
PROJECT 2.625
PULSAR SIGNAL PROCESSOR

MEMO NO. 9

Appendix II

The Multi-Channel Spectrum Analyzer

A. M. Peterson, K. 3. Chen

Stanford University, Stanford, California

Abstract

The Multi-Channel Spectrum Analyzer (MCSA) is a special-purpose digital signal processor.

Its main function is to filter a wide-band signal into many narrower bands, so that each of the

output bands has a bandwidth that is a better match to the signal being searched for.

The basic MCSA provides simultaneous output bandwidths of approximately 1 Hz, 32 Hz,

1024 Hz and 74 kHz over a spectrum that is about 8 MHz wide. The input to the MCSA consists

of a complex signal sampled at 10 MHz, and the outputs consist of either complex samples or

power (square-law detected) samples. In addition, the MCSA provides an accumulator for taking

the integral of the power of the output bands for periods up to 1000 seconds.

The MCSA hardware is constructed using wire-wrap technology. The implementation of the

hardware is done with the aid of a computer program developed specifically for the design of

the MCSA. Care has been taken in the MCSA design to ensure that engineering tradeoffs do not

adversely affect the performance of the system.

General Description

Instead of using a single large Fast Fourier Transform (FFT), the MCSA derives its narrow

bands by cascading two stages of digital bandpass filters with moderate sized Discrete Fourier

Transforms (DFT) . FFT operations do not yield convenient signals for deriving the intermediate

bandwidths that the MCSA delivers. Furthermore, it is possible to provide better Radio Frequency

Interference (RFI) rejection with the bandpass filter technique. An FFT has a worst-case sidelobe

(adjacent bin) response that is only 13 dB below the response of the main lobe. A bandpass filter

II-I

can be designed to give more than 70 dB of adjacent channel rejection.

The first bandpass filter splits the input signal into 112 bands, each approximately 74 kHz

wide. Each of these 74 kHz-wide signals is then filtered by a second bandpass filter which fu1 ther

subdivides the signal into 72 bands. Each of the resultant bands is about 1024 Hz wide.

The 1024 Hz signals are then fed either to a 36-point DFT or to a 1152-point DFT to form

the final 32 Hz or 1 Hz outputs, respectively.

Each of these bandwidths (1 Hz, 32 Hz, 1024 Iz and 74 kHz) is available as an output of the

MCSA. The magnitude squared value of each output sample is computed and is available as the

square-law detected power output. Except for the 74 kHz bandwidth, the complex signals from

the other bands are also available as outputs.

The memory required to do real-time transforms is equal to twice the size of the transform

- one block of memory being required to buffer a block of data while the second block is having

the transform operations done to it. By using relatively small transform sizes in the final DFTs,

the need for a main memory that is twice the size of the MCSA bandwidth can be avoided. Thus,

a substantial saving in memory cost is made by applying the bandpass filter - DFT technique

compared to a single large FFT, offsetting the extra cost needed to implement the bandpass filters.

Internal to the MCSA , the sampling frequency of a given signal is kept a fraction larger than

its analysis bandwidth to prevent additional noise from aliasing into the band of interest. If this

were not done, it would be impossible to avoid a substantial degradation of the signal-to-noise ratio

(SNR) near the extremes of the band, however sharp the cutoff of the filter is. A sharper filter

reduces the size of the region that gets severe aliasing, but could not prevent a 3 dB loss of SNR

at the edge of the band due to aliasing. The sampling frequencies used were chosen such that for

each filter, the additional aliased noise is kept below 0.1 dB.

The use of oversampling causes the DFT transform sizes to come out to be non-power-of-

two's. This is not a disadvantage, however. Through the use of newly developed DF T algorithms

(called the Generalized Winograd DFT Algorithms), the computational efficiencies achieved are

comparable with that of power-of-two FFT algorithms. Hardware complexity has increased (more

II-2

a

hardware is needed in some cases, faster hardware is needed in others) because of oversampling.

This, however, is unavoidable unless a substantial loss in SNR can be tolerated.

Bandpass Filter # 1

The first bandpass filter (see Appendix II-A) operates on a complex input that is sampled at

10 MHlz. Each of the real-imaginary pair of samples is made up of a pair of 8-bit binary numbers

taken by an A-D Convertor subsystem that precedes the MCSA.

