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Abstract 

A general method of analy zing the combined effects of the filtering and

sampling processes on the signal to noise ratio is proposed. It is based on some

of the properties of the Fourier series, the stationary random functions, and the

linear filters, and it leads to the estimate of the resultant standard deviation on

the amplitude of each of the Fourier series components which would represent

the signal alone in any limited interval. The magnitude of these standard devi-

ations is then used as a criterion of the efficiency of these processes used together.

One immediate application is the determination of the optimum rate of sampling

discrete values of a signal mixed with noise. This optimum is a function of the

frequency response of the noise filter, the spectrum bandwidth of the signal,

and the relative increase of the standard deviation introduced by the sampling

process which is considered acceptable. An example is given, from radio as

 in the case where a resistance capacity filter is used in the receiver

output. It is shown that for any given acceptable relative increase of the standard

deviations, optimum relations can be established between the values of the filter

time constant, the sampling interval, and the spatial frequency bandwidth of the

antenna used.

I. Introduction

In the reduction of the data from a record of signal and random noise, a

problem is often met of limiting the number of points of measurement, to a mini-

mum without losing any, or at least hardly any, of the information contained in

the original record. This problem arises, for instance, when the degree of
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computation involved, or when the length of record to be put in a digital form, is

extensive enough to make desirable a cutting of the quantity of data to be used.

In the ideal case where the signal s(t) is free of noise and contains no fre-

quencies higher than B cps, the answer is given by the sampling theorem, [1],

which states that s(t) is completely determined by the knowledge of an infinite

series of discrete values equidistant by no more than —
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When the signal is observed only over a finite interval T the preceding theorem

still applies, to the extent that s(t), instead of being completely determined in the

interval T from the knowledge of a finite number of points, is now determined only

to a very high degree of approximation everywhere within T, except at the edges

(the smaller the amplitude of s(t) outside T, the better the approximation near the

edges), [2 - 3].

In the case where the frequency spectrum of s(t) is not strictly limited to a band-

width B, but contains only a relatively small amount of energy outside B the

sampling theorem still leads to a very good approximation of s(t), in the interval

T, from the knowledge of 
1/2B 

= 2B T equidistant values [2]. For these two last

cases a necessary condition is to have 2B T >> 1.

One might consider extending the use of this theorem to the general case

where a random noise x(t) is superimposed upon the signal s(t). To the extent

that the power density spectrum of the noise can be considered as very small

outside a certain bandwidth B
1

, one can say that, by sampling any record of signal

and noise at equal discrete intervals smaller or equal to the smallest of the two
1quantities —

1 

and —4., one disposes of almost all, if not all, the information2B 2B
necessary to restore the original record.

Actually, in the latter case, there are two objections against the use of the

sampling theorem as a means of defining an optimum rate of sampling. One is

s(t)
-00



that the definition of an equivalent bandwidth B

1
 of the noise power spectrum,

which is ultimately shaped by the frequency response of the receiver output

filter, is somewhat arbitrary (unless, the ideal case of a rectangular filter is

considered). Furthermore, due to the fact that such a filter is generally sub-

mitted to the requirement of distorting the signal as little as possible, its fre-

quency gain may be still significant rather far away from the range of the signal

bandwidth. Consequently, a conservative estimate of its bandwidth B
1
 would in

that case lead to a value of the sampling interval much smaller than it would have

been for the signal alone.

This last point leads to the second objection which is that one is generally not

interested in being able to restore both signal function and noise function, but

only the signal by reducing the error due to the noise to a minimum. And in-

deed, as it will be shown, consideration of the problem directly in that form leads

to the estimate of a sampling interval larger than it should have been if both signal

and noise had to be restored.

Actually, the problem we are considering is the following one: given a signal

s(t), of which nothing is known except that it has no frequency components over a

certain bandwidth B, and which is mixed with a random stationary noise x(t)

whose power density spectrum is known; to what extent will the fact of knowing

only discrete values of s(t) x(t), at periodic intervals of given width 0 affect

the final quality of the restoration of s(t)?

