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SPECTRAL PROCESSOR MEMO NO. 25

MEMORANDUM February 13, 1985

To: Spectral Processor Group

From: R. Fisher

Subj: Some Experiments with an Integer FFT

A number of experiments with the computer simulation of
the spectral processor multiplier and accumulator are described
in this memo. These experiments were performed to develop a
feel for the characteristics of the spectrometer and to try
to uncover any peculiarities that might be corrected in the
early design stages. If you have any comments on my interpretations
of the results or if you have any suggestions for other experiments

please let me know.

In all of the following experiments the input levels are
referred to the A/D resolution of 1 level = 1/63rd of its total
range (6-bit word) from +31 to -32. Unless otherwise noted,
the A/D is assumed to produce an output of zero with an input
between ± 0.5 levels.

Output power word sizes.

The A/D and FFT multipliers are assumed to use 16-bit,
fractional two's complement arithmetic with the ten least significant
bits from the A/D set to zero. The fractional arithmetic and
one-bit shifts associated with every add operation prevents
word overflow anywhere in the FFT from the strongest CW signal
that can be accommodated by the A/D converter. A consequence
of this is that the average level of white noise in the FFT
is half of a bit (fr) lower in each successive FFT stage, and
because of squaring to obtain the power spectrum each additional
FFT stage reduces the average noise level in the accumulators
by one bit.

With an input noise rms of 1 level the 1024-channel FFT
produced an output power level of about 576 (assuming the binary
decimal is at the least significant end) or an average word
width of about 9 bits. (The maximum possible output word width
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is 30 bits.) Dropping 3 FFT stages to produce 128 channels
per input will produce an average power word width of 12 bits.
The distribution of power products for one FFT output in the
1024 channels is shown in Table 1.

TABLE 1

Single FFT output power statistics, 1024 channels,
input noise rms = 1 level.

Power Level Number of Cumulative Number
Range Channels of Channels

0- 31 60 1024
32- 63 50 964
64- 127 113 914

128- 255 169 801
256- 511 234 632

512-1023 237 398
1024-2047 126 161
2048-4095 34 35
4096-8191 1 1

Effects of rounding power words.

To minimize accumulator memory space the output power word
size must be reduced by dropping some of the least significant
bits. Even if these words are rounded instead of truncated
some bias is introduced by word size reduction because of the
asymmetric distribution of values around the mean as shown in
Table 1. This distribution should be independent of input amplitude
and number of channels. Table 2 shows the results of the average
of 256, 64 channel FFT operations on the same gaussian random
noise with different numbers of bits rounded in the power words.
The average word widths under these conditions was about 13
bits. Two effects of importance to the spectrometer are evident
in Table 2.



TABLE 2

Effects of rounding output power word.

Measured Rms/Avg

Number of Average Level rms of Degra-
Bits Dropped Level Reduction Spectrum dation

0 8824.4 ---- 470.4----

10 (- 1024) 8821.6 0.03% 469.3 1.00
11 (- 2048) 8811.5 0.15% 470.4 1.00
12 (+ 4096) 8762.8 0.70% 486.8 1.04
13 (- 8192) 8546.0 3.15% 507.3 1.11

14 (+16384) 7670.0 13.08% 569.2 1.39
15 (+32768) 5274.0 40.23% 705.9 2.51

The first is the obvious one of increased noise due to loss
of low order bits. The second is the reduction in average level
due to rounding an asymmetrically distributed set of numbers.
This will cause a distortion of a curved noise spectrum because
each channel will have a different average level, and rounding
will reduce the level of channels with low output more than
those with high output. This distortion is predictable and
could be corrected using only the information in the spectrum
itself assuming that the noise power is constant during the
integration.