Before being given to the bandpass filter, each 8-bit sample is further quantized into a 4-bit

representation to reduce the arithmetical complexity of this very high-speed stage. It was found

that, with a signal that has Gaussian statistics, the loss in SNR due to the quantization of the

signal to 4 bits is no more than 0.05 dB. Coarse quantization of a signal has been a neccessity in

many systems that are required to operate at high speeds. However, careful analyses have shown

that very low SNR losses can indeed be achieved without having to quantize the signal into very

fine levels, providing the quantization parameters are held to some given values (see Appendix

II-B).

The first Bandpass Filter is implemented as two identical banks of filters. Alternate 74 kHz

passbands appear at the outputs of either of the two filters the even 74 kHz-bands appearing at

the outputs of the first filter bank and the odd 74 kHz-bands appearing at the outputs of the second

filter bank. The basic filter bank separates its input into 72 bands, of which 16 are discarded,

retaining 56 of the bands as outputs. The 16 discarded bands represent the part of the input signal

that has substantial amounts of noise aliased into it by the sampling process.

The input signal, following the 4-bit quantization, is applied directly to the input of the first

filter bank. Before being applied to tlhe second filter bank, the input signal is shifted in frequency

by 74 kHz. The frequency shifting is achieved by the multiplication of the input signal by a

complex sinusoid at the appropriate frequency, done digitally. The output of the frequency shifter,

quantized to 4 bits, is then applied to the input of the second filter bank.

Each of the two filter banks consists of a 2 8 8 th order Finite Impulse Response (FIR). filter

and a 72-point DFT. The 72-point DFT is implemented with an 8-point FFT followed by a 9-point

I-3

DF T.

The 8-point FFT is realized with hard-wired pipelined logic circuits. A table-lookup Read-

Only Memory (ROM) is used to implement the only multiplication, the scaling of a value by V ,

required to perforin an 8-point FFT. The number representation at this stage (and successive

stages) is kept at 16 bits.

The 9-point DFT is implemented with 8 special-purpose programmable processors (see section

on DFT Processor) working in parallel. A single micro-programmed controller controls all the 8

DFT Processor (also the 8 DFT Processor in the other bank of the filter).

The multiplication by the filter weights of the FIR filter is done with table lookups using

ROMs. The FIR filter taps are partitioned into 4 sets of taps. One table is used for each of these

sets of coefficients. For each table, a datum from a filter tap (4 bits) and the index of one of 72

filter coefficients (7 bits) form the address to the table. The output of the table-lookup is a 16-bit

number which represents the product of the datum and the filter coefficient pointed to by the 7-bit

index. This implementation resulted in substantial savings in hardware which would otherwise be

needed if actual multiplications were performed.

As a consequence of using the table lookup technique to perform multiplications, the input

data need not be the result of a uniform quantization of the input signal. Each 4-bit datum can be

merely some known representation of the signal value, the actual conversion of the representation

to its actual value taking place within the table-lookup process itself. Non-uniform quantization

provides both a better SNR and less susceptibility of the SNR to changes in the system gain.

Bandpass Filter # 2

Each of 112 74 kIHz-wide signals at the output of the first Bandpass Filter is further filtered

into bands that are 1024 Hiz wide. Conceptually, this is done with 112 bandpass filters. In actual

implementation, this is done with only 28 separate filters, each filter capable of performing the

task of bandpass filtering 4 different 74 kHz-wide signals.

Each of the second stage Bandpass Filters consists of a 2 0 1 6 th order FIR filter together with

II-4

a 144-point DFT.

The FIR filters in the 2 nd Bandpass Filter are implemented with actual multiplications rather

than with lookup tables. The representation of the signal at this point is a 16-bit quantity, making

any lookup table prohibitively large. The summation of the 14 active taps (equation (A.2) of

Appendix II-A) is performed within an integrated circuit Multiplier-Accumulator (MAC). Since

the MAC maintains a 35-bit internal accumulator, no precision is lost through the arithmetical

operations even though the number of active taps is high. This enables us to implement filters

which have stop-band rejections that are better than 70 dB.

The 144-point DFT is performed by microprogramming the same special-purpose processor

that is used in the first Bandpass Filter. The transform algorithm consists of a 16-point DFT

followed by a 9-point DFT.

The signal at the input of this stage is oversampled by a factor of 2. Thus, of the 144 bands

available at the output of each of the 2 nd Bandpass Filters , half are discarded, retaining only 72

bands, each 1024 Hz wide.