These conditions are encountered in radio astronomy observations: so far

as the signal is concerned we know [4] that whatever the spatial frequency distri-

bution of the source is, the spectrum of the image given by an antenna is riz;\ c C

limited to a cut-off whose value is proportional to the ratio of the diameter of the

antenna to the wavelength of observation. Also the power density spectrum of the

receiver output noise is known from the measurement of the frequency response of

the selective filter. A last point is that, for an observation being made over an

interval of time T, what is desired is to restore, in this interval only, the signal

s(t) to its best.
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In the following, we will consider the combined effects of the sampling rate

and the frequency response of the noise filter on the final quality of the restored

signal. This will be done by considering the value of the standard deviation which

affects the amplitude of each of the components of the Fourier series which would

represent the signal alone over the interval T of observation. Based on some of

the properties of the Fourier series, the sampling theorem, and the linear filters,

this approach seems to have the twofold advantage .  Of leading to an exact and

rather simple estimate of the respective contributions of the filtering and of the

sampling and of allowing this estimate to be obtained as a function of the signal

frequency component considered. To begin with, a resume of the basic formulae

used is given.

II. Basic Concepts and Formulae 

A. A few properties of the Fourier series.

One knows that a regular function s(t), whether it is periodical or not can

be identically represented by a Fourier series in any interval T, but in this interval

only (the components of the Fourier series being themselves limited to the interval

T):

s(t) b b cos 27r t a sin 27r — tm = 1 m T m = 1 m T

for: 0 < t < T

with:

a
m

 = –
2
 f

T 

s(t) sin 21r t dtT T

2 ,T
b —

T 
jo s(t) cos 27r —

m
 t dt

b = –
1
 f s(t) dt0 T

In the case where the number of components is limited to a certain value m o , the

(1)

(2)
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(2m
0
 + 1) unknown coefficients a and b can be calculated from the following

linear system:

00 00
s(t1 ) b + b cos 2 in7r t + E a s 27r —to m = 1 m T 1 m T 1

00 m 00 ms(t
p
	b + E b cos 27r — t + E a sin 27r — to m = 1 m T p m = 1 m T p

00s(t =b + Z b cos 27r — t
2m0+1 m = l m

+ E a sin 27r t2m0+1) o m = 1 m T T 2m+1

of (2m
o
 + 1) equations, knowing (2m

o
 + 1) values (whatever they are) of s(t) in the

interval T. If the (2m
o
 + 1) values of s(t) are chosen equidistant, the interval

between consecutive points being:

the solution of (3) lead to:

2m
a =m 2m+ 1 p Z 

o 

s(p0) sin 2r —pe= 0

2m

o
b  Z2m 1 p s(p0) cos 2r — pem

o
0

2m
o1 b s(pe)o 2m

o + 1 p = 0

When the sampling interval is smaller than , the coefficients a and

b can be estimated by still using relations (4), in which (2m 0 + 1) is replaced

by n, the number of values of s(t) sampled. It is interesting to note also that,

(3)

(4)

should the number of sampled values be less than the number of coefficients to

be calculated, relations (4) would give the best approximation of these coefficients
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+BT
s(t) =1-BT

6

(considering the criterion of the minimum mean square error:
n - 1

— E [s(t ) S(t )]
2

, where S(t) is the Fourier series calculated in that manner).

15bp
n = 0

A last and useful property of the Fourier series is the following ones what-

ever is the spectrum of a function s(t) considered in an interval T, the Fourier

series expansion limited to its first mo terms is still the best trigonometric

series of m
o
 terms to represent s(t), (with the same minimum mean square

criterion).

B. Sampling theorem and Fourier series

Just as the Fourier series are either an identical representation of a function

s(t) in a limited interval T, or a good approximation of it, also the sampling theorem

in the time domain gives, for a strictly band limited function, either an exact

representation of this function (from -co to +.0 ) or a high degree of approximation

of it in a limited interval T (if BT >> 1, where B is the spectrum bandwidth):

sin 27rB (t —
c

)2B-
for - 2 < — 2< + —+ caniB G -2B)

(6)

The fact that (6) is a very good approximation of (5) when s(t) is only known in a

finite interval T is due to the rapid attenuation of the quantity)sin 27I-B (t - —)213

2T-B c
- —2B)

when (t —) diverges from zero. The effects of any term in (5) are therefore2B
of consequence only within a relatively small number of intervals in the neighborhood

of the corresponding sampling point [2]. The approximation given by (6) in the

interval T is then good anywhere within T except at the edges.



