
iI

NATIONAL RADIO ASTRONOMY OBSERVATORY
Green Bank, West Virginia

TELESCOPE CONTROL USER STANDARDS MEMO NO. 21

FITS EXTENSIONS

From: AIPS Memo No. 32
(Chapter 14 of Going AIPS for 15 not. 1985)

including

"Generalized FITS Extensions with Application to Tables
by

Ronald H. Harten, Preben Grosbol,
Keith P. Tritton, Eric W. Grisen

and Donald C. Wells

Issued as TCUS Memo: August 21, 1985

4)

AlPS MEMO NO. 32

CHAPTER 14 ,- " AlP So 41

TABLES IN AIPS a'2 7j al

14.1 OVERVIEW

This chapter is an attempt to describe the format design for
tabular extension files in AIPS. These files are organized in the
usual rows and columns. Each column has a specified format and is
stored in the appropriate binary form for the local computer. The
columns are ordered on disk in an order appropriate to computer
addressing, but are accessed in any desired logical column order via a
look up list. The extension file contains not only the rows and
columns, but also a variety of other information. Each column has an
associated 24-character column "title" and an 8-character "units"
field. Each row has a "selection" flag which allows the user to
access temporarily a subset of his table. The strings used to specify
the current selection are stored in the file for display. The file
may also contain general information applying to the full table in the
form of keyword/value pairs. This information will be called the
table "header" data.

14.2 THE FORMAT DETAILS

14.2.1 Row Data

The row data are stored as an integer number of rows per disk
record (512 bytes) or as an integer number of disk records per row.
The columns are given a physical order appropriate to addressing on
all computers. The logical order is carried in the file header record
(physical record 1, see below) and in a set of array indices for
addressing by the programs. The type of data is specified by code
numbers. These codes and the physical ordering are as follows:

ORDER ARRAY BASIC CODE + LENGTH
double precision floating R8 1 -

single precision floating R4 2 -

character (4 / floating) R4 3 + 10 * 1
long integer I4 4 -
logical L2 5 -
integer I2 6 -
bit (NBITWD / integer) I2 7 + 10 * 1
select flag I2 9 -

TABLES IN AIPS
THE FORMAT DETAILS

Page 14-2
20 Jun 84

Declarations:
INTEGER*2 12(*)
INTEGER*4 14(*)
LOGICAL*2 L2(*)
REAL*4 R4(*)
REAL*8 R8(*)
EQUIVALENCE (I2, 14, L2, R4, R8)

The ordering is chosen to allow some machines to preprocess the
LOGICAL*2 statement into a LOGICAL*4 if needed. More esoteric
preprocessing may be required on less standard machines.

14.2.2 Physical File Format

The data, control, and header information are written in the
Table file via ZFIO in 512-byte (256-integer) blocks. The order on
disk, by physical record number, is:
record 1 : Control info / lookup table (see later)

2 : DATPTR(128) subscript of the appropriate array for
logical column n

DATYPE(128) type code for logical column n
3 - 4 : Selection strings now in force
5 - m : Titles (6 R*4s, 4 chars/R*4) in physical column order

m+l - i : Units (2 R*4s, 4 chars/R*4) in physical column order
i+l - k : Table header (keyword/value pairs, see below)
k+l - * : Row data in n rows/record or n records/row

where
m = 5 + NCOL / (256 / (6 * NWDPFP))
i = m + 1 + NCOL / (256 / (2 * NWDPFP))
k = i + 1 + ITEY / (256 / (4 * NWDPFP))
NCOL = number logical columns not including the select column
NKEY = maximum number of keyword/value pairs

14.2.3 Control Information

Physical record one contains file control data needed to do the
I/O operations and maintain the physical file. It is prepared by
subroutine TABINI and modified by TABIO. The latter subroutine
returns the record to disk on OPCODE = 'CLOS'. Its contents are:
1 - 2 (I*4) Number 512-byte records now in file
3 - 4 (1*4) Max number rows allowed in current file
5 - 6 (1*4) Number rows (logical records) now in file
7 Number of bytes/value (2 for TA files)
8 # values/logical (# I*2s/row incl. select for TA)
9 > 0 => number rows / physical record

< 0 => number physical records / row
10 Number logical columns/row (not including selection

column)
11 - 16 Creation date: ZDATE(11), ZTIME(14)
17 - 28 Physical file name (set on each TABINI call)
29 - 31 Creation task name (2 chars / integer)
32 Disk number

TABLES IN A:
THE FORMAT

33 - 38
39 - 41
42
43
44

45
46
47
48
49
50
51
52
53

54 - 60

61
62
63
64
65
66
67
68
69
70

71
72
73 - 74
75 - 76
77
78
79
80
81
82

83 -100

101 -128
129 -256

IPS
DETAILS

Lz
Lz
Nt
St
Sc

DC

DR

D:
D
D
D:
D
M
CI

R

Page 14-3
20 Jun 84

ast write access date: ZDATE(33), ZTIME(36)
ast write access task name (2 chars / integer)
umber logical records to extend file if needed
ort order: logical column # of primary sorting
ort order: logical column # of secondary sorting

0 => unknown, < 0 => descending order
isk record number for column data pointers (2)
isk record number for row selection strings (3)
isk record number for 1st record of titles (5)
isk record number for Ist record of units
isk record number for 1st record of keywords
isk record number for 1st record of table data
ATPTR (row selection column)
aximum number of keyword/value pairs allowed
urrent number of keyword/value pairs in file

eserved

Number of selection strings now in file
Next available R*4 address for a selection string
First R*4 address of selection string 1
First R*4 address of selection string 2
First R*4 address of selection string 3
First R*4 address of selection string 4
First R*4 address of selection string 5
First R*4 address of selection string 6
First R*4 address of selection string 7
First R*4 address of selection string 8

for TABIO / TABINI use only **********
IOP : 1 => read, 2 => writ
Number 1*2 words per logical record (incl. select)

(I*4) Current table row physical record in BUFFER
(I*4) Current table row logical record in BUFFER

Type of current record in BUFFER (0 - 5)
Current control physical record number in BUFFER
Current control logical record number in BUFFER
Type of current control record in BUFFER
File logical unit number (LUN)
FTAB pointer for open file (IND)

Reserved

Table title (4 chars / real)
lookup table as COLPTR(logical column) = phys column

14.2.4 Keyword/value Records

The keyword/value pairs are stored in 4 single precision floating
locations, 256 / (4 * NWDPFP) per physical record. The keyword is an
8-character string stored as 4 characters per real. It is left
justified and the first character must imply the data type used for
the value. The value is stored left justified in the 3rd and 4th
reals using as many integer words as needed (see table below).

