
ON THE DETERMINATION OF THE TOTAL FLUX
OF A RADIO SOURCE

by

Ralph J. Gagnon

NRAO Internal Report

September 1965



otirce

ABSTRACT

Several methods for determining the flux density of a

from measurements made witn a high—gain radio telescope are described.

The relationships between the total flux and the telescope record are

compared for source distributions in both Gaussian and disc fo ms. These

are presented in a manner to display the wavelength dependence. Comparisons

are also made between methods of flux estimation based on the peak received

power and the integral of the received power.

The statistical problem of estimating the flux in the presence of

random—noise fluctuations is considered. The first case considered is

when the source position is known but the amplitude is unknown. It is

shown that a good way to estimate the received flux is to mult P Y the

received power record by the antenna pattern and then integrate. The

resulting quantity is proportional to the desired flux estimate. The

variance of th s estimate is also computed.

The second case considered is when both the amplitu-e and Position

are unknown. It is shown that a good method for estimating in this case

is to use the same method as used when the source position is known, and

to compute this estimate for all possible positions. The desired esti -

mate is then the maximum value resulting from these computations.
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INTRODUCTI or

One of the problems in radio astronomy is the determination of the

total flux density of a radio source from measurements made with a hig

gain antenna. The measurement made with the receiver system typically

consists of a curve which is formed as the antenna beam moves through the

source region. For point sources, this curve is the antenna pattern itself,

and the flux can be obtained quite simply. However, quite often this

smooth antenna-pattern curve is obscured by random noise fluctuations, and

it becomes a statistical problem to estimate the total flux. Also, when the

source size becomes commensurate with that of the antenna pattern, the

relationship between the total flux and the response curve depends on the

shape of the source distribution as well as the amplitude. It is the

purpose of this paper to discuss some of these statistic-1 and shape-dependent

considerations which arise in the determination of radio-noise flux.

THE GAUSSIAN SOURCE

Let us consider a Gaussian source. The brightness, or flux density

available per iunit solid angle, is given by

so ,c2 2
S(x y) a

e a

where a can be thought of as the source radius, x and y are linearized

angular coordinates centered on the source which measure solid angle in

steradians, and S is the total flux density in watts/m 2/cps, i.e.,

S o = fS(x, y) dxdy. (2)



( 6 )

Let the normalized main-beam power response be approximated by

2y
2

F(x, y (3)

where b can be considered the beam radius. The main-beam solid angle 9m

is defined to be

2
dr F(X, y) dxdy = nb

MAIN

BEAM

a result which follows if we allow the integration limits to become

infinite. The sidelobe or ray-region solid angle 2s is defined to b

jr F d2,
STRAY
REGION

where we have written the solid angle as d2 because the linea r range (x, y

is exceeded. The total antenna solid angle 2T is the sum of these:

(4)

We define the beam efficiency to be the ratio of the mainbeam area to

the total beam area, i.e.

21\4. ( 7 )

Let A e be the effective aperture of the antenna and A the -ohy,s,tcal

aperture  We define the aperture efficiency 1TA to be the ratio of these:

(8)
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incident power. By use of (10) this is

ri A A So
p(x

+ TI A irp, a 2 ‘,

B

2

B a2
n 71 A A (12)

RA T1 A a 2

2 + TIB
(13)P(x ) dx

x2 J 0 o'0
ATT 11 A B

According to Ko (1964), for lossless antennas these quantities are

related by

11A 214 A
B

where X is the wavelength. By substituting (4) we get

'rib

b =2 .n A X2

The response of the antenna to the source per unit bandwidth, when it

is oriented towards (x = 0, x = x 0), is given by

T1A A
P(x0) F(x x y) S(x, y) dxdy, (11)

which in our case is equal to

A

(9)

(10)

1
The factor -2

- arises because the feed is polarized and accepts only tie

To find S, it may be appropriate to integrate this function and theno

solve for So . We get

In this form (13) shows the wavelength dependence of the relationship between



So

P(x0) d x0, ( 1 6 )
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total flux and integrated power response. In terms of the beam radius b

which might be empirically determined as a function of wavelength, this can

also be written

(14)

For very short wavelengths (narrow beamwidth), (13) becomes approximately

all7i a 
11 B X2

P(x0) d (15)

while for long wavelengths wide beamwidth) it becomes

The long-wavelength limit corresponds a common case when the source

may be considered a point source. We see that when this is true the dimensions

of the source are not required in order determine the total flux density.

We have not said anything about the wavelength dependence of ri A and TiB.

If there is such a dependence over the wavelength range of interest, then

of course this must be taken into account.