Using this property of the sampling theorem, one can show, at least

qualitatively, that a function s(t) which contains no frequencies higher than

B can be represented with a good approximation in any interval T (with the

condition that BT >> 1) by a Fourier series limited to m o terms, with:

m = integer part of BT

We have been unable to find elsewhere a direct demonstration of this rather

intuitive property, and propose the following approximate one.

Let us consider a regular function s(t) in the interval - —
2 , + —

2 . In

this interval it is identically represented by equations (1) and (2) which can

be written in complex terms:

+00 271 t
s(t) 74 C em=-°° m

with

b
m 

j a
m

t. m
1 r+T/2C

m 2 J s(t) eT -11/ 2

Replacing in (8), s(t) by its value given by (6), one has

c tsin 27r B (t - -2
—
B-) -27rjm —

T dt

c27r B - —2B)

In consequence of the uniform convergence of the series one can reverse sum-

mation and integration:

9 t
+BT +T/2 sin 27r B (t )

B2 19111
f

271. B (t
-T/2

dtC
m

 = —
T c

s

Using the same argument that applied for the degree of approximation given by

the samplin.g theorem (6), we see that for t < - —2 or t > —2 the quantity

(7)

(8)

1 +T/2 +BT
=Cm 'I' -T/2 c -BT

(9)
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. msin 27r B (t -
c

	-211-3 te 
T dt

27r B (t
(10)fc

2B

sin. 27r B (t - —2B

•

 )
 falls rapidly to zero, whatever —2B such that:

27r B (t - —
2B

• 

)

c<+I
- 2 2B 2

condition which is fulfilled in the actual case. Therefore (9) can be written:

8

the limits of the integral being extended to - so and +co

Let:

C
U = 2B (tb — 2B'

x = 2BT

Equation (10) becomes:

1 +BT c -27rjcx +.°° sin Tu. -27rjux
C

= s te I e dum BT c = -BT 213 —oo 7111.

In this form, it is clear that the value I(x) of the integral is the Fourier transform
sin ru.of . Therefore:ru

I(x) = 1 for - < x < * e2 — — 2 

1I(x) 0 for x > 2

1 m <

2BT

1
2BT 2

The coefficients C and C are therefore zero for m > BT, and the number of-m
Fourier series components is limited to m = BT.

More exactly, the preceeding shows that the Fourier series expansion of s(t)

the interval T limited to m = BT components, represents s(t) in this interval

with a degree of approximation comparable to the one given by the sampling

theorem. This approximation is therefore better when BT is larger.
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In figures 1, 2, and 3 are shown a few examples of the degree of approximation

obtained in this manner.

Figure 1 represents the function g(a) = (
sin rBa 

)
2

 whose Fourier transformB a
G(v) (figure la) is zero for v > B.

2 2It is considered over the ranges - —

4 

< a < —

4 

and - < a < , and in each caseB B B B
the Fourier series components are calculated from points at abscissae ki2B

within the range of observation (k being an integer). The function g(a) is then

restored by adding these Fourier harmonics.

Figure 2 shows similar results in the case of the function g(a) sin 7rBa

Ba 

whose

Tr 
Fourier transform is G(v) = 1 for 0 < v < B and G()) = 0 for v > B (fig. 2a).

The first example, in radio astronomyv represents the gain of a continuous linear

aperture as a function of a, angle between the direction considered and the plan

perpendicular to the antenna.

The second one would represent the gain on a synthesis antenna obtained by multi-

plying the output signal of the same linear aperture by the output of one element at

its end [7].
salt

In both cases, the spatial frequency cut-off of the antenna is equal to

the ratio of the length of the aperture and the wavelength of observation.

The third example corresponds very nearly to the actual case of the 85 foot para-

bolic antenna used at the NRAO.

Due to the tapering of the illumination, the level of the side lobes is appreciably

reduced, and in consequence the main lobe is widened; its width at half intensity

points is 1.4 times larger than it would be if the illumination were uniform.

