

(For a more detailed solution, follow chapter 9 of Jackson's Classical

Electrodynamics - but watch out for the different units.)
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In the "FAR-FIELD LIMIT", i.e., at large r, the fields are dcminated by

the terms of order l/r. In particular,

E6
-- = 377 ohms (irrpedance of free space)far-field Ec

So Ep is the only significant quantity at large r.

The emitted power is obtained from the Poynting vector-

S 1 (E xH) = (o©Z sine) 22

32 r2cC 3 r 2

the total power emitted = S"nd A

some surface
at r-+

dP -= j dA = ( AZ sin) 2  d

32 oc 3

dP - 15. (~ AZ sine) 2

do 2 o

We recognize = (dP/d) = sin2

(dP/d)
max

A d = - ; D= 4 A =  
/2

47r

= at e = 450, so FHPB = 900

The total power emitted is

Pet = dP 15do (.9az)2 40 2
= J dQ 2 0A) A 2 ( 0A)

471 A A
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At this point, one may legitimately ask about the relevance to the astronomical

problem of formulas derived for transmitting antennas. The answer is that, by

the principle of RECIPROCITY, the power pattern of a transmitting antenna is

identical to that of a receiving antenna.

Note first that, in the derivation of the fields above, we dropped terms arising

frcn the advanced potentials, i.e., terms in exp[i (t + )]. Assuming that the
c

medium of propagation is linear and passive, this was done entirely on grounds

of causality - we were thinking about the problem in terms of generating the

fields by making the currents. Had we retained the advanced terms and dropped

the retarded ones instead, we would have been solving the same boundary-value

problem, but with a different causal interpretation: what incoming fields are

required to stimulate the hypothesized currents?

ibre to the point here: suppose we have two identical antennas, one set up for

transmitting and the other for receiving. We generate a current flow A in

antenna A, and find that we measure a current flow B at antenna B. The prin-

ciple of reciprocity asserts that, if we now generate a current flow in an-

tenna B, we will measure a current flow in antenna A, and that this will be

true for all relative orientations of the two antennas.

Kraus' Antennas, chapter 10, discusses the proof of this principle.

Note, by the way, that reciprocity is not a guaranteed thing. For example, the

ionosphere is not a linear, passive medium. (We get around this by considering

the ionosphere as part of the observed source; i.e., we cheat.)

.Having satisfied ourselves of the significance of the

transmitting antenna, we now consider it .as an electri-

cal system. The antenna is equivalent to a source of

fluctuating voltage V (which we will characterize by

the mean-square voltage v2), and some characteristic

resistance.



Nyquist (1928 Phys. Rev., 32, 110) showed that a resistance Ra, at a tempera-

ture Ta, will produce a constant noise power per unit frequency interval. Thus

we will find it convenient to define the fluctuating voltage in our antenna as

arising from sone characteristic temperature of its characteristic resistance:

v2 =  4kT Av R.
a a

Thus, the power emitted into frequency interval Av is

P = kT Av
em a

In the case of a receiving antenna, we connect a

receiver (of characteristic resistance Rload) to

the antenna and draw power in the amount of Pload

2 2= v Ra/ (R +2 d)a a R 'load).

The maximum power drawn is obtained by matching the receiver to the antenna,
which requires setting Rload = Ra (cf. Kraus' Antennas, chapter 3)

2 2vR v
P P (max)=

abs load (2R
(2R ) 4R

From reciprocity, we can identify v2 arising in the receiving antenna with the

v2 in the transmitting antenna.

By Nyquist's law, Pabs= kT Av.
a

Thus, we have identified the power stimulated in the antenna by the presence

of a source with that obtained by heating the characteristic antenna resistance

to sate temperature, T.

To clarify this, imagine the antenna and the source put into a closed black box.

After some tine, the syStem of antenna + source radiation will approach thermal

equilibrium. Then, the power absorbed by the antenna (due to the radiation of the

source) must be exactly equal to the power emitted by the antenna (due to its
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characteristic temperature). The equilibrium temperature of the antenna re-

sistance, which we will now call TA, is a good thermodynamical measure of

the source intensity. TA is called, naturally, the ANTENNA TEMPERATURE.