TABLES IN AIPS
THE FORMAT DETAILS

Page 14-4
20 Jun 84

The first character of the keyword must specify the type of the
binary value as:

D double precision floating point
F single precision floating point
C 8-character string in 4 chars / real
J long integer
L logical
I integer

In the call sequence to TABIO, the variable RECORD is an
used to convey the data to the I/O operations. For
pairs, RECORD is divided as follows:

RECORD(1) 1st 4 chars of the keyword
RECORD(1+NWDPFP) 2nd 4 chars of keyword
RECORD (l+2*NWDPFP) value

where the value occupies the following number of integer
type D NWDPDP

F NWDPFP
C 2 * NWDPFP
J NWDPLI
L NWDPLO
I 1

integer
array

integer array
keyword/value

words

14.2.5 I/O Buffers

The call to TABINI specifies two buffers, one for .1/O scratch and
control and the other for the data pointers which will be used by the
calling program to access the column data. The first, called BUFFER,
is used as

BUFFER(1)-BUFFER(128) control pointers
BUFFER(129)-BUFFER(256) lo .kup table
BUFFER(257)-BUFFER(***) current physical record(s) of table data

where *** = 512 if there are >= 1 rows/rec,
*** = (n+l) * 256 if there are n recs/row.

The call sequence of TABINI has an argument NBUF which gives the
length of BUFFER. This is used solely to check that BUFFER is large
enough to handle the present table file. BUFFER is also provided by
the programmer to TABIO which will modify the control and data
portions. The programmer should not modify BUFFER between the call to
TABINI and the call to TABIO with OPCODE 'CLOS' except to insert a
title for the table in words 101 - 128 or to correct the sort order
information.

The second buffer, called TABP, is used by the non-I/O portions
of the table package. TABP(1,1) - TABP(128,1) contains the subscript
of the appropriate array for the logical columns. TABP(1,2) -
TABP(128,2) contains the data type for each logical column. The
programmer must fill in TABP(1,2) - TABP(NCOL,2) before calling TABINI
when TABINI is to create the table extension file. TABINI will return
a complete set of TABP under all circumstances.

TABLES IN AIPS
SUBROUTINES

Page 14-5
20 Jun 84

14.3 SUBROUTINES

14.3.1 TABINI

SUBROUTINE TABINI (OPCODE, PTYP, VOL, CNO, VER, CATBLK, LUN,
* NKEY, NREC, NCOL, DATP, NBUF, BUFFER, IERR)

TABINI creates/opens a table extension file. If a file is created,
it is catalogued by a call to CATIO which saves the updated CATBLK.
Input:

OPCODE R*4
PTYPE I*2
VOL 1*2
CNO 1*2
VER 1*2

1*2(256)
1*2
1*2

1*2

1*2

1*2(128,2)

1*2
I*2(*)
1*2

'READ' only, 'WRIT' read or write
File physical type: 2 characters
Disk number
Primary file catalog number
Version number: <= 0 highest on READ
highest+l on WRIT (i.e. create one)
output: version number used
Primary file catalog header record
Logical unit number to use
Maximum number of keyword/value pairs
input: used on create, checked on WRIT
(<= recorded); output: actual
Number rows for create/extend
input: used on WRIT only.
Number of logical columns (not incl sel
input: used on create, checked on WRIT
(0 => any); output: actual
DATPTR, DATYPE: DATYPE input on create,
output actual for both
Number 1*2 words in BUFFER
I/O buffer (* >= 512 as needed)
Error codes: 0 => OK,

-1 => OK, new file created,
1 => bad input,
2 => cannot find/open,
3 => I/O error
4 => create error

ect)

14.3.2 TABIO

SUBROUTINE TABIO (OPCODE, IRCODE, IRNO, RECORD, BUFFER, IERR)

TABIO does random access I/O to Tables extension files. Mixed
reads and writes are allowed if TABINI was called 'WRIT'. Writes
are limited by the size of the structure (i.e. # columns for units
and titles) or to the current maximum logical record plus one.
Files opened for WRITe are updated and compressed on CLOS.

OPCODE R*4 'READ', 'CLOS',
'WRIT' write with row selected
'FLAG' write with row de-selected

IRCODE 1*2 Type of record: 0 => table row
1 => DATPTR/DATYPE record
2 => data selection string
3 => titles

CATBLK
LUN
NKEY

NREC

NCOL

DATP

NBU F
BUFFER
IERR

TABLES IN AIPS
SUBROUTINES

IRNO

Page 14-6
20 Jun 84

1*4 (!)

RECORD I*2(*)

4 => units
5 => keyword/value pairs

Logical record number:
IRCODE =
IRCODE =
IRCODE =
IRCODE =
IRCODE =
IRCODE =

Appropriate
IRCODE =
IRCODE =
IRCODE =
IRCODE =
IRCODE =

0 =>
1 =>
2 =>

3 =>
4 =>
5 =>
data
0 =>
1 =>
2 =>
3 =>
4 =>

row number
ignored
string number
column number
column number
keyword number
(input or output):
row
DATP
select string
column title
column units

IRCODE = 5 => keyword/value
BUFFER I*2(>=768) I/O control,scratch buffer (in/out)
IERR 1*2 Error code: 0 => ok

-1 => row read, but it is flagged
1 file not open, 2 input error
3 I/O error 4 logical EOF
5 error in file expansion

14.3.3 TABCOP

SUBROUTINE TABCOP (TYPE, INVER, OUTVER, LUNOLD, LUNNEW, VOLOLD,
* VOLNEW, CNOOLD, CNONEW, CATNEW, BUFFi, BUFF2, IRET)

EXTCOP copies Table extension file(s). The output ile must be a
new extension - old ones cannot be rewritten. The output file
must be opened WRIT in the catalog and will have its CATBLK
updated on disk.
Inputs:
TYPE 1*2
INVER 1*2
OUTVER 1*2

1*2
1*2
1*2
1*2
1*2
1*2

In/out:
CATNEW(256) I * 2

Output:
BUFFl(256) 1*2
BUFF2(256) 1*2
IRET 1*2

Extension file type (e.g. 'CC','AN')
Version number to copy, 0 => copy all.
Version number on output file, if more than one
copied (INVER=0) this will be the number of the
first file. If OUTVER = 0, it will be taken as
1 higher than the previous highest version.
LUN for old file
LUN for new file
Disk number for old file.
Disk number for new file.
Catalog slot number for old file
Catalog slot number for new file

Catalog header for new file.

Work buffer
Work buffer - will have CATBLK of old file
Return error code 0 => ok

1 => files the same, no copy.
2 => no input files exist

LUNOLD
LUNNEW
VOLOLD
VOLNEW
CNOOLD
CNONEW

TABLES IN AIPS
SUBROUTINES

Page 14-7
20 Jun 84

3 => failed
4 => no output files created.
5 => failed to update CATNEW

14.3.4 GETCOL

SUBROUTINE GETCOL (IRNO, ICOL, DATP, BUFFER, RTYPE, RESULT,
* SCRTCH, IERR)

GETCOL returns the value
at the specified logical
Inputs: IRNO 1*4

ICOL 1*2
DATP I*2(256)

In/out: BUFFER I*2(*)

Output: RTYPE 1*2

RESULT ???