In Figure 3, the gain of this ad enna is approximated by the Gaussian curve having

the same width at half intensity points:

g(a) = 2.72 exp
a2

2(0. 53)21
B

with B
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The Fourier transform of a Gaussian function is also Gaussian,

Figure 3A shows that, in the present case, G(v) is very small for v > B, and
1actually sampling g(a) every - and restoring the function in the corresponding2B

interval of observation, give the curves shown in Figure 3.

. Random stationary functions and linear filters.

Let x(t) be a random stationary fun tion. Its correlation function is by

definition:

p0(T) = x(t). x(t - T).

and its power density spectrum:

A0(v) = 4 f
o 

p(T) cos 2711)T dT

A0(v) and p0(T) are Fourier transforms of each other and one has

roo
p0(T) = j 

0 
A

0
 (v) cos 27rvT di-'

Also:

x2(t) = p0 (o)
 = f: ) dv

When x(t) is applied to a linear filter whose complex gain is

G(v) = g(v) e
iCo(v)

the power density spectrum of the output random function becomes:

A(v) = Ao(v). g2(v) (13)
[Bochner -Khintchine

theorem] [- 8 -]

In a radiometer where the most selective filter is the output low pass filter, the

power density spectrum of the noise at the input of the latter can be considered as

constant over the filter bandwidth.

If g(v) is the modulus of the low pass filter gain' the power density spectrum of

the receiver output noise is therefore:

A(v) = Ao. g2 (v) .

(12)



III. Sampling of a signal mixed with noise. 
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1. According to Section II, I, a signal s(t) whose Fourier spectrum is

limited to a bandwidth B can be represented with good approximation over an

interval T (such that BT >> 1) by a Fourier series expansion limited to mo = BT

components. Amplitude and phase of these harmonics are chiculated exactly
1from values of s(t) sampled at intervals smaller than or equal to, —2B (equation5

4):

211-i m,
a = si,13e, sin 27r -71" Pem n p 0

2 n -1
b m = p 0

s (r e)
 cos 27r 

m

7r- Pen = 

1 n -
bo = p 

0Z s(re)n = 

When a random noise x(t) is superimposed on s(t), the estimate of the coefficients

a and b from the actual record f(t) = s(t)  x(t) leads to values:

l 2 n - 1
a m n 0

[s(pe) x(pe)] sin 27r pep = 

1 2 n 1
b = [s(pe) x(pe)] cos 27r — pe

m n p = 0

1 n - 1b
1

 =p 0
[s(pe) x(p0)]o n = 

and the errors made on a and b are:

2 n - 1 m r,
E = — E x(p0) sin z7r lad
am n p = 0

2 n 1 x(pe) cos 27r —m peE =bm n p = 0 T

n 1E

bo n. p 0
x(pe) (16)

= 

Since x(t) is random, these errors are also random, and only their statistical

effect can be estimated. It is expressed in terms of the mean noise energy

(14)

(15)
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which is added to the energy: Vm2 a2 + b2 related to the component m.

One has:

v1 2 = ai 2 + bl 2 = (a
bm

if e ) + (13 + E 	) (a2 b2
m m

2 E 
2

m m m m am m. 

)

am bm

It is the purpose of the following to calculate the standard deviation:

2 + E20 am bm

from the actual amplitude, V = far+ b of each of the Fourier harmonics

as a function of the sampling interval 0 (with 0 ) and the statistical properties

of x(t).

So far as the phase is concerned, only an estimate of the probable maximum error

can be made, by considering the "worst" case where the noise vector and the signal

vector are in quadrature.

2. Calculation of cr2 = E2
am bm

Let:

'Ti
=
 E 

am 
+ E

bm

One has:

C
r

 =E
2 	+ E 2 = .17*
am bm 'm

With:
271 11/

-*
 
pe

m n p 0
2 n - 1

= x(p0) e

Then:
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By definition: x(p0). x(p 10) is the value p[(p i - p)0] of the correlation function

p(T) = x(t). x(t

Let A(v) be the power density spectrum of x(t) One has (equ. 12):

p (T1 A(v) cos 27rvT clI

Then:

x (130). x (1310) = 0131 -13)ei

and:

00 
A(v) cos 27rv (p i - p)(3 dv

4 n-1 n-1
o2 =m n p = 0 p = 0

270 (pl p)
AM cos 27rv (p i - p)0 dv e T

M h ail

n op-op 4=0 "
[ z i z w P".1 cos 2 1 0 MO dv4 oo 11 — 1 n - 1 

e 
27(

and finally:

m2sin ncir0(v

n sinire(v+—
m

)

m2:sin nr0(v --
T

)'

n sine( 11-1)
A(v) dv (18)

It has been seen (13) that A(v), power density spectrum of x(t) at the output of the

receiver, is actually defined by the power gain g
2

(v) of the output filter:

A(v) = Ao g
2

(v)

where Ao , the power density of the noise before this filter, is constant within the

low frequency range considered.