An alternative method for estimating the total flux is in terms of the

peak value. From (12) we get

TL A
T1B 1.,(o)• (17)11 A A

The short wavelength limit is
22na 

So - P(o),
T1B

while the long wavelength limit is

( 1 8 )



Both (15) and (18)

to determine the total flux density.

fractional error in S is equal to the f

for (18) it is twice as large. For this situation the integral method may

be preferable to minimize the error due to unkno n sou ce size,

suppose it is brightness temperature a he than fl density lich is

(20)

x2 y
2a

PT( o,

desired. We write

T(x, y) =

and, from the Rayleigh-Jeans law,

S(x, y)
2k
A.2 (21)

where k is Boltzmann's constant. We get, in place of (18) for short wave-

lengths,

T(o, p(0) (22)
kB

If we write P(x0 ) kTA(x0) where TA(x0) is the antenna temperature, this

becomes

Thus for short wavelengths we can obtain temperature and for long wavelengths

we can obtain total flux density without knowing the source size.



So=
rta

2S(x,

TIA A

2
JP(x 0) d xo F(x-xo, y) S(x, dxdy.

F(x- dxdy.

THE UNIFORM DISC

Let us consider the case where

o, otherwise. ( 23)

As in the previous case, the integral of the observed response is given by

Therefore,
22na P(x ) d x

71A A K
4)

where

source
region

We substitute (3) for F(x, y), convert to polar coordinates x r cos (4)

and y = r sin ip and integrate with respect to („p to get

where i is the imaginary unit V-1.

We first evaluate the integral with respect to xo by the relationship

(Erdelyi et al., 1953)

JIJ (at) e

-12 t2 

dt =
1/2 -1 -3 2 -2

E y exp(-2 a y ) II (2-3 a 2 y-2)
-2"

41



2i3"2 b

3/2

(25)
11 A V b

To find the short wavelength (narrow beam idth) limit, we use the

a222b
2e x d x

from which we find that

-r2
With the change of variable t = --5 this becomes

2b-
a2

2b2

This definite integral is evaluated by Luke (1962):

e (t) dt = Z e (Z) z))

from which we conclude

We substitute this result back into (24) to get

asymptotic form

1 0(Z) (z)

When we substitute this into (25) we get for the short-wavelength limit

a P(x0) d xo

2ez
1,./TTIY

AA b2
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'1 A
A So

2a
2

P(o). (28)

or
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which is approximately, but not identically, equal to the Gaussian result

(15).

For the long wavelength (wide beamwidth) limit we use

to get

2 f P(x0) dxo
(27)

rj A A b

which is, of course, identical with (16).

To find the flux density in terms of the peak values we evaluate

F(x y) S(x, y) dxdyp( 0)
11

A
 

A

2

Therefore

The short wavelength limit is

2

ri A A b

or
2n a2

P(o)

P(0 ) , (29)



while the long wavelength limit is

2
TIA 

A p(0

These are the same results as (18) and (19) for the 7aussian case, although

the equations do not coincide for intermediate wavelengths.

One important point to note is that we have been implicitly assuming

that very little of the source contribution to the received power is by way

of the sidelobes. If this condition is violated, then there will be some

error in the results we have derived.

E,STIIWATING THE TOTAL FLUX IN THE PRESENCE Of NOISE

We shall confine ourselves to a discussion of point sou ces so that

the general form of the received distribution is known, i.e. it is the
2/ 2

antenna pattern e multiplied by an amplitude factor which we shall

-x02/b2
call c, i.e., P(x ) = c e . We shall assume the location of the source

is known, but not the amplitude. We can formulate the problem considering

the position as an unknown also, but the equations then are more difficult to

work with. We shall assume that the amplitude of the source is a Gaussian random

variable with zero mean, a fiction designed for mathematical convenience.

Since the observed power response is contaminated with noise, we may

write

Q( x
0 ) P(x0) N(x0),

where

Q(x0 ) observed response

P(x0 ) noise-free response

N(x0 ) = noise component.

(30)



[P(X 1 ) P(x2 ) P(3c )] (33)
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We assume the noise is a Gaussian variable witi a correlation function

R(xo , yo ) defined by

R(xo' yo) = E f N ( x
0 ) N(Yo)f, (31)

where E stands for expected value. For example, white noise passed through

an RC filter with time constant t has the correlation function

_Ixo-Y0 

02 e

where an is the rms value of the output noise. If this noise is transferred

to a written record, then t should be replaced by where is the length

of record transversed in time t.