Rounding of the power word should be done at least two
bits below the average. If we assume that the lowest input
noise rms = 1 A/D level under normal operation, a 128 channel
spectrometer could drop 10 bits and a 1024 channel configuration
could drop 7 bits. This would allow some operation of about
half of this input level (-6 dB) if reduced sensitivity and
spectrum distortion are less important than dynamic range, and
operation at higher input levels would provide a reasonable
margin above the rounding limit to produce a stable spectral
shape. For example, if the input rms = 5 A/D levels the rounding
would be about 6 1/2 bits below the average, and the amplitude
distortion would be about 0.001% or about 0.6 mK for a 50 K
system temperature which would be reached in 50 hours of integration
on a 1024 channel, 40 MHz spectrum.

In memo number 24 I suggested a 24-bit accumulator word
width, but the assumption of the lowest order bit just covering
the average power level with 1 level input rms has now been
changed by 2 bits. The next increment in word width is 28 bits
so the extra two bits could be used to cover most of the added
range needed by the cases of fewer FFT stages. I now favor
a 28-bit accumulator word width.
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Sensitivity loss due to quantization of input waveform.

The loss in sensitivity due to quantization of the input
waveform has been well documented by others, but out of curiosity
I ran a few tests of this with the spectrometer simulation and
the results are shown in Table 3. The ratio of output noise
power to the standard deviation of this power remains constant
with variation of the input quantization, but the relative amplitude
of a CW signal decreases with increasing quantization so the

signal to noise ratio of the CW signal was measured.

Two cases are shown in Table 3. One uses the normal ± 0.5
level A/D quantization and the other changes the A/D output
from zero to one at zero volts input (zero-slicing). The sine
wave peak amplitude was approximately equal to the noise rms.
At low input levels the zero-slicing A/D has an advantage over
the ± 0.5 level case because the state changes still occur at
very low signal levels in the former. At normal operating levels
the difference between the two cases is very small. The ± 0.5

slicing case has the advantage of a much smaller DC channel
amplitude that would be easier to handle in the accumulator.
Note that the relative signal to noise ratios in Table 3 are
themselves subject to some random error even though the input
signal is identical in all cases.

TABLE 3

CW signal-to-noise ratios vs. quantization level.

Input noise Relative CW signal to noise
rms in + 0.5 level Zero

A/D level slicing slicing

4 ..... 1.0 (ref) 1.0 (ref)

1 ..... 0.95 0.93
0.5 ..... 0.68 0.76
0.4 ..... 0.62 0.68
0.3 ..... 0.46 0.58
0.2 ..... 0.24 0.57

CW harmonics due to input quantization.

A symmetric A/D converter will produce odd harmonics when
sampling a pure CW signal due to quantization errors, and these
harmonics or their aliases will appear in the spectrum of the
A/D output. The addition of noise to the CW signal will tend
to destroy the coherence of these harmonics, and to determine
the harmonic amplitude reduction that can be expected from noise
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a number of accumulated spectra were computed with different

CW signal and noise levels. The results are shown in Table 4.

TABLE 4

CW harmonics as a function of quantization and added noise.

Relative harmonic strength
Harmonic CW rms in A/D levels Noise rms in A/D levels

Number (no noise) (CW rms = 0.7

0.7 1.1 3.0 0.2 0.5
dB dB dB dB dB

Fundamental 0 0 0 0 0

3 -16 -21 -24 -27 <-40
5 -25 -17 -23 <-40 <-40

7 -18 -20 -28 -24 <-40
9 -18 -27 <-40

11 -24 -40 <-40
13 -47 <-40 <-40
15 -26 <-40 <-40

17 -24 <-40 <-40

The measurement of harmonic strengths weaker than -40 dB
would have taken too much computer time, but it seems safe to
assume that with noise rms values greater than 1 A/D level the

harmonics will be much weaker than -50 dB.

Noise amplitude distortion in the presence of a strong CW signal.

With a one bit A/D converter a CW signal with a strength
comparable to or stronger than the noise power will severely
distort the sample statistics and reduce the measured spectral
noise power in proportion to the CW strength. A similar but
smaller effect must happen with a multibit A/D so a few relatively
extreme tests were performed with noise in the presence of a
CW signal with the spectrometer simulation.