Equation (18) can be written:

0. 2 A f 5()) g2(v) dv (19)
0 M

with:
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(v)

O

2
sin nirv0 
n sinrve (21)

14 -

m 2 , . m 2sin nre(v+—) sm nire(v --)1 2 T T
i gms (v) = m M.n sinre(v+—) ,n sinre(v - —)T T

showing the equivalence of the sampling operation to a linear filtering. A similar

calculation applied to the DC component:

2 = T 1 n - 1 n 1

0• 6 = E
•0 bo X(130. x

n p = 0 p
i 

0
(p 0)

leacbto:

(20)

3. Graphic Interpretation. 

The function g2 
s

(v), which consists of a double series of lobes, the firstm
two being centered at abscissae - —

T 
and + —

T 
(Fig. 4), has the following character-

istics:

- Interval between connective lobes: —
1

0
- Total area of one lobe, plus its sideslobes: , slightly inferior to —

1

ne
- Surface of the main lobe 10 times the total surface of the side lobes.

2 .2- Width at first zeros: — = —ne T
In Fig. 5 both g2

m5 (v), for arbitrary values of m and 0 and the gain g 2 (v) of an

RC filter are plotted.

The hatched area represents g2 (v), according to equation ( le) , and the influencems
of the length 0 of the sampling interval on c r2

in can be estimated graphically. One

sees that shortening 0 has the effect of rejecting all the lobes, except the first one

centered at +
T' 

toward frequency regions -where the low pass filter gain is small.

The lobe centered at + —
T

 cannot be avoided since the filter must allow the signal
mto pass. Its surface —D e represents the unavoidable noise energy which affects

the component m.

The s uare root of the ratio of the total hatched area to the area of the lobe centered
m.at + -- then represents a measure of the contribution of the sampling process to the

final standard deviation affecting the component m.

Applied to a somewhat similar problem, the method developed in Section III has been



- 15 -

previously proposed by the author [g], helped by the advice of E. Le Roux and J.

Arsac. The last mentioned has extended it [10] to the more general context of the

Fourier transform, and applying it to a different example has given a result very

similar to the first following one.

IV. Application to particular cases 

1. Case where the filter has a bandwidth strictl limited to the frequenc

range 0 B; the spectrum of the signal is limited to 0-vo, with vo < B.

Figure 6 shows that for every signal component, all lobes except the first one are

rejected outside the filter bandwidth when:

-v
o + > B + —

Or, since by assumption BT >> 1, when:

1 
—
<

 B + vo

The optimum sampling interval for the signal mixed with noise, that is the minimum

interval for which the sampling process does not introduce any excess error on the
1 signal, is e 0 =o B v

A sampling interval equal to 2v 0 would allow restoration of the signal, only if it
1were free of noise. On the other hand, by sampling every —' one could restore2B

both signal and noise. The relation between these three intervals, each of them

optimum at a different point of view, is:

1 1 1< <
B v

o
 2B2v

o
This result corresponds to the remark made in the introduction: The sampling

interval has to be smaller when it is desired to restore identically the original

record of signal and noise than when one is interested only in restoring the signal

to its best.

This is due to the fact that limiting the Fourier series expansion to m o = vo T

1

(22)
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terms effects by itself a filtering of the noise frequency components above vo.

Actually, one could use such a tehhnique for smoothing a record of signal and

noise, by: (1) Sampling the record at the optimum interval v (2) Calculating the
mo = vo T Fourier components (equ. 15), (3) Adding these harmonics with

their respective phases, and (4) plotting the result.

2. Case where both signal and noise have a bandwidth strictly limited

to B.