SCRTCH I*2(*)
IERR I*2

and value type found in an open table file
column and row.
Table row number: n.b. 1*4
Table column number
Pointer array returned by TABINI
Control area set up by TABINI, used in
TABIO
Type of column: 1 -> R*8, 2 -> R*4,
4 -> I*4, 5 -> L*?, 6 -> 1*2
3+10*L -> character length L unpacked
7+10*L -> bit array length L packed
Value of column: use R*8, R*4, 1*4, 1*2
equivalenced arrays
Scratch large enough to hold a row
Error code: 0 => OK.
-1 => OK, but row is flagged
1 file not open, 2 input error
3 I/O error, 4 read past EOF
5 bad data type

14.3.5 FNDCOL

SUBROUTINE FNDCOL (NKEY, KEYS, LKEY, LORDER, BUFFER, KOLS, IERR)

FNDCOL is used with AIPS Table extension files. It locates the
logical column number(s) which are titled with specified strings.
Inputs: NKEY 1*2 Number columns to be found

KEYS R*4(LKEY,N) Column titles to locate (4 chars/real)
LKEY 1*2 Number R*4 words to check in each

of KEYS (legal values 1 through 6)
LORDER L*2 T => logical order desired, else phys.

In/out: BUFFER I*2(>512) TABINI/TABIO buffer/ header/ work area
Output: KOLS

IERR

1*2(NKEY)

1*2

Logical column numbers: 0 => none,
-1 => more than one (!)

Error code: 0 => ok, 1 - 10 from ZFIO
>10 = 10 + # of failed columns

TABLES IN AIPS
SUBROUTINES

Page 14-8
20 Jun 84

14.3.6 CTINI

SUBROUTINE CTINI (LUN, NCOL, VOL, CNO, VER, CATBLK, BUF, IERR)

CTINI creates and/or opens for writing (and reading) a specified
CT (components table) file.
Inputs: LUN 1*2 Logical unit number to use

VOL 1*2 Disk number
CNO 1*2 Catalog number

In/out: NCOL 1*2 Number of columns: 3 or 7 are allowed.
VER 1*2 Input: desired version number 0 -> new

CATBLK I*2(256)
Output: BUF 1*2(768)

IERR 1*2

Output: that used
File catalog header block
First 512 words required for later
calls to TABIO
Error codes from TABINI or TABIO

14.4 USAGE

At this writing (22-July-1984), there are several experimental
tasks which use Tables extension files. These tasks are all similar
to existing tasks designed to use EXTINI / EXTIO on Clean Components
extension files. For the moment, these tasks have funny names and
read/write extension type CT (rather than CC). When they have been
tested enough and when a format conversion program works, they will
replace the existing tasks. These tasks are TACLN (version of APCLN),
TAMX (version of MX), UVTUB (version of UVSUB), TSCAL (version of
ASCAL), and PRTCT (replacement for PRTCC). There is also a new task
called PRTAB which prints the Tables extenions in a very general
fashion. It will be instructive to programmers to examine its coding.

Generalized FITS extensions,
with application to Tables.

Ronald H. Harten
The Netherlands Foundation for Radio Astronomy
Dwingeloo, The Netherlands
Preben Grosbel
European Southern Observatory
Munich, West Gernany
Keith P. Tritton
Rutherford Appleton Laboratory
Chilton, Didcot, The United Kingdom
Eric W. Greisen, Donald C. Wells
National Radio Astronomy Observatory
Charlottesville, USA

CW-L~4 LC~4-57a~

As~~L~, L

* _

ABSTRACT

A general design for future extensions to the FITS tape format is proposed. The proposed design
preserves compatibility with existing FITS tapes and software, including the "random groups"
and other extensions of FITS, but its generalized design will permit a wide variety of new types
of extensions files to be designed in the future. As an example of the application of the new
design, specifications are presented for a proposed extension to transmit tables of astronomical
data.

CAUTION: portions of this proposal might be augmented, rescinded, or revised before final
standardization.

1. Introduction

The FITS tape format standard (Wells, Greisen, and Harten 1981, hereafter "Basic FITS") was
developed to transfer regularly gridded astronomical image data between different locations. It
has been implemented by most of the major observatories of the world and has been endorsed
by working groups for software in both Europe and North America. The design of basic FITS
included several provisions which were intended to permit the format to be extended in order
to transmit new kinds of data structures. The "random-groups" extension of FITS (Greisen and
Harten 1981) exploited these possibilities to produce a tape format design which is useful for
transmitting data which is regularly gridded on some axes and irregularly gridded on other axes.
It has been implemented by several radio observatories for the transfer of radio interferometer
visibility measurements. This extension has been recommended by the North American working
group for use by North American observatories. The FITS tape format was recommended
(resolution C1) for use by all observatories by Commission 5 at the 1982 meeting of the IAU at
Patras (IAU Information Bulletin No. 49, 1983). Note that the General Assembly of the IAU
adopted (resolution R11) the recommendations of its commissions, including the FITS resolution.

The concept of utilizing a standard flexible format for the transfer of astronomical data has
proved to be appealing and designers of software systems for astronomy want to be able to apply
it to a variety of data and information structures. For example, during the past two years there
has arisen the proposal that FITS design concepts be utilized in the formatting of catalogs of
astronomical data, such as the star catalogs which are distributed by the astronomical data
centers. Commission 5 of the IAU at the Patras meeting in 1982 appointed a committee to
investigate this concept. During the same period of time an experimental extension of FITS was
developed to transmit source position lists and calibration tables in association with image data.
Early in 1983 it became apparent that these two efforts should be combined in order to specify
a single format designed to transmit arbitrary tabular data.

Several FITS extension formats have been designed already and more are expected to be devised.
It is possible that some of them might conflict with each other or with the random-groups format
which has already been endorsed as a standard. This observation has led to the realization that
there is a need for a general set of rules to govern the design of all future FITS extensions. During
several months of discussions such a set of rules evolved and it is presented in this paper. This
paper also presents the proposed tables format as an example of the application of the rules.

2. Terminology

To avoid possible confusion in terminology in this paper and in the future, we shall define a
few terms which will be used in this and future articles. The term "record" refers to the basic
2880 byte unit or piece of information. A FITS file consists of an integral number of records and
extensions always begin with a new record. A record corresponds to a logical record. The term
"block" refers to the physical block size on tape. At present a block is 2880 bytes long (i.e., one
record per block); however, at some future date when record blocking may be allowed, the block
size could be some integral multiple of 2880 bytes. In previous FITS papers the terms record
and block were used interchangeably. In this paper we will be referring to records. Questions of
blocking factors, etc. will not be discussed.

3. Basic Philosophy

The most important rule for designing new extensions to FITS is that existing FITS tapes must
remain valid. We are not permitted to alter the basic format in such a way as to make existing
FITS tapes invalid or unreadable by standard FITS tape reading programs. This does not mean
that the FITS format cannot evolve or change. To avoid this trap, FITS was deliberately designed
to be capable of evolving. Two rules form the basis for all existing or proposed extensions.