The results are shown in Table 5. With noise rms values
greater than 1 A/D level there appears to be very little effect
on the measured noise power from strong CW signals.



TABLE 5

Noise spectrum distortion from CW signals.

Noise rms CW rms Noise power
in A/D levels in A/D levels suppression

Zero slicing
0.3 4.0 15%
1.0 4.0 <0.02%

+± 0.5 slicing
0.3 4.O 37%
1.0 4.0 <0.01%

Overflow in the FFT arithmetic.

I said in the first section that the FFT arithmetic is
such that overflows are avoided. This is true for strong coherent
signals but not strictly true for strong noise. In the third
and following FFT stages there are instances where the sine
and cosine components of the rotation coefficients are both
near 0.7, and if both real and imaginary components of the B
inputs of such a butterfly are near one the sum of the sine
and cosine products will be greater than one; hence, an overflow
will occur. The probability of overflow depends on the number
of large random noise data values.

Table 6 shows the fraction of overflows per butterfly operation
in the third FFT stage as a function of input noise level.
Because of the decrease in average noise levels in later stages
no overflows were seen in any stage but the third. The noise
levels shown in Table 6 are much higher than would be used in
normal operation, but this simulation could not process enough
data to measure very small overflow probabilities so we have
to rely on an extrapolation of the high level results.

The third column in Table 6 gives the fraction of data
points which are equal to the maximum possible value from the
A/D converter. This fraction should be a good predictor of
the overflow probability, and, in fact, the number of overflows
measured is proportional to the fourth power of the fraction
of maximum A/D values as would be expected from the fact that
four large input data points in the right places are required
to cause an overflow.



TABLE 6

Overflow probability vs. input noise level.

Noise rms No. of overflows per Fraction of

in A/D levels butterfly operation maximum A/D levels

3000 4.3 (± .7) x 10_ 0.99
600 3.1 (± .6) x 10 -  0.963
300 2.1 (± .5) x 10- 0.91_3
200 1.7 (± .5) x 10- 0.87_3
100 1.0 (± .3) X 103 0.75_3

50 0.20 (± .05) x 10 0.52
25 <0.02 x 10 - 3  0.20

Using the fourth-power law derived from the data in Table 6
the probability of having an overflow in one second with the
spectrometer accepting a 40 MHz bandwidth and a noise rms of

10 A/D levels is 10 - 6. With a noise rms of 15 levels the probability
is 0.13 under the same conditions. Even the 10 level rms is
higher than we would normally put into the spectrometer so the
overflow probability is -acceptably small without reducing the
noise level in the third stage.

To see what effect adding a CW signal to the input noise
would have on the overflow statistics a 40-level peak-to-peak
sine wave was added to the 50-level rms noise case. The result
was a 50% decrease in the overflow probability because the noise
statistics were biased against having all of the required high
level input conditions at the susceptible butterflies to cause
an overflow.

Spectral distortion due to A/D quantization.

The effects of severe quantization in one and two bit auto-

correlation spectrometers have been studied in considerable
detail by others. Since the autocorrelation and Fourier transform
spectrometers are equivalent in this respect we can use the
work connected to autocorrelators as a guide in predicting the
errors that can be expected in an FFT device. My thanks go
to John Granlund for some very helpful discussions in this area.

Quantization error can be looked at in two ways. It reduces
the relative intensity of low level correlations with respect
to perfect correlation at zero delay in the autocorrelation
function of an RF signal. This can be seen in Figure 1 which
is a plot of correlation values for quantized vs. unquantized
signals. Each curve represents a different degree of quantization.
Viewed in the spectral domain the quantization nonlinearity
generates harmonics and mixing products of all frequency components
in the input spectrum. These products or their aliases are
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laid over the true spectrum. If the unquantized signal is noise
with a reasonably flat spectrum within the sampled passband
the error spectrum will be very nearly white and will appear
mostly as a DC offset in the true spectrum. In the autocorrelation
function this means that the slope at low correlations in Figure
1 is not unity and, hence, does not pass through the zero delay
correlation point.