The optimum sampling interval is then: ° '= relation(22)becomi ng2B
a double equality.

3. 0 etimum sam interval for a DC si nal

The amplitude of the DC signal being 1)0 , the square of the standard de-

viation from it is, after filtering and sampling (equ. * and 21):

o Ao f (v) . g2 (v) dvo o

with:

In the case of a rectangular bandwidth filter (Fig. 7) the optimum sampling interval

is:

1 1B

1or
' 

—

T 
being by assumption small compared to B:

V. Filtering;, Sampling, and observing time.

After filtering, the noise energy is:
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GO

x(t)2 	af02 Ao g2 (v) dv

and is represented by the area delimited by the curve Ao g2 (v) and the coordinate

axes.

When signal and noise are observed over a time interval T, the noise energy which

affects the amplitude of each of the Fourier series harmonics is equal to:

m
= 

o
le

°
 

A0 g2(v ) . g2 (V) dvms

and is shown by the hatched area on the previous figures.

By choosing a sampling interval short enough, all lobes except the first one centered

at +-- can be rejected toward high frequencies where g 2 (v) is small and make their

contribution negligible.

The area of the remaining lobe is:
A

2 = •
mo T

g2 (1,113

The standard deviation cr , affecting the component m is inversely proportional

to the square root of the observing time (but it must not be forgotten that the am-

plitude V of the component depends itself on the interval within which the signal

is observed.)

In the case of a De signal and of a rectangular bandwidth filter, the ratio of the

noise energy after integration over an interval T (the sampling interval being
1< —B) to the noise energy before integration is (Fig. 7):

2 ° 1
0 2T = 2BTo- A B

o- is also proportional to g(l!) so is the amplitude of the harmonic m which has

passed through the filter. The final signal to noise ratio is therefore independent

of the characteristics of the filter.

What is gained by a proper choice of the filter, is merely an economy in the amount

of data to be sampled and afterward computed.
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It seems that there has occasionally been some confusion in this matter. Some

authors [12-13] have considered that the choice of the radiometer output time

constant T has to be made in such a way that there is no appreciable loss of in-
3

formation. In this respect the fact of choosing T small [1111] does not necessitate

the reduction of a large number of records. Further, if having T large indeed re-

duces the amplitude of the receiver output, it must be remembered that the effect

is not of importance since the standard deviation is reduced in the same proportion.

In the same way, the distortion to which the signal is submitted by the filter is not,

theoretically at' least, a limiting factor, to the extent that it is always possible to

restore the signal as it was before filtering.

Actually, the considerations which lead to the choice of an °optimum' time con-

stant are mainly considerations of convenience: for instance, easiness in inter-

preting a record directly, or limitation of the degree of computation required, or

still technical reasons like the effects of a large time constant on transients

(receiver instabilities or interferences).

An example of such a determination of an optimum time constant is given in the

following. Since the choice of the filter is of little importance, provided that

sampling and computing are made accordingly, we consider the case of the simplet

one, the resistance capacity filter.

VI. Application to a concrete case.

We have applied the preceeding results to the problem of the digitalization

of the output of a 20-channel extragalactic receiver [14] to be used with the 300-foot

telescope whose construction at the NRAO is to be finished [15].

Being designed for observations at 21 cm and above, this instrument has a maximum

spatial frequency cut-off equal to:

91.5 
0.21 = 435

and since the apparent angular velocity, expressed in solar time, of a source at a
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declination 6 is:

7.29 x 10 -5 x cos 6 rad/sec

the frequency cut-off of the filter equivalent to the antenna is:

vo = 435 x 7.29 - 10 -5 cos 6 = 0.0317 cos 6 cps

Whatever the frequency of observation (1420 Mcs or below) and the declination of

the source the highest possible frequency cut-off is therefore:

= 0.032 cps

So far as the signal only is concerned, and for such a frequency bandwidth the sam-

pling interval must be:

1< = 15.6 secs 2v0

In the present case, the determination of an optimum rate of sampling was par-

ticularly useful since we wished to simplify as much as possible the receiver out-

put system by using only one digitalization channel scanning the 20 analog outputs

between two consectuive transit recording points [16] and we also desired to reduce

to an acceptable minimum the quantity of data to be computed afterwards.