Main Memory

The main memory is logically partitioned into blocks of 384k bytes (96k complex words, 16-bit

real and 16-bit imaginary components) each. Each block provides enough memory to process a 74

kHz slice of the spectrum in real-time. The entire 8 MHz bandwidth (8,257,536 channels, at the

1 HIz resolution) is covered with 112 memory banks, making up approximately 43M bytes (10.75

million complex words) of memory. The memory uses dynamic random-access memory circuits.

Data are written into the memory from the output of the second bandpass filter (bandwidth of

1024 Hz). The stored data are then read out of the memory and forwarded to the final DFT

Processors, in the order that they are expected. Thus, the function of the main memory can be

envisioned as a permutation operation on the data.

36-point and 1152-point Discrete Fourier Transforms

Two sets of DFT Processors are used to filter the 1024 Iz signals into the final 32 IHz and 1 Hz

-II-5

bins. Fourteen processors are used in parallel to perform the transforms required to produce the

32 Hz outputs, and 28 processors are required for the transforms which result in the 1 Hz output

bins.

The first set of DFT Processors is programmed to implement 36-point Fourier Transforms.

The 1024 Hz signals are oversampled by a factor of 1.125. After the 36-point transform, four of

the output bins are discarded, leaving 32 bins, each covering 32 Hz of bandwidth. The second

set of processors is programmed to perform 1152-point transforms. Only 1024 of the output bins,

representing 1024 Hz worth of bandwidth at the resolution of 1 IHz, are retained.

The DFT Processor

A special-purpose microprogrammable processor, which we have called the DFT Processor, is

used thoughout the MCSA to implement the various transforms. In the 1 St Bandpass Filter, it is

programmed to perform a 9-point DFT. In the 2 nd Bandpass Filter, it is programmed to perform

a 144-point DFT. For the final transforms, the DFT Processor is programmed for either a 36-point

DFT or a 1152-point DFT.

Although designed with the efficient implementation of the Generalized Winograd DFT algo-

rithms in mind, the DFT Processor can also be programmed to perform other arithmetic-intensive

tasks.

The DFT Processor is designed as a pipelined processor, with 2 Arithmetic-Logic Units (ALU)

and a hardware Multiplier-Accumulator (MAC). The processor cycle-time of the DFT Processor is

167 ns, corresponding to the processor clock frequency of 6 MHIz. The two ALU's and the MAC are

capable of concurrent operation with proper programming, this gives the DFT Processor the

equivalent capability of an 18 MIPS (million-instructions per second) machine. The processing

elements themselves need perform no input-output operations - the local memory is doubly

buffered; while data are being read into one section of the memory from the previous stage, the

data in the second section of the local memory are processed by the arithmetical elements. The

DFT Processor outputs are handled in a similar manner. All the input-output operations are

II-6

performed concurrent to actual computations; all compute cycles are therefore usable.

The program (microcode) for the DFT Processor resides in random-access memories (RAM)

on a DFT Controller module. A single DFT Controller is used to control the DFT Processors

that perform an identical task (such as the 28 DFT Processors performing the 1152-point DFT).

The microcode for each DFT Controller can be downloaded from floppy-disks by an LSI-11/23

microcomputer, used as the MCSA controller. It is possible to change algorithms in the field by

reloading the microcode. The DFT Processors doing the 1152-point transforms, for example, may

be reprogrammed to process the 1024 Hz signals in a different way.

Design Aids

Much of the tedious work in the MCSA design is alleviated by a computer program which

produces the wire-wrap tables. The program has access to a data-base of all the integrated circuit

types used in the MCSA. A designer using this program could ignore the details of the integrated

circuits such as physical pin positions, input loadings and output drive capabilities. The aim of

this program is to allow a designer to concentrate on the functions of a board rather than having

to keep track of every single detail. It provides the designer a tool analogous to what a high-level

language provides a computer programmer.

The input to the program is a file of circuit descriptions. The integrated circuits used are

declared, much like variable declarations in computer programming languages, giving their types

and locations on the wire-wrap board. After that, each node in the design is defined by the symbolic

name of the integrated circuit, as defined by its declaration, and the mnemonic representing a given

pin on the integrated circuit, defined by a data-base entry for the particular integrated circuit

type. The actual location on the board of each pin is kept track of by the program. To relocate an

integrated circuit on a board, for example, one simply changes its declaration line, and the input

file is resubmitted to the program.

In addition to symbolic module names, symbolic signal names can also be declared. The

wire-wrap program creates interconnections between nodes that reference the same signal name.

A macro facility is provided for making repetitive commands, such as the wiring of data and

II-7

address buses, less laborious. In addition to having the designer spend less time on defining the

circuit, errors are minimized and checking is also simplified.

