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Holes in the u-v Dig&Eaa

Barry Clark

If we have an N by N/2 u-v diagram containing n holes , the extra

sidelobe (x,y) is, in the principal solution

B
4 cos (xu. + yv.) (1)

=1

2nThe maximum possible sidelobe is thus obviously We may also compute the

rms sidelobe level

_ 1 n
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essentially Parsevall s theorem. For the diagrams we have been considering

this is a very small number, as N is quite large. Typically, N = 200, n = 3000

T
r

= . 00031 = -35 dB.

It is also of interest to know the largest sidelobe generated by the holes.

2nThe maximum possible is 1727 . This will be very nearly attained in one case of

interest: where most of the holes are concentrated near the center of the u,v

plane, they give rise to a comparatively broad pattern surrounding the array

(3)



2n
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The probability that the sidelobe is less than x is

r2
Prob (1131 < x) = 2 Erf

Errl (7)

beam, whose height is 2n/N 2 For the maximum sidelobes far from the array beam

we may make a quick estimate by replacing the cosine wave of eq. (1) by a

square unit of absolute value, which changes sign at odd multiples of Tr/2. Then,

far from the origin, -1 and I are about equally likely and the probability dis-

tribution of B approaches the binomial distribution

1N2
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n!
n-mProb -2-- B = (4)

(
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The field of view contains about --- independent locations, so the strongest2 
1sidelobe in the field of view would have probability about -R7. So,

Again with N = 200, n= 3000

. 012 -19 dB.

Returning to the area near the array beam, if we say that



(8)

(10)
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cos (Ku. 4- yv.) % 1 for%

and is equally distributed between +1 and -1 otherwise, then the random side-

lobe distribution (5) is superimposed on a hill

2 n 1x2

where n(m) is the number of holes within radius m. The size of this hill is,

along with n, a suitable measure of the convenience of using the array. This

suggests new figures of merit, x, defined by eq. , the far-out sidelobe

maximum, and

The proportion of power in this error plateau compared to that in the main

array beam, In eq. (10) and (11) it has been assumed that the u
1
. and v. are

measured in units of cell size.

There is a second question relating to holes: given data with holes, how

does one process it? There are two obvious things to do with holes; they can

be ignored or one may interpolate across them. Although at first sight the

second may sound better than the first, this is not clear on further reflection.



Ignoring the holes is the best one can do in a sense of minimizing the square

error. If one fits the synthesized beam by least squares to a desired beam

shape over the entire field of view, since the cos (u.x  v.y) are orthogonala_

on the field of view, the matrix of condition is diagonal and the coefficient

assigned to any spacing is independent of the presence or absence of data from

any other.

However, if one tries to minimize the absolute values of the largest sidelobes,

or tires to minimize the sidelobes only over a portion of the field of view,

one can do much more  However, the solutions are difficult, and are not just

a simple interpolation. As an example of an interpolation let us consider

a one dimensional case, a uniformly spaced, uniformly weighted line. Let there

be a hole at u. Then if this hole is ignored, there is an error term

- cos 27ux, appearing in the synthesized beam. If we simply interpolate across

the hole between u-1 and u+1, the error term becomes

(cos 27(u-1) 4. cos 27(u+1)x) - cos 27ux

sin 7TX cos 27ux

which over the field of view, u = 1, 1 has a larger maximum value (2 instead

of 1) and rms value (1/ 7774- instead of if7). It does, however, avoid contributing

to the central error plateau.
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