
TWO BIT CORRELAIOR

by B. G. Clark

In one bit correlation one records only the sign -- + or -. In

two bit correlation, we have a sign and a magnitude bit, giving four

possible states. Let us denote the digitization of a variable A by [A]

and denote the four possible states by

+L if H

[A] = +S if H > 0

-S if 0>>-H

-L if -H >

where H is the second clipping level. We now have the freedom to define a

multiplication table [A] * [B], which, because of the symmetries of the

problem may, without loss of generality, be taken to be

r.A.1
-L -S +S +L

[A] * [B] =
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if A and B are equal independent gaussion noises from the receivers, and

C is the noise from the source,
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The correlator output is < [A+C] * [B+C] >.
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Employing all the symmetries of the problem,
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If we approximate a low signal-to-noise ratio, a «a then for all X of
1

interest X<<a and we can expand the error functions
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The noise on the correlator output is
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For continuous multiplication, the signal-to-noise ratio is simply
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so the degradation produced by the quantization is

[ (4n 2 + 4 - 8m2 ) (Er f ) 2 1- (4m2 4n2) Er n2 ]
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David Sun has programmed this equation and solves for the optimum (H/a)

given m and n. Below are two tables giving, respectively, D and (H/a).

INP- 2 3 4 6 8 12 16 20 24

1 .787 .838 .855 .858 .851 .839 .832 .828 .825

2 .745 .800 .842 .875 .878 .865 .853 .845 .839

3 .769 .802 .855 .869 .880 .870 .860 .852

4 .771 .821 .857 .881 .880 .872 .864

5 .790 .830 .872 .881 .879 .873

6 .765 .803 .856 .877 .881 .878

7
D

.779 .837 .867 .878 .880

8 .759 .818 .854 .872 .878

m.\\n
2 3 4 6 8 12 16 20 24

1 .701 .782 .821 .828 .796 .740 .707 .687 .674

2 1.371 1.049 .977 .967 .948 .864 .800 .759 .733

3 1.410 1.199 1.036 1.006 .953 .885 .830 .792

4 1.385 1.122 1.036 .989 .942 .891 .847

5 1.223 1.077 1.002 .970 .932 .892

6 1.305 1.135 1.012 .981 .955 .924
Wu7 1.197 1.028 .987 .967 .944

8 1.251 1.053 .993 .972 .955

The optimum signal-to-noise ratio occurs at

m = 4, n = 14, H/a = .967, D = .882.
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However, the convenience of having n and m be powers of two would recom-

mend

m = 4, n = 16, H/ a = .952, D = .880

at a negligible loss in signal-to-noise ratio.

The signal-to-noise ratio of the two bit correlator is thus about

.88 that of a continuous multiplier, as contrasted with .64 for a one bit

correlator.
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