The program provides an output file that can be written onto a magnetic tape which can be

directly processed by an automatic wire-wrapping machine. In addition to the output tape, the

program provides a printout of the circuit board layout, a cross-reference listing and a signal run

list. The latter items aid in the debugging of the design in addition to providing a uniform set of

documentation for the MCSA. Thus, from a file of circuit descriptions typed in by the designer,

the result is a completely wired board from a wire-wrap machine.

The wire-wrap program is implemented in the C Programming Language and currently runs

on the DECSYSTEM-20, using about 150k bytes of memory.

II-8

Appendix II-A

Digital Bandpass Filter

The Digital Bandpass Filter in the MCSA is implemented by combining the operations of a

Finite Impulse Response filter with an inverse DFT.

An nth order Finite Impulse Response (FIR) filter (also known as a Transversal filter or a

Tapped delay-line filter) consists of a delay-line of length n. Each of the delay stages has a tap

brought out and multiplied by a gain constant. These weighted taps are then summed together at

a single common node, forming the output of the FIR filter.

Consider an input sequence to the FIR filter that is in the form of a single impulse at time

to. As time increases, the impulse appears at successive taps of the delay-line. Since the output

is simply the sum of the weighted taps, the response of the FIR filter to a single impulse is just

the time-ordering of the weights of the FIR filter, which, by definition is the impulse response of

the filter. Notice that the impulse response is identically zero before time to and after time t,-1

(n - 1 time units later) which leads to the term Finite Impulse Response filter.

For an arbitrary input sequence x,, the output sequence of an nth order FIR filter with weights

h ,/ = 0, 1,..., n - 1 is given therefore by

n-1

y = , Zph. (A.1)
/ --

A linear time-invariant filter is uniquely determined by its frequency response, which is just

the Fourier transform of its impulse response. Thus, by an appropriate choice of the weights for the

FIR filter, we can approximate varioqs filter responses in particular, Lowpass filter responses,

which are of primary interest here.

Various techniques exist for the determination of the FIR filter weights (impulse response) for

realizing lowpass filters. The filters in the MCSA were designed with the Remez algorithm and the

application of Dolph-Cebydev windows.

Now, consider an FIR filter of order nm, for integers n and m, defined by its filter weights

II-9

hxXzzzO,,...,'nm-1.

Given an input sequence xi,, we define y" , c 0, 1,..., n - 1 by

m-1

= Z x 1C,, htrl.. (A.2)
--p

This is a slight variant from the simple FIR filter in that there are n outputs, each computed as a

sum of a subset of the taps of the delay-line. Each of the m components of the impulse response

h, in equation (A.2) is termed an active tap of the filter. From this, we take the nth order inverse

DFT of y', to obtain the sequence z', i.e.,

z, = yv e ' (A.3)
CL --- 0O

Defining

H' = h, e0 , (A.4)

equations (A.2) and (A.3) can be combined and rewritten as

nm-1

z' = x,, H .(A.5)

J =0

Notice that equation (A.5) has the same form as equation (A.1), except for a different impulse

response for each index r. From equation (A.4), we see that each of the impulse responses H' is

simply the impulse response of the prototype filter, h, that has been translated in the frequency.

domain by the amount n.

Thus, if the prototype filter were a lowpass filter, each output signal z' would be a bandpass-

filtered output of the input signal x, 'the location of the passband being a function of i. If the

prototype lowpass filter has a bandwidth of n, then the rc outputs would represent passbands which

are non-overlapping and span the bandwidth of the input signal x.

Furthermore, given that each band is precisely in width, by undersampling each of the

output signals by a factor of , each signal is folded precisely into a lowpass (baseband) signal

that is ~ wide, but representing its original bandpass. This implies that the entire arithmetical

II-10

operation need be done only once each n time units. The computational complexity of an n band

Bandpass Filter has thus been reduced approximately to that of a single FIR filter together with

an n-point inverse DFT, at a computational rate of one iteration per n time units.

It should be pointed out that the inverse DFT is used here in an operational sense and not

in the manner the inverse DFT is usually interpreted to be. Notice from equation (A.5) that even

though the input signal has gone through a DFT, the signal z', for each rx, remains a time-domain

signal. I.e., for a given ic, zg, z+l, z+2g, .. . form a time sequence.