* Any number of 2880-byte records may appear after the blocks which transmit the primary
data matrix. These blocks have often been called "special records". The rule obliges all basic
FITS reading programs to be prepared to skip over such blocks if they are not programmed
to interpret them.

* FITS files may be written in which there is no data matrix, either because the number of
axes is set to zero or because the product of the dimensions of the axes is zero.

Simply stated, all FITS extensions must appear after the main FITS header and its associated
data array and each extension should begin at the start of a new 2880 byte record.

All existing tapes containing extensions to basic FITS conform to these rules of basic FITS
and therefore are valid "FITS tapes", even though they contain data structures which are not
simple binary matrices. The existing random-groups format is the best-known example of such
an extension. The proposed new rules also conform and they systematize the format of the special
records so that new types of extensions can be devised freely by implementors of FITS software.

I

The rules allow users to create new extensions with a high degree of protection from conflicts
with extensions devised by other implementors, and without obsoleting either the basic FITS
standard or the existing extensions.

The basic structure of a FITS tape is quite flexible. By adding new keywords and data axes, users
can design a data structure to suit their needs. In the past, users have created entire customized
header structures using the HISTORY and COMMENT keywords. These structures were valid in the
FITS format, readable by other users and did not require the approval of a standards committee.
The set of rules for extensions to FITS presented in this paper is designed to provide a framework
in which users can create new data structures to suit their local needs, while still following the
FITS standard.

Many users may wonder why a basic mechanism for FITS extensions is necessary. The answer
to this question is twofold. First, it allows one to transfer data collections which are not images
or single data matrices. Essentially one can create a new extension format for each new type
of information. This structure is possible in spite of the fact that the original FITS format
was created for a particular data organization. This allows us to keep adjusting to new types
of data organization while still adhering to the same set of basic rules. The second reason is
that extensions allow us to transfer collections of related groups of information in an organized
manner, i.e. it is providing us with a simple relational data base capability. In this manner,
tables, lists, etc., associated with a data matrix can be written on tape in a manner in which the
relationship between the different pieces of information is implicitly established.

The only restriction that will have to be placed on the freedom to create new extensions is that
there should be only one approved extension format for each type of data organization. It will
be the function of each user who creates a new extension type to check with the standards
committee to see if an extension already exists for that type of data organization and to propose
one if it is really a new extension type. An important point to remember is that an extension is
a basic format for present.Ag or describing information and its organization. The contents of an
extension and the optional keywords used, etc. will depend on the particular application. Thus
one can use a table extension for all types of tabular information, without having to define a
new extension type. New extension types have to be created whenever the organization of the
information is such that it cannot be handled by one of the existing extension types. With this
restriction in mind, users should feel free to create new extension types when the need arises.

4. Guidelines and Rules for FITS Extensions

Before we can specify the details of the extensions to FITS, it is necessary to discuss the
basic guidelines and requirements for extensions. These fall into two broad classes. The first
concerns those requirements which maintain the compatability and flexibility of the existing FITS
standard. The second contains those new features which are desirable to solve the problems for
which the extensions are needed. A list of the guidelines and requirements is given below.

* Existing FITS tapes, including those with existing standard extensions, must be compatible
with the new extension standard. FITS files which contain combinations of standard and
new extensions must be allowed in order to facilitate the transition to the new design.

* The presence of a new extension in a FITS file should not affect the operation of a program
which does not know about a particular type of extension.

* Only the binary and character coding conventions specified in the basic FITS standard should
be used in FITS extensions. These are printable ASCII in headers, and 8-bit unsigned, and
16, and 32-bit twos-complement integers without "byte-swap" in data matrices. The new

tables extension records are regarded as a binary matrix in which the 8-bit "pixels" are
printable ASCII codes.

* Extensions should have the same structure as the basic FITS file, a header plus information.
The extension data structures should be self-defining and readable by both humans and
machines. The same basic rules for creating FITS headers should apply to extension headers,
i.e. they will contain a required subset of standard keywords, consist of ASCII text and may
have any length. This will allow one to reuse the code which interprets the primary FITS
header.

* A program scanning a tape should be able to locate the beginning of any extension and should
be able to skip over the extension, i.e. to find the start of the next one. This requirement
implies that the extension header must specify in some consistent and standardized manner
the total number of data bits which are associated with it.

* It should be possible for extensions to FITS to support hierarchical structuring of various
types of data entities. One needs to be able to transmit tables, etc., which are associated
with the basic data matrix and to maintain the relationship between the tables and the data.
The ability to specify structures more than one level deep is included in order to provide a
framework for future developments.

* It must be possible to devise new types of extensions without prior approval. This implies
that keywords in the primary FITS header may not be used to announce the existence of
a particular type of extension, because these would need to be approved by the standards
committees.

* It should be possible to append any number of extensions to a primary header and its
associated data matrix.

* If there is more than one type of extension in a FITS file then the extensions may appear in
any order.

* "Ayone wishing to create a new extension format is free to do so, but should check with the
FITS standards committee to insure that there is no conflict in the extension type naming
and that the proposed format conforms to the rules for FITS extensions.

* Physical tape blocks should continue to be 2880 bytes (23040 bits) long, but no information
in either the primary header or any extension header should ever explicitly refer to the
physical block sizes of FITS tape blocks. This principle, which was followed in the design
of both basic FITS and the random-groups format, will permit the standards committees
to modify the physical blocking specifications of FITS in the future without being obliged
to change the information content of existing FITS files which may be reblocked after such
a change. The physical blocking specifications may eventually have to be changed as tape
densities increase and transmission of data through networks becomes more common.

The above list places a set of minimum requirements on features which must be built into FITS
to be able to handle extensions in a systematic manner. The primary requirements are the
requirement for a mini-header at the beginning of each extension and the ability for a program
to be able to identify the type of an extension or to skip over it even if it does not recognize the
type.

5. An addition to the Main FITS Header

Tapes which conform to this standard are required to include the keyword EXTEND in their main
header immediately after the last required keyword of the basic FITS specifications. The value
field should be the logical value true (T) to signify that the file is written in conformance with
the new extension standard. The presence of the keyword does not imply that any conforming

extension records are actually appended to the file but merely that they might be. Note that
EXTEND=T may be used even if random-groups and prototype tables extension records are present
so long as their order conforms to the rules speciffed in the next section. An example of a minimal
FITS header with a data matrix is:

0........ 1.........2......... 3........ 4 ,: 5.........86 7.....
1234567890123456789012345678901234567890t2345678901234567890123456789012...
SIMPLE = T /
BITPIX = 16 /
NAXIS = 2 /
NAXIS1 = 320 / ±. .

NAXIS2 = 512 / o
EXTEND = T /
END .