The degree to which the error spectrum is not perfectly
white depends on the complexity of the true input spectrum and
the size of the quantization errors. In autocorrelation terms
a complex spectrum will have large correlations at delays beyond
zero, and large quantization errors will produce more curvature
in the true vs. quantized correlation curve in Figure 1.

Looking for quantization distortions in a simulated noise
spectrum takes an enormous amount o computer time to reduce
random errors to levels to be expected in the operation of the
spectral processor. Autocorrelation functions can be computed
much faster than a spectrum can be transformed so the approach
taken has been to compute true vs. quantized correlation curves
for several degrees of quantization using computer generated
noise. These curves give the slope and amount of nonlinearity
at low correlation levels. The autocorrelation functions have
been calculated for two input spectra, and these functions have
then been distorted by the correlation error curves and transformed
back into the frequency domain to look for spectral distortions.

Two rather severe passband shapes shown in Figure 2 have
been used in these calculations. The top curve has a maximum
autocorrelation value of 13% relative to the zero delay value,
and the largest value for the bottom curve is 21%. Except for
the case of a very strong CW signal in the passband it is unlikely
that the autocorrelation values in practice will be greater
than the ones used in these tests.

The slopes of the low end of the curves in Figure 1 are
shown in Figure 3 where the slope is plotted as a function of
noise amplitude relative to the quantization interval. Even
when the noise rms is five quantization levels the slope is
sufficiently different from unity to require a correction in
the zero level and gain of the computed spectrum.

Upper limits on the curvatures of the lines in Figure 1
were estimated by comparing the fits of linear and quadratic
curves on the autocorrelation values from 0.0 to 0.5 and higher.
For noise rms levels greater than 1.0 no significant difference
between the straight line and quadratic fits could be seen up
to an autocorrelation level of about 0.7. For these noise levels
a conservative upper limit on the quadratic coefficient is 0.001.
For noise rms levels of 0.8 and 0.5 the upper limits on the
quadratic coefficient are 0.005 and 0.01, respectively. These
limits are set by the noise in the calculations of the autocor-
relation coefficients, and the linearity of the curves may be
considerably better than this.



The autocorrelation functions derived from the two bandpasses
in Figure 2 were modified by a transfer function that contained
only a quadratic term (a 3 x 2 ), and with a 3 = 0.001 the peak
fractional error in the lower bandpass curve was about 10 4

except near the left edge of the bandpass where the error rose
to 2 x 10 - 4 . The error in the top bandpass was 5 x 10 - s rising
to 10 - 4 near the left edge using the same quadratic coefficient.
An error of 10 - 4 is equivalent to the rms noise in a 1024-channel,
40 MHz spectrum after 40 minutes of integration. This size
of error would be detectable, but if the input power to the
A/D converter does not change very much between signal and reference
the error will cancel in the difference. Also, there is a good
chance that the autocorrelation transfer function is even more
linear than supposed here so the spectrum distortion may be
quite a bit less than 10 - 4 .

Zero offset and gain corrections will certainly need to
be applied to the FFT spectrum. If a higher order correction
for quantization effects is necessary the averaged spectra could
be Fourier transformed to an autocorrelation function in the
spectral processor computer, corrected, and transformed back
into the frequency domain. Both the zero and higher order cor-
rections depend on the input level, and, in the absence of an
exact set of equations for the corrections, the autocorrelation
transfer function would have to be calibrated with long integrations
with the spectral processor hardware under different quantization
conditions. At least a few of these calibrations should be
done whether the second order corrections are to be performed
or not.

JRF/cjd

Attachments
Figures 1, 2, 3
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