II-11

Appendix II-B

Signal-to-Noise Ratio Loss due to Quantization

Given a signal with Gaussian statistics that gets quantized to a 1 bit representation (i.e.,

only the polarity of the signal is preserved), it has been shown that there is no loss of spectral

information, except for a degradation in the signal-to-noise ratio (SNR) of about 2 dB. This well-

known fact has been applied to systems which require high speed arithmetical operations.

Here, we shall derive the SNR loss for a general n-bit quantizer, given that the signal has

Gaussian statistics. We shall also require that the quantizer be linear (but not neccessarily uniform).

Other constraints will be introduced'at the appropriate times.

Let x(t) be a Gaussian process. Then, the random variables x(ti) and x(t 2) are jointly Gaussian

with the joint probability density function of

1 ex 1 + x 2 - 2Px(T)xlx2
f(x, 2) ex 2(1- P1()))-2

where xl = x(t1) (B.1)

2 x(t 2)
T7 = - t2 .

Without any loss of generality, we can assume the variance a2 to be unity. If we also assume

that px(T) < 1 for Tr 0, then equation (B.1) can be approximated as

1 x2 + x 2 - 2px(T)xlx2
f(xa, 2) - jexp(--)2 (B.2)

The second assumption implies that the power of any coherent signal is much smaller than the

total power of the process x(t).

Let 2(t) be the process which results from passing x(t) through a quantizing function E(.).

I.e., 2(t) = E(x(t)). We shall impose the restriction that E(.) be a bounded function. The

Autocorrelation function Ra(7) of the process ^(t) can then be written as

00oo -0oo

II-12

In the limit Px(T) --+ 0, and using equation (B.2),

oo oo

R-) = d J dx J dx2E(x dl)(x2)(1+2px(T)xlx2) exp(-)2

-00 -00oo

21 2

R2f(r) dxdx x l(x) exp(-- p~x(). (B.5)

0

By definitiondx dx 2 XI(x)x 2 (x 2)exp(

-00 -00

(B.4) vanishes, l (B.eaving

= d_ 2(e(/ xp(- -).

0

ByFrom equafinitions (B.5) and (B.6), we obtain the normalized autoorrelation function

Re()x 0) J fdxL2
((x)x

21r 2

Thus, we see that the normalized autocorrelation function p(-) of the quantized process has

changed with respect to autocorrelation function px(T) of the original signal by a constant factor

__~= p ('r) dz_2 (0 dxx 2(x) ex())Px(T) -f d 2dx (x) exp(-) (B.)

The power spectrum Sm(w) of a signal x(t) is simply the Fourier Transform of its autocorrelation

function. By normalizing the autocorrelation function in the above equations, we have kept the

" II-13

total power of the process constant, independent of the quantizer function. We see from equation

(B.8), that by doing this, the autocorrelation function, thus, the power spectrum, of a quantized

process has suffered a loss in gain with respect to the total power (signal + noise) of the process,

i.e., by quantizing a signal, we have suffered a factor of (loss in the SNR.

Given any bounded function '(.), we can compute (from equation (B.8). A 1-bit quantizer

can be described by 8(x) = sgn(x). With this, equation (B.8) evaluates to , which is precisely

the value previously obtained for the SNR loss for the hardlimiting quantizer.

For quantizer laws that are piecewise-constant (such as A-D convertors), equation (B.8) can

be further simplified. Let a piecewise-constant quantizer be described by

B(x) = i for E (vmi:I, v i), i 1= , 2,..., n, and,

B(x) = -- (-x) for x < 0

where 0 = xo < x1 < ... < x,_- < x, = 00oo.

Then the SNR loss is given by

__2 [ilexp(-) _- xp(x)] (B.9)

S6 2 [erf(xi) - erf(xi- 1)]

where erf(.) is the Error Function.

Given an m -bit uniform quantizer (i.e., x - x-1 = a for i = 1, 2,..., 2 m-1), we can vary

the quantizer stepsize, a, to obtain a minimum (from equation (B.9). This would then represent

the optimal uniform quantizer for a signal with Gaussian statistics with a variance a2 = 1. (The

optimal quantizer stepsize for a non-unit variance signal is scaled accordingly.)

The following is a table of the SNR losses sustained by optimal m -bit quantizers:

II-14

m SNR Loss

1 1.961 dB

2 0.550 dB

3 0.166 dB

4 0.050 dB

5 0.015 dB

6 0.005 dB

7 0.001 dB

It should be noted that an ordinary A-D Convertor does not satisfy the constraint that the

quantizer law be an odd-valued function unless a bias equal to half a bit is introduced.

II-15

