TWO BIT CORRELATOR

by B. G. Clark

In one bit correlation one records only the sign --+ or -. In two bit correlation, we have a sign and a magnitude bit, giving four possible states. Let us denote the digitization of a variable A by [A] and denote the four possible states by

$$[A] = \begin{cases} +L & \text{if} & A > H \\ +S & \text{if} & H > A > 0 \\ -S & \text{if} & 0 > A > -H \\ -L & \text{if} & -H > A \end{cases}$$

where H is the second clipping level. We now have the freedom to define a multiplication table [A] * [B], which, because of the symmetries of the problem may, without loss of generality, be taken to be

$$\begin{bmatrix} B & A & -L & -S & +S & +L \\ -L & n & m & -m & -n \\ -S & m & 1 & -1 & -m \\ +S & -m & -1 & 1 & m \\ +L & -n & -m & n \end{bmatrix}$$

if A and B are equal independent gaussion noises from the receivers, and C is the noise from the source,

Prob { X < A < X + dX } = Prob { X < B < X + dX } =
$$\frac{1}{\sqrt{2\pi} \sigma}$$
 e $-\frac{x^2}{2\sigma^2}$ dx
Prob { X < C < X + dX } = $\frac{1}{\sqrt{2\pi} \sigma}$ e $-\frac{x^2}{2\sigma^2}$ dx

The correlator output is < [A+C] * [B+C] >.

Employing all the symmetries of the problem,

where

Erf (y) =
$$\int_{0}^{y} \frac{1}{\sqrt{2\pi y}} e^{-\frac{t^2}{2}} dt$$

If we approximate a low signal-to-noise ratio, $\sigma <<\sigma$, then for all X of interest X<< σ and we can expand the error functions

Erf (C + y)
$$^{\circ}_{\circ}$$
 Erf (C) + y $\frac{1}{\sqrt{2\pi}}$ e $-\frac{C^2}{2}$

then

The noise on the correlator output is

$$N^{2} = \langle ([A] * [B])^{2} \rangle = n^{2} \text{ Prob } \{ |A| > H \cap |B| > H + 2m^{2} \text{ Prob } \{ |A| > H \cap |B| < H \} + \text{ Prob } \{ |A| < H \cap |B| < H \}$$

$$= n^{2} (1 - 2 \text{ Erf } (\frac{H}{\sigma}))^{2} + 4m^{2} (1 - 2 \text{ Erf } (\frac{H}{\sigma})) \text{ Erf } (\frac{H}{\sigma}))$$

$$+ 4 (\text{ Erf } (\frac{H}{\sigma}))^{2}$$

For continuous multiplication, the signal-to-noise ratio is simply $\frac{\sigma_1^{\ 2}}{\sigma^2}$, so the degradation produced by the quantization is

$$D = (S/N) / (S_c/N_c) = \frac{2}{\pi} [(n+1-2m)e^{-\frac{H^2}{\sigma^2}} + (2m-2)e^{-\frac{H^2}{2\sigma^2}} + 1]$$

$$[(4n^2 + 4 - 8m^2) (Erf(\frac{H}{\sigma}))^2 + (4m^2 - 4n^2) Erf(\frac{H}{\sigma}) + n^2]^{-\frac{1}{2}}$$

David Sun has programmed this equation and solves for the optimum ($H/_{\sigma}$) given m and n. Below are two tables giving, respectively, D and ($H/_{\sigma}$).

m n	2	3	4	6	8	12	16	20	24	
1	.787	.838	.855	.858	.851	.839	.832	.828	.825	
2	.745	.800	.842	.875	.878	.865	.853	.845	.839	
3		.769	.802	.855	.869	.880	.870	.860	.852	
4			.771	.821	.857	.881	.880	.872	.864	
5				.790	.830	.872	.881	.879	.873	
6	_			.765	.803	.856	.877	.881	.878	
7	D				.779	.837	.867	.878	.880	
8					.759	.818	.854	.872	.878	
m	2	3	4	6	8	12	16	20	24	
1	.701	.782	.821	.828	.796	.740	.707	.687	.674	
2	1.371	1.049	.977	.967	.948	.864	.800	.759	.733	
3		1.410	1.199	1.036	1.006	.953	.885	.830	.792	
4			1.385	1.122	1.036	.989	.942	.891	.847	
5										
5				1.223	1.077	1.002	.970	.932	.892	
6									.892 .924	
	н,	/ _o		1.223	1.077	1.002	.970	.932		

The optimum signal-to-noise ratio occurs at

$$m = 4$$
, $n = 14$, $H/_{\sigma} = .967$, $D = .882$.

However, the convenience of having n and m be powers of two would recommend

$$m = 4$$
, $n = 16$, $H/_{\sigma} = .952$, $D = .880$

at a negligible loss in signal-to-noise ratio.

The signal-to-noise ratio of the two bit correlator is thus about .88 that of a continuous multiplier, as contrasted with .64 for a one bit correlator.