Radio astronomers often prefer to use temperature units, rather than fluxes

or intensities, because they are the closest things to actual measured voltages

(thanks to Nyquist's Law). As we shall see below, while the specific intensity

is the most physical quantity with which to characterize a source, we can only

infer it from measurement via the difficult deconvolution of power pattern and

intensity distribution.

In real observing, TA refers to intensity contributions of all things in the

beam -- source, sky, birds, etc. Furthermore, the noise power associated with TA
is combined with noise power arising from the receiver, Pload = kTloadAv, so that

we actually measure

Tsys = T load+ T , the SYSTETEMEMPEATURE .
sys load A

Tload is usually fairly constant, but because T >> TA in most cases, the

actual measurement of TA is usually difficult.

We may characterize the sensitivity of the system as follows: v is a mean

sum of the potentials that arise from collisions among the thermally agitated

electrons in the system. So we let the rate of collisions be nc Ts . We
c sys

measure nc by just counting collisions for awhile. If we make a total of N

counts, then the uncertainty in the derived value of nc is

An
c 1 (from Poisson statistics)

c

The individual collisions are instantaneous, or nearly so. But because the de-

tector has a finite bandwidth, Av, its response to an individual collision has a

time constant, 1 S So in an integration time of T seconds, the maximum number

of independent counts that one can get is N = Av T.
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KT.or AT = sys , the RADIOMETER EQUATION.

K is a constant of proportionality, of order unity, which depends on the

specific characteristics of the receiver and the mode of observation.

Unfortunately, the thermal noise is not the only factor limiting sensitivity.

Continuum observations are affected by gain and bandpass instabilities, so

that one should more properly write

' 2 2
AT T. (l 4 + AB

sys AvT G / B

where G = system gain and B = Av (for neatness). They are also affected by

CONFUSION, which is quite literally the inability to distinguish between various

sources in the beam:

4wrThere are There are independent pieces of sky for a telescope

of given 51. Suppose there are also sources in the sky for

which T > (3 to 5) x AT. (The factor 3 to 5 depends on your
A-

choice of what represents statistical significance in the pres-

ence of thermal noise.)

Is J> 4x ? If so, then there is likely to be more than one

detectable source in a given beam.

Spectral line observations are affected by..standing waves, reflections between

the feed and various parts of the telescope that produce a frequency dependence

in the gain. In usual spectral line observations, one subtracts off-source

spectra from on-source spectra, and thus cancels out much of the standing wave.

But the wave axrplitude is generally Tsys, so the cancellation is not perfect.

Also, the standing wave is not constant with changing telescope orientation and

thermal conditions. The various imperfections in cancelling out standing waves

can add up to produce spurious signals that obscure or (worse) mimic the true

signals.
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Return to the problem of the telescope response to a source in the sky.

The incident radiation can be represented by

the specific intensity, I (0,4)

The power passing through area dA, directed into

solid angle do, is

dPi. c = Iv(0, 4) cos0 dA do dv

Thus the total power incident on the antenna is

v+Av

Pinc= - dv do dA cosO I.(0,4)

v 47r antenna

-'C

_ Y

We have allowed for the fact that the source may be extended in 0 and 4, and
have assumed that the intensities frcm each direction can be added linearly,

i.e., that the source emits incoherently.

Assuming that I is constant over Av, and that cos6l1 (i.e., that we point

the antenna at the source)

P in Av jAI (0,4) dQ
4 7r

A = physical area of telescope

Of course, Pabs Pin in general. We usually write

P = 4 v do A (O,) I (e, )

47

Here, the factor comes frcm assuming that the radiation has equal intensity

in orthogonal polarizations, and that the telescope is sensitive to only one

polarization. Also

A (0,4) = AP(0,4)

A = EFFECTIVE AREA of the telescopee

A E A/A = APER TURE EFFICIENCY, which depends on such details

as how the feed illuminates the reflector, how much the

feed legs block the reflector, etc.