An example of a minimal FITS header withoua data matrix is:

0........1........2........3....... ".5 7.....
1234567890123456789012345678901234567890123456789 01234567890123458789012...
SIMPLE = T /
BITPIX = 8 /
NAXIS = 0 /
EXTEND = T /END . "

Note that the presence of EXTEND=T in a pri rry FITS header merely indicates that the file may
have extensions records and that any specialbeerds willcbnform to the rules given below.

6. Structure of Files Including Extension Records

The solution to the problem of compatibil ith previousjy existing extension formats is to
specify three new rules: r

* If NAXIS1=0 and the random groups keywords are pre~ept in the primary header then the
random-groups data records (see Greisenand Harte {1981) are present and they come
immediately after the primary header.

* Extension records of the new type must follw the pria~y matrix or random groups records.
Each extension should begin with a FITS-lije header wlish is described below. This header
specifies the "type" for the extension and: length which is computed by the usual FITS
rules. The header may be arbitrarily long ;and is teri4nated by END in the same manner
as a primary FITS header. Following the eg.ension healer, the specified number of records
will appear containing the extension information. Thejiaext extension follows immediately
after the previous one. Each new extension header mut begin with a new record. As many
extensions may be included in a FITS file as are required.;

* Records of any nonstandard extensions should appear gat the end of the file. A reading
program should be prepared to encounter such records in any position which would ordinarily
contain the first record of a standard extension header and when it does it can assume that
the remaining special records of the file are a non-standard. The program should examine the
first eight bytes of the first record of the putative extension header. If they are the string
XTENSION, then the block is the beginning of standard extension header. If they are not,
then it is the first of the non-standard special records.

7. The Extension Header

Each extension will begin at the start of a new record (2880 bytes per block). It will contain a
standard FITS header except that the first line of the header (normally SIMPLE=T) is replaced by

the new keyword XTENSION= 'type' in order to identify the type of the extension. The required
FITS keywords BITPIX, NAXIS, and NAXISnnn are used to specify the dimensions of the binary
data matrix of the extension data. Only printable ASCII codes, 8-bit unsigned integer, and 16-
and 32-bit twos-complement, non-byte-swapped integers will be acceptable for data interchange.
The new extension standard allows other values of BITPIX to be used for special purposes, but
these are considered to be nonstandard usage.

In order to permit random-groups data structures to be written in the new extensions without the
inelegant NAXIS1=0 convention, which had to be adopted for the original random-groups format,
we require that all extension headers must incorporate the PCOUNT and GCOUNT keywords. For
simple matrices their values should be PCOUNT=0 and GCOUNT=1. The number of bits which the
extension data will occupy will be computed with the following formula:

NBITS = BITPIX * GCOUNT * (PCOUNT + NAXISI * NAXIS2 * ... * NAXISn)
If NAXIS=0 then the NAXISi terms in the above formula are all zero. Note that this calculation
may cause an integer overflow if it is performed with insufficient precision (1*2 rather than I*4,
for example). The number of standard FITS records (2880 bytes, 23040 bits) which the data will
occupy will be computed with this formula:

NRECORDS = INT ((NBITS + 23039) / 23040)
Please note that these calculations will apply to all extensions regardless of the type of data
structure. This permits designers to utilize BITPIX, GCOUNT, PCOUNT, and the NAXISn in any
way which seems appropriate to define their data structures, subject to the constraint that the
number of bits computed by the formula above must be correct. The extension header will end
with an END statement in the usual fashion.

The inclusion of GCOUNT and PCOUNT in the extensions allows users considerable flexibility in
designing extensions for data which has a semi-regular structure, i.e. the information table or
data has a regular size, but there are a few values which ar: associated with each sub-set of the
information and these v ry in value with each group. The power of this option is discussed in
the first FITS extension paper by Greisen and Harten (1981).

Implementors should note that the extension mechanism should not be used to transmit a 3-
dimensional matrix as a sequence of 2-dimensional matrices in separate extension records. Instead,
the generalized tools of FITS, in this case the ability to transmit n-dimensional matrices in
the basic FITS header and data matrix, should be used. The freedom provided in the new
extension design does not remove from implementors the obligation to use good taste and
standard conventions in their designs. Extensions are meant to be used for other kinds of data
such as tables, lists, text files, etc. Implementors of FITS writing programs should always be
aware of the limitations of recipients. The primary objective of the FITS standard remains the
reliable, unambiguous transmission of data to recipients. Esoteric, complex data structures should
be avoided as much as possible. The watchword of the implementor should be: keep it simple.

A typical extension header with no associated data records is:

0........1.........2.........3...... .. 4.... 7.....
123456789012345678901234567890123456789012345878901234587890123456789012...
XTENSION= 'type ' / the type of the extension
BITPIX = 8 /
NAXIS = 0 /
PCOUNT = 0 /
GCOUNT = 1 /

END

In the case shown above the extension information is contained solely inside the extension header
itself. A typical extension header with associated data records is:

0........1.........2.........3.........4.........5........ 8..........7.....
123458789012345678901234587890123456789012345678901234567890123458789012...
XTENSION= 'type ' / the type of the extension
BITPIX = 8 /
NAXIS = 1 /
NAXIS1 = 12345 / number of bytes in the data records
PCOUNT = 0 /
GCOUNT = 1 /

END

This second example would be accompanied by five data records
NRECORDS = INT ((8 * 12345 + 23039) / 23040)

containing an arbitrary stream of 8-bit unsigned integers 12345 bytes long. Such a one-
dimensional matrix could be appropriate for transmitting a text file. It is expected that a format
to transmit text files will probably be the next extension design to be considered.

The tables extension discussed below defines a table to be a two-dimensional matrix of 8-bit
bytes which will be used to convey printable ASCII text.

8. Three New Optional Keywords

Three new optional keywords are defined for the extension standard:

* EXTNAME='name'

* EXTVER=n
These two keywords are provided for use in the new extension headers to give unique
names and version numbers to individual extensions. This means that a FITS file might
contain, for example, three different tables extensions (XTENSION' TABLE'). The first might
be called EXTNAME='BS83' with EXTVER=1, the second might also be EXTNAME='BS83' but
with EXTVER=3, and the third might be EXTNAME='AGK3' with EXTVER=83. I.e., more than
one extension of the same type and same name might occur and would be distinguished by
unique version numbers, and version numbers need not start with one or be consecutive. If
EXTVER is not specified a default value of one should be assumed by a reading program.

The name can also be used to establish a relational type of data base in the same man-
ner as sub-directory names in some file systems. In this case the relationship between
the different extensions is established directly. Names such as "mapl.cleancompl" or
"N1234.field2.starlist" can be used to establish easy to understand relationships between
different extensions and even between extensions in different FITS files.

* EXTLEVEL=n
This keyword specifies the level of the current extension header in a heirarchical structure of
extension headers. The first level of extension headers has the value set to one. Any level-two
headers are subordinate to the last previous level-one header, and any level-three headers are
subordinate to the last previous level-two header, etc. This concept permits the transmission
of arbitrary heirarchical data structures and file systems in FITS. We recommend that
the initial implementations of the new extension design all utilize EXTLEVEL=1 exclusively
until experimental trials have demonstrated feasibility of this concept. If EXTLEVEL is not
specified, a default value of one should be assumed by a reading program. If the recipient
data processing system is unable to represent the heirarchical structure and encounters an
extension with EXTLEVEL greater than one, it should act as though EXTLEVEL is one.