If we use sample values of the output function then it is appropriate

to express the set of sample values in matrix form. Let (x i , x2, .. xn) b

the n values of x o for which samples are taken. Then we define a 1 b

observation matrix Q,

[Q(x ) Q(x2) Q(xn)] (32)

a noise-free matrix P

and a noise matrix N,

N. [N(x1) N(x 2 ) N(x )]. (34)

We also define an n by n correlation matrix R whose 
13th 

element is given

by

(35)R- = R(x x-)j



P (36)

(38)

c2

°c2 (40)
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The joint probability density function for the noise is given by

where N

t
 is the transpose of N.

The true distribution is given by

2
- 'co

P(x0 )
c e 7.2)

(37)

where c is unknown. We define the matrix F such that

Then F and P are related by

P c F (39)

We assume c to be Gaussian distributed with standard deviation a i.e.c,

with density function p(c) given by

The deviation a must be chosen at least as big as the largest anticipated

value of c. Physically, large values of a imply very little a priori

knowledge of the magnitude of c.

T e joint probability density function for noise-free response and noise

then is

1(210 n+1 2 _1

c2 1 R-1 Nt
2ac2 - -2

• (41)p(c, N)

This is the function which we can use to determine the best mean-square estimate



(42)

Thus

msE 2 vt b c

fq
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to our integral and the error which results from our choice.

ALet q be an es

such that

imate of the integral f P(x0
) dx w0 . We . chooseto cho Aq, 

MSE Ea j' p (x0 ) dx0]2

is minimum, where MSE stands for mean square error. This can be expanded

MSE - Elq2 2q JT0 (x ) dx [PP( x0) dxo]

The middle term contains

I. P(3c ) dx0 	b

while the third term is

P(x0) dxo]
2 2 2

A
To minimize MSE we must choose q such that

is minimum. The expected value is given by

,A2Eiq 2\Ft b c cl} 2V-Ti b c P(c, N) dc dN

We make the change of variables

Q c F

dN d Q

to get

Efa2 - 215 b c = [21'2 	2V7i b c "El] p(c, Q cF) dc 01.Q.



(43)

(F R Qt)
2

A
'Nola we integrate wit respect to c to get (note that q is a function of the

observed response Q)

1 F R -1 Ft dQ.y 2 -

Now the integrand is a function of Q only, so that e may differentiate with

respect to to minimize the expression. We get

SPECIAL CASE

Suppose that the noise samples are inde pendent and identically d s-

tributed, so that R-1

becomes

I, where I is the identity matrix. r estimate
cY --

r- tvTIbFQ
2ay, ÷,

- F
0- 2 -

c

If, in addition, ac is large, we have

F Qt
AFt. b 

F F

which can be written alternatively as



elim-

>>
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.2xi

Q(x
b 2xi2

The limiting form for this as an infinite number of samples are taken is

2

Q(x3)

This is an integral form which is somewhat to be expected since we originally

set out to estimate an integral. However, we originally set out to estimate

an integral. However, we would have obtained this form even if we attempted

to estimate the peak value. Thus we have another reason for preferring an

estimate based on the integral rather than the peak value. Of course, the

estimate based on this integral is only approximately best in the least -

square sense, because the assumption that each noise sample is uncorrelated

with every other noise sample is not true for samples more closely spaced

than the time constant of the receiver.

Note that (43) is a biased estimate, while (44) is unbiased. It

up to the observer to decide whether to remove the bias from (43) by
1mating the term which increases the r.m.s, error somewhat. Since

ac
is a quantity which can only be guessed at anyhow, it is probably well to

remove it. Also note that the assumption a is large means that

(44)

cY

e b2

in the case that R = 447
n

2



MSE = n
2 
a 

2 (45)

rad
TEb2
a 2 an2 + F F

2 2
MSE = nba

a
c

2 —

By direct matrix multiplication we can show that

F t F
2

a 2

2
I + F
— 2 —

anF F

(46)

(47)

(48)

THE EXPECTED MEAN-SQUARE ERROR

Once we have the estimate 2j given by (43) we can continue to integrate

and evaluate (42) to find the expected mean-square error get

Rather than go through the tedious steps of deriving this expression,

we shall show that the results are reasonable in the special case when

2
R = a I, Then the expression becomes

By expanding the determinant according to its definition we can show that
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We substitute (47) and (48) into (46) to get

a 2

a 2

MSE It 2 F F
(49)

For very large values of o c we get

MSE =
-÷ 00

(50)

This is exactly the result which one would obtain using simplified argu

from the start.

For small expected signal-to-noise ratios we get

MSE (51)
2 -÷ oc)

which is the variance due to the flux density itself. This is also to be

expected. As the noise component gets hopelessly large, the best estim te

for the flux density is its mean value. The expected r.m.s. error then is

simply the variance.