We also define S =
. v

L d I , (0,4)) , the FLUX DENSITY of the source.

source

1 .

.



If the source is small cctpared to the size. of the main lobe, then

P b Av AS
abs e v

One can derive the relation X1 = A A from a detailed analysis of the

field and current distribution over the aperture (cf. Kraus' Radio Astronomy,

chapter 6, esp. § §6-2, 6-7). This can be ccmbined with the above relations

to get such formulas as

D = A (our version of the Rayleigh formula)

n A A2

(etc.)

Combining 12= AeQA with Nyquist's Law, we find the final expression for what

we measure:

T - 2 1 daP(e,0) I (8e,)
A 2k : :

A 4r

Now, recall that for a black-body, Iv = 2hv (e h/kTB -1)-v 2 -1)

In the case h << kT , I 2kTB c
2 " This suggests that it will be

convenient to define a RADIATION TEMPERATURE

J(TB)

Note that J(TB) + T in the limit hv << kTB . In fact, because hv << kTB
was generally true in early radio astronomy, it was conventional to skip

this step and just define the BRIGHTNESS TEMPERATURE TB X2 i/2k (e.g.,

Wild 1952 Ap. J., 115, 206)

For the sake of convenience, we will also substitute TB for J(TB ) in the

rest of these notes. But it is important to remember the distinction, be-

cause much radio astronomy is now done at millimeter wavelengths, where

hv << kT is not true. So before using the expressions below, check hv/kT

and decide whether or not to substitute

T J(T = hv (e h/kTB _)-1
TB (TB -- (e -)
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We now have the traditional expression

TA= - 4-- da (8,) T B (,)

SA 4Trr
We can consider two important limiting cases:

) rTB, constant (over S « :)

If TB(, ) =
O (elsewhere)

then T S S ST
A A B B B

SQiM is called the DILUTION FACTOR.

ii)
TB (over ,S ,' but S <<  A

If TB(O,) =

O (elsewhere)

then T- T = T.
A

While these two cases can be used frequently, the true situation almost

always involves the more camplex convolution of (e6, ) with TB (6, ).

The actual physical conditions of the source are coded into I via the

EQUATION OF TRANSFER. We can show by inspiration (argument from first

principles is much harder) that along a line of sight

dl = j ds - k I ds, klre
V v v v

j and k are the volurme emission and volume absorption coefficients,

which depend on the physical conditions along the line of sight.

dI
-- k I

ds =v - k

We define the OPTICAL DEPTH, dT = k ds

dI j
v -v,

We can thus derive a formal solution for integration along a path from

I tO 2 -(T 2 -TI) 1 T2  v -2 )
I (T 2) = I (T1 ) e + dT - e
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2
Generally, we define T1 = 0, radiation terperature J(TB) 2

2k
2  j

and SOURCE RADIATION TEMPERATURE J(TS) = So2 2k

TB(T 2) = TB( 0 )e + TS (T)e dT

0O

where we have incautiously adopted J(TB) TB, J(TS) + TS .

If the source function j,/kj, is uniform along the path, i.e. TS () = const.,

then
-T 2  -Tz

TB (2) = TB(0)e T (l-e

Note that, if T2 << 1, TB(T 2 ) TB(0) + TST2

and if 2 << 1, TB( 2) TS

Finally, we often observe a source by comparing a measurement on-source with

one made nearby, but off the source. Defining TB(0) = Tbg, the background

brightness temperature, and dropping the subscript Z's that have been clut-

tering the equations, we have

TB (on-source) = Tbg e + TS (1-e - )

TB (off-source) = Tbg

and ATB = TB(on) - TB(off) = (TS -Tbg)(l-e -).

ATB is often called the EXCESS BRIGHTNESS TEMPERATURE.

Note that if TS > Tbg, the source appears in emission, while if TS < Tbg,

the source appears in absorption.