9. Extension Data Records

The standard FITS philosophy is to keep headers and data in separate records. The new extension
format adheres to this rule even though it wastes space (the unused bytes at the end of the last
header record). Therefore the extension data begins in the first byte of the next record after the
record containing the END of the extension header.

10. FITS for Catalogs and Tables

There are three main classes of potential applications which have stimulated the development of
the proposed tables extension. First, programmers want to transfer standard catalogs or tables
such as star or source catalogs with self-documenting column headings. The catalogs are typically
in tabular form already and have well defined formats and layout. The second class of application
includes the need to transfer observing information such as logs, calibration tables, intermediate
tables, etc. which have a relation to observational data. The actual observations can easily be put
into a FITS format; however, the amount of auxiliary information is too large to be included easily
as comments and the programmer does not want to give up the tabular form of the information.
The final application is the need to transmit tables of results extracted from observational data
by data analysis software. For example, a number of programs exist which can automatically
detect sources in digital images and write the computed parameters (position, flux, size, spectral
index, polarization, etc:) into output files. If these files could be written to tape in a system
independent form, astronomers would be able to transmit such tabular data to each other and
could utilize software which is designed to manipulate, merge, and intercompare such tables. The
extension to the FITS format discussed in the following sections is designed to enable all three
of these classes of tabular data to be transferred easily from one computing system to another.

When one analyses the structure of catalogs or tables, one tInds that they consist of a number
of rows each with a fixec number of elements and a fixed format; however, the entries do not
form a uniform array. What one needs is a means of describing and referring to the contents
of each row in the catalog or table. This can be done in the FITS context by treating the table
as an array of characters and then defining the location and format of each field within a row
of the character array. While this solution requires that all catalogs and tables be stored in
character format, this is actually desirable since the internal number formats of the different
computers differ so widely and the information is easier to handle in character form. Also, most
of the standard catalogs presently available in computer readable form are in character format.
For these reasons, the tables extension is based on the conceptual model of a table, containing
multiple columns of numbers and "words" with headings at the top of the columns, which is
printed on paper using a printer. The printed page is thought of as a bf matrix of ASCII codes,
and the tables extension is designed to transmit and document this matrix, with the headings
being encoded in the extension header.

The tables FITS extension uses the standard FITS rules (see Wells, Greisen, Hlarten 1981). In
addition it makes use of the new standard for generalized extensions to the basic FITS format,
which has been discussed in the first part of this paper. The catalog is written in an extension
to the main FITS header and is preceded by an extension header which describes the contents
of the catalog. The basic concept is as follows. The catalog or table is stored as a large character
array. Each row of the catalog or table has the same number of characters. Each row consists
of a sequence of fields, and this sequence is the same for each row. The formats of the different
fields need not be the same, but the format of a given field must be the same for all rows. Blanks
are used to fill out unused space within and between fields. When printed out, the character

array should be easily readable and it is recommended that there be a blank between each field
within a row. The number of characters in a row and the number of entries or rows in the table
or catalog defines the size of the character array.

Each field in a row is described by a series of keywords which describe the name, format, character
location within a row, length and units of the information. Using this information, a program
could search via variable name, extract the appropriate characters and convert them to the
desired format and units. Since each field in the table is separately defined and since the length
of characters in each row is fixed, it is possible to transfer catalogs which contain a large amount
of comment information which an automatic decoding program would skip over, yet which can be
read by merely printing the entire row. This is especially useful for observation logs and catalogs
where a fixed region for comments can be provided. The format is quite flexible allowing one to
describe the contents of any standard table or catalog. The only price to be paid is that extra
blank characters may be required to insure that each row contains the same number of characters.
This is not serious since the format is primarily intended for the transfer of information rather
than the storage of the information.

11. The Tables and Catalog Extension Header Format

The table is written in an extension to the basic FITS image, with XTENSION=' TABLE'. In the
case of many catalogs or tables, there will not be an image, only an extension. But even in these
cases, the basic FITS header will still appear in order to preserve compatibility with the older
format and to describe the basic characteristics of the FITS file. The extension begins with an
extension header which will contain information about the size and contents of the table. This
information is provided in the form of keywords, including some of the same keywords as those
used in the main header.

A tables extension header begins at the first byte of a new block and will appear in the form
shown below. The first eight keywords (XTENSION through TFIELDS) must appear, and in the
order shown here. The keywords TBCOLnnn and TFORMnnn bf must appear somewhere in the
header, up to the value of TFIELDS=kkk, in order to properly define the fields of the table.
The other keywords, EXTLEVEL, EXTNAME, EXTVER, TTYPEnnn, TUNITnnn, TSCALnnn, TZEROnnn,

and TNULLnnn, are all optional. If they are missing default values will be assumed by a reading
program:

0........1.........2.........3.........4......... 8 7.....
123456789012345678901234567890123456789012345678901234567890123458789012...
XTENSION= 'TABLE / Tells the type of extension
BITPIX = 8 / Printable ASCII codes (8 is required)
NAXIS = 2 / The table is a matrix (2 is required)
NAXIS1 = mmmm / Width of table in characters
NAXIS2 = nn.n / Number of entries in table (1 is legal)
PCOUNT = 0 / Random parameter count (default value)
GCOUNT = 1 / Group count (default value)
TFIELDS = kkk / Number of fields in each row

/ (i.e. the number of separate pieces of
/ information in a row, maximum value of
/ nnn in TYPEnn.)

EXTNAME = 'name ' / The name of the table
EXTVER = vv / Version number of table uname" (integer)
EXTLEVEL= hh / Heirarchical level (1 is recommendedj

TBCOLnnn= ccc / Starting char. poe. of field ann
TFORMnnn= 'qww.dd ' / Fortran format of field unn (I,A,E,D)

/ (NOTE: ww is width of field nnn)

I

TTYPEnnn=
'type

'
/ Type (heading)

of field nnn
TUNITnnn= 'unit ' / Physical units of field nnn
TSCALnnn= sss.ss / Scale factor for field nnn
TZEROnnn= zzz.zz / Zero point for field nnn
TNULLnnn= 'bbbbbbbb' / Null blank) value for field nn

/ (NOTE: exact match left-justified to)
/ (the width is specified by TFORMnnn.)

END

The END card must appear and the remainder of the header record which contains END should
be padded with ASCII blanks. In addition to the keywords shown above the extension header
may contain additional keywords which describe the table, contain comments, etc. We now give
a more extended discussion of the rules associated with the tables keywords.