As a computational procedure, we might recommend sampling the received

curve at intervals spaced as least as close as the time constant of the

receiver. Then compute the estimate

estimate of P(xo

x.2

uLe n(Xi) 
22x-

(52)



2
an

MSE 2x. (53)

Next compute an estimate of the mean-square error by

where in this equation the sample values are spaced by an interval equal to

the time constant of the system.

Usually, an estimate is given as the estimate plus or minus so many

standard deviations. Equation (52) gives the estimate, while the square root

of (53) gives the standard deviation. If the standard deviation is too large,

then either the results may be discarded 0 MO e samples may be taken and the

more exact equations (43) and (45) used to get the maximum significance from

the data.

ESTIMATI:G THE FLUX WHEN THE SOURCE POSITION IS UNKNOWN

It is rather difficult to get an exact mean-square estimate for the integral

jr P(x0 ) d xo of the type (43) when the source position is also unknown. Never

theless, some useful approximate expressions can be de ived.

First, let us point out that (43) is a stationary expression for

f P(x0 ) d x with respect to position, provided sample points are selected
o-5)2

equally about the origin xo 	0. For example, suppose that P(x0 ) = c e b4,
, 

where 6 is the true position of the center of the source. Then the estimate

(43), in which it is assumed that the source is located at the origin, is given

by

xi2 .01

b2 -1 Lie b2

+ noise contribution.



a/4
ao

ea.

=0

dens itonly moderately well in order to get a good esti
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The derivative with respect to 6, evaluated at is given by

If thr.2, sample values are distributed equally on both sides of the origin then

a5 
5=0

(54)

which is the result we ar e looking for. Thus one need know he source position

To get an idea of how good our knowledge of the source position ust be,

let us use the approximate integral form

xo

e d xo

and substitute P(x0 ) = c e to get

2bb c e noise.

This expression can be used to determine the allowed limits on the ratio

Suppose for example, that the flux density must be known to an accuracy of 1/2%.

Then 6 need only be known to lie within the limits of + 10% of b.

Let us proceed to a more exact estimation of the flux density when the

assumption that the source is at the origin is no longer satisfactory. We



F ( .5) =

-(x2 6)2 
2

)2

(55)

( 5 6 )
b F(5) R-1Aq(

5) dN dcd(5p N,

c F(6) differentiate with respectWe again make the variable change N =

estimate which would be used if it were known that the source centered

at x = 6 instead of at the origin.

To find the best van-square estimate we no

expression

have to minimize the

E 2-07 b 2V7t
A

C q

define the matrix F (6) now as

-20-

We assume that 6 is distributed according to a distribUio fuitiDn P(0)

such that

We define the following estimate

--- -1-- F(6) R-1 (6)a 2

This is the same as (43), except that is replaced by F( 5). It is thus the

to and set equal to zero to get

jic p(Q - c F(6), c, 6) dc db
..1111
11.1.

p(Q c F(6), c, 6) dc c16



our estimate becomes

(57)

We note that

so that

P(Q Ec c) dc
= q(5)

F 6j g(6) p(6) dO P(Q

p(5) d6 P ( Q- F(5) ) dc

BBut f p(Q F(5), dc is proportional to

Let us suppose that 6 is uniformly distributed over a finite inter val.

Let us approximate the integrals by sums, so that

q2( 5i r 1
cr F

1

2nbe
q = i=1 (58)

a ' R-1 Ft]2 

2Tilb

5.)1

i=1



e
:3 =1

where we take the bi's at intervals equal to the sampling interval of the

x . 's In this case we see that F(5) R (5) represents a statistical

operation between the noise and a displaced Gaussian curve. If the matrix

dimensions are infinite, we might just as well consider the Gau3sian curve

to be at the origin and the noise displaced by 6. If the noise statistics

do not depend on position, which we shall assume, then F(5 1..) R pt(5)

F(o) R-1 Ft(o).

SPECIAL CASE

We again assume that 0c2 and R . Then we get, for (58)

2x.
2

b
2

qA

2
q (5i)

211) 2 2 j=1
q

(59)

q 2 (

22 nb2e
i=1

where n is proportional to the range for w hich data samples are taken, and

m is proportional to the range for which a source position is suspected.

We see that (59) is a weighted average over all computed estimates

in which large estimates are emphasized and small estimates de-emphasized.

In its crudest form, (59) suggests computing 14c1(5) for all possible 6

and then selecting the maximum value for the estimate of I P(x0 ) d xo.
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