* TTYPEnnn = 'name' / The name of the nth field in a row.
(optional, but strongly recommended, default ' ')

* TBCOLnnn = value / The beginning column of the field.
(required)

* TFORMnnn = 'format' / A single value Fortran-77 format code.
(required) This may use bf only the Fortran formats Iww, Aww, Eww.dd, and Dww.dd
(i.e., integers, characters, and real numbers). The E-format implies single precision (21 bit
mantissa accuracy, 6 decimal digits) and the D-format implies double precision (53 bit
mantissa accuracy, 16 decimal digits). Note that numbers coded in the F-format style are
processed correctly in the E and D-formats and so we do not need the F-format, whereas
we bf do need to distinguish the floating point precision. Once again: only I, A, E, and D
formats are allowed. Formats such as 212 are not allowed; they should be 12 and 12 (separate
fields) instead. A-format fields should be encoded as plain text, without being enclosed in
string quotes.

* TUNITnnn = 'unit' / The units of the variable.
(Default: ' ') e.g., 'K' for degrees Kelvin (see BUNIT in Wells et al. 1981)

* TSCALnnn = value / Scale factor applicable to the value.
(Default: 1.0) Note that this keyword is not relevant for A-format fields.

* TZEROnnn = value / Zero offset to be applied to the value.
(Default: 0.0) Note that this keyword is not relevant for A-format fields. The true value of
field nnn is computed as:

(value of field nnn in the table) * TSCALnnn + TZEROnnn

* TNULLnnn = 'null string' / Character string to indicate a null field.
This allows the program to distinguish between a zero value and a nonexistant one. The
string should be left justified and is implicitly blank filled to the width of the field (standard
Fortran-77 convention). If TNULLnnn is not specified the reading program should not check
field nnn for a null value. Programmers should consider what action their table reading
programs should take when they encounter a value which is illegal. For example, suppose
the value '***' is present in an 13 field but TNULLnnn has not been specified. Probably the
reading program should report the error and default to supplying its internal null value.

* AUTHOR = 'The name of the author or creator'

* REFERENC = 'The reference to the table or catalog'

The default values are assumed if the keywords are not provided. The keywords TBCOLnnn and
TFORxn1i are required for any fields which are to be defined in the table or catalog. If these
keywords are not specified an automatic decoding routine cannot decode the table.

Note that the width of each field is specified by the width ww given in its format TFORMnnn.
Field nnn begins in character position TBCOLnnn and includes ww characters. The sum of the
ww widths is not required to equal the true width of the lines of the table, NAXIS1. There is no
prohibition against overlapping fields, although we are unable to think of a useful example of
such usage. Reading programs should report an error in cases where a field is specified to extend
beyond the true width NAXISI.

The format keyword, TFORMnnn, is an area where some degree of common sense must be used by
the user. To keep things manageable and understandable each field must have a separate format
(multiple formats such as 212 are not allowed). If a distinction between +0 and -0 is required (i.e.
declination) then the sign field should be defined separately. This is absolutely necessary since
many computers do not know the difference between +00 and -00. The sign should be defined as
a character field and checked when decoding the associated number field. Thus the declination
defined in degrees/minutes/seconds format would require four fields to be defined, each with its
own TTYPEnnn , TFORMnnn, etc. But a declination defined as a floating point number in degrees
would only require a single field and would conform to standard FITS rules.'

It is recommended that the exponents of real numbers consist of a D or E followed by a sign and
2 numeric digits. Character data should be left justified, while integers and reals should be right
justified to prevent the problem of how trailing blanks are treated in different computers. The
fundamental rule is: the Fortran-77 specifications will apply (trailing blanks default to trailing
zeroes!).

For those creating a new catalog or table format, it is recommended that there should be a blank
between the different fields. A general rule should be that the character array containing the
table should be easy to read in itself. This makes it possible to print out a number of rows of
a table (using the header to determine the number of characters per row, etc.). Unfortunately,
some existing catalogs do not have the fields separated by blanks. The FITS format is still valid
and applicable for these catalogs; however, the simple printout option is less attractive.

When creating a table, one may need to distinguish between a 'null' (or undefined) value and a
zero value. Normally, blanks in a numeric field will be interpreted as zeroes (standard Fortran-77
rules). In those fields where blanks should be considered to be nulls, the keyword TNULLnnn can be
used to specify a 'null' value. Null values must be separately specified for all fields for which they
are needed (if TNULLnnn is not defined for a field, then all values in that field are defined). Note
also that the null value is a character string of the length ww which is specified by TFORMnnn. It
is not required to be decodable by the format specified by TFORMnnn. For example, a null value
of '***' might be used for an 13 field.

Note: the values of TTYPEnnn and TUNITnnn which are shown in the examples in this paper
should be regarded as examples of possible values. The specification of possible values for these
keywords is beyond the scope of this paper. We expect that the IAU FITS committee will produce
a standard list of column headings and will recommend any units other than the standard SI
units which are needed for existing catalogs.

12. Table Data Records

The data records are stored as a large character array, NAXIS1 characters across by NAXIS2
characters long and with NAXIS1 varying most rapidly, starting from the upper left corner of
the table. All information is stored as 8-bit printable ASCII characters with the eighth bit (the

"parity" bit) set to zero (i.e., hexadecimal codes in the range 20 through 7E). Special characters
with codes outside this range should be avoided since their meaning can be computer system
dependent. No integer or real data values occur in the data array. Each data record is 2880 8-bit
bytes long. The data records treat the character array as one large bit string. The data records
are written one after the other and no attempt is made to prevent partial rows occurring in a
record. If the user wishes to force the format to provide complete rows in a data record, then
the number of characters per row must be chosen as to divide into 2880 evenly. The final record
of the data should be padded with ASCII blanks.

13. An Example of the Tables Extension Format

This section contains an example of how one could put part of the AGK3 Star Cat. of Positions
and Proper Motions, ed. W. Dieckvoss, into FITS format. Each row of the catalog contains sixteen
items, which are described in sixteen fields. Two of the fields contain information in character
format and the remaining fields contain numerical data. The FITS header describing the catalog
and data records for three rows in the catalog are shown in the example below.

The formatting of the value fields in the example follows the rules of basic FITS. In particular,
the required keywords obey the required fixed format. The optional keywords in this example
also use a fixed format, and this is a recommended practice. Note that string values are always
written with at least 8 characters, beginning in column 11.

The basic FITS header for this catalog would have the following form:

0........ 2 3.........4.........5.........67.....
123456789012345678901234567890123456789012345678901234587890123456789012...
SIMPLE = T / Standard FITS format
BITPIX = 8 / character information
NAXIS = 0 / No image data array present
EXTEND = T / There may be standard extensions
ORIGIN = 'CDS ' / Site which wrote the tape.
DATE = '23/09/83' / Date tape was written

COMMENT AGK3 Astrometric catalog, formatted in FITS Tables Format.
COMMENT see: M. Dieckvoss, Hamburg-Bergedorf 1975.
END

The extension header begins in a new block:

0 1........2........3.........4.........5...................7.....
123456789012345678901234567890123456789012345678901234567890123456789012...
XTENSION= 'TABLE ' / Table extension
BITPIX = 8 / 8-bits per "pixel"
NAXIS = 2 / simple 2-D matrix
NAXIS1 = 74 / No. of characters per row (=74)
NAXIS2 = 3 / The number of rows (=3)
PCOUNT = 0 / No "random" parameters
GCOUNT = 1 / Only one group.
TFIELDS = 16 / there are 18 fields per row
EXTNAME = 'AGK3 ' / Name of the catalog

TTYPE1 = 'NO ' / The star number
TBCOL1 = 1 / start in column 1
TFORM1 = 'A7 ' / 7 character field

TTYPE2 = 'MG ' / stellar magnitudes
TBCOL2 = 8 / start in column 8
TFORM2 = 'E4.1 ' / xx.x SP floating point
TUNIT2 = 'MAG ' / units are magnitudes

N6

TTYPE3 = 'SP / spectral type

TBCOL3 =
TFORM3 =
TNULL3 =

TTYPE4 =
TBCOL4 =
TFORM4 =
TUNIT4 =
TNULL4 =

TTYPE5 =
TBCOL5 =
TFORM5 =
TUNIT5 =
TNULL5 =

TTYPE6 =
TBCOL6 =
TFORM6 =
TUNIT8 =
TNULL6 =

TTYPE7 =
TBCOL7 =
TFORM7 =

TTYPE8 =
TBCOL8 =
TFORM8 =
TUNIT8 =
TNULL8 =

TTYPE9 =
TBCOL9 =
TFORM9 =
TUNIT9 =
TNULL9 =

TTYPE10 =
TBCOL10 =
TFORM10 =
TUNIT10 =
TNULL10 =

TTYPE11 =
TBCOL1i =
TFORM11 =
TUNIT11i =

TTYPE12 =
TBCOL12 =
TFORM12 =

TTYPE13 =
TBCOL13 =
TFORM13 =
TUNIT13 =
TNULL13 =

TTYPE14 =
TBCOL14 =
TFORM14 =
TUNITi4 =
TSCAL14 =

TNULL14 =

TTYPE15 =
TBCOL15 =

'RAH

'I2
'HR
'99

'RAM

'12
'MIN
'99

'RAS

'E8.3
'S
'99.999 '

'DECDSIGN'

'Al

'DECD '

'I2
'DEG
'99

'DECM

'I2
'ARC.MIN '
'99

'DECS '

'E5.2
'ARC.SEC '
'99.99 '

'EP

'E7.2
'YR

'N *

'I'

'RA.PM

'E4.3
'ARC.SEC '
'9999

'DEC.PM '

'E4.0
'ARC.SEC '

'9999

'DF(CE?)

'A2
13 /

/
/

/
16 /

/
/
/

/
19 /

//
/

/
22 /

/
/
/

/
29 /

/

/
30 /

/
/
/

/
33 /

/
/
/

36 /
/
/
/

/
42 /

/
/

/
50 /

/

/
52 /

/
/
/

57 /
/
/

0.001 /
/
/

/ difference in epoch AGK3-AGK2
62 / start in column 82

start in column 13
2 character field
blank is indefinite value

right ascension hours
start in column 16
2 digit integer
units are hours
null value

right ascension minutes
start in column 19
2 digit integer
minutes of time
null value

right ascension seconds
start in column 22
xx.xxx SP floating point
seconds of time
null value

declination sign
start in column 29
character field

declination degrees
start in column 30
2 digit integer
degrees
null value

declination minutes
start in column 33
2 digit integer
minutes (angle)
null value

declination seconds
start in column 36x.xx SP floating point
seconds (angle)
null value

epoch of positions
start in column 42
xxxx.xxi SP floating point
units are years

no. photo. obs.
start in column 50
one digit integer

proper motion in r.a.
start in column 52
.xxx SP floating point
units are arc-seconds/yr
null value

proper motion in dec.
start in column 57
xzzzi. SP floating point
units are arc-seconds/yr
scale factor = 0.001
(Note use of scale factor!)
null value

-

TFORM15 = 'E5.2 ' / xxi.xx SP floating point
TUNIT15 = 'YR ' / unit is years

TTYPE16 = 'BD ' / Bonner Durch. star number
TBCOL16 = 68 / start in column 68
TFORM16 = 'A7 ' / 7 character field
TNULL16 = ' ' / blanks indicate null

AUTHOR = 'M. Dieckvoss' /
REFERENC= 'Hamburg-Bergedorf 1975' /
DATE = '14/07/82' / date file was generated
END

The extension header shown above has 102 lines and therefore will be written in 3 logical records
of 2880 bytes. (The third record will be padded with 6 blank lines.) The actual character data
of the catalog would begin at the start of the next record. The three lines of 74 characters each
(taken from page 46 of Dieckvoss 1975) will be in the first 222 bytes of the record.

0.......1........2............. 4........5...................7....
12345678901234567890123456789012345678901234567890123456789012345678901234
+82457 11.4 G5 15 30 57.480 +82 15 06.18 1960.37 2 -005 +006 29.99 +82 459
+82458 11.4 F5 15 32 41.150 +82 10 17.17 1958.36 2 -010 +004 27.97 +82 460
+82459 12.1 15 32 42.107 +82 40 28.83 1960.37 2 -018 +004 29.99 +82 461

Note that the spectral type field of the third line is blank, which is. a null (see keyword TNULL3
above). The remaining 2658 bytes of the record should contain ASCII blanks and a tapemark
will follow. The FITS file will contain a total of five records: the basic header in the first record,
then three extension header records, and finally one table data record.

14. Conclusions

The proposed extension to the FITS format provides an easy to use and convenient means of
transfering catalog and tabular information between different computing facilities. The format
treats the contents of the tables as a character array. The keywords define the different fields
and provide information on the format, units and scale factors. By keying on the field names,
TTYPEnnn, one can create automatic decoding routines which read and selectively decode the
desired fields in the catalog while ignoring the remaining information. This is an excellent means
of interfacing the information contained in catalogs with differing formats to standard reduction
programs which would use the catalog information. For this to be completely successful it will
be useful to agree on a set of standard field names and units for the contents of catalogs. This
will allow users to be able to access automatically a wide range of astronomical data, without
having to write a different program for each catalog. This point is being considered by I.A.U.
Commission 5 which deals with documentation and astronomical data.

15. Acknowledgements

The authors would like to thank F. Ochsenbein and W. Warren for their detailed comments on
early versions of this paper and on the general problem of encoding and distributing tables and
catalogs.

References

Dieckvoss,W.: 1975, AGK3 - Star Catalog of Positions and Proper Motions North of -2.5
Declination Vol. 1, Hamburger Sternwarte, Hamburg.

Greisen,E.W.,Harten,R.H.: 1981, Astron. Astrophys. Suppl. 44, 371
IAU Information Bulletin No. 49, 14, 1983
Wells,D.C.,Greisen,E.W.,Harten,R.H.: 1981, Astron. Astrophys. Suppl. 44, 363