According to a previous remark, the low pass filter chosen is of the resistance

capacity type. The rd ative increase of the standard deviation on a given signal

frequency component v has been computed as a function of v of the filter time

constant T and of the sampling interval in the following way. From equation

(19), the noise energy which affects the frequency component v m = — of the signal

is:

0.2 = 
A0

g2 

S
(v). g

2
(V) d.1)

0 M. 

where Ao is the noise power density before filtering, g 2 5 (v) the power gain of the
m

sampling equivalent filter, and g2 (v) the power gain of the RC filter. The last

mentioned is:

1 4 (27vT)2
g2(v) =
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where T-
-
"
r
- RC is the filter time constant.

1Using equation (20), and takin.g into account that the area of a lobe is —

T
 we can

approximate the hatched area which represents a 2 (fig. 5) by:

A 1  A
2 o

 00
* °= 1 

111 • T 1 4- (27rTv) 2 	T k=1
[27r(TVm k 1 + [27(-Tvm +k—T

e) 2 (24)

since the width of a lobe at zero points —' is small compared to  and —
1

2T T

The first term in equ. (24) rePresents the minimum unavoidable noise energy

amo on the component v
m

 (which would correspond to a sampling interval tending

to zero).

The excess standard deviation on v therefore is:

1

R
m =

1 
1 [27rTvmj2

and is plotted in Fig. 8 as a function of TV, parameter of the family of curves

being —0 .

The second significant parameter is evo . For different values of this parameter,

tables and 3 show the variations of R with -T- for three frequencies v = 0,0
v
oit2, 

and v
o

.

They suggest the few following remarks:

For the DC component of the signal, R o does not depend on the absolute values of

the time constant and of the sampling interval, but only on their ratio. The influence

of the value of ev
o
 on RV increases toward the high frequency components, and m 1 1

for instance Rv is about five times bigger for 0 = than for e = *, and
2v

o

4v

o
1about three time and a half bigger for e = —

4vo 

than for e = —
8v 

(with = 3).

in MO 1 1 + [27r(Tvin +k-r/0)] 2 1 + [271•-Tvm+kT/0)]2
0-mo



1Table 3.
0

O. 25 0. 50 0. 75 1. 00 1. 25 1. 50 2. 00 3. 00

32% 7. 0% 3. 5% 2. 0% 1. 5% 1. 11% 1. 0% 0.5%

10 5.5 2, 5 k

21 -

Table 1. 2v0
1

O. 25 0. 50 0.75 1. 00 1. 25 1. 50 2.00 3. 00

R0 32% 7. 0% 3. 5% 2. 0% 1. 5% 1. 1k% 1. 0% O. 5%

0/2 50% 24. 5% 17. 5% 14. 5% 13. 0% 12. 0% 12. 0% 11. 0%

:a 75% 5. 5% 5.0% 57.:- 5% 5.5% 56. 5% 56. 5% 56. 5%

1Table 2. 0 4v

o

0. 25 0. 50 0. 75 1. 00 1.25 1. 50 2. 00 3. 00

329/0 7.0% 3.5% 2.0% 1.5% 1. % 1.0% 0.5%

2 41% 14. 5% 8. 5% 6. 5% 5. 0% 4. 0% 3. 5% 3. 0%

50% 24.5% 171. 5% 14.5% 13.0% 12.0% 12.0% 11.0%

Lastly, and perhaps the most interesting point, there is little to )3)e gained by

aving T > 0, whatever the values of 0v 0 and of vm.

Therefore, after the length 0 of the sampling interval has been chosen as a function

of v
o
 and of the excess standard deviations Rv

m
, considered as aCceptable, an
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optimum value of T is defined from it by the relation: T

This result is useful to the extent that it is wenerally desirable to use rather short

time constants. One reason is for instance, that the length of short transients,

due either to receiver instabilities or to interferences is comparable to the

filter time constant.

Another reason is that, the larger the time constant the more difficult the direct

interpretation of a record becomes (actually, as it has been seen, this consideration

applies only when it is desired to avoid further computation).

In figure 9 are plotted R o , R v0/2 and R vo as a function of evo for — = 1. Consider-

ing the present example of application, we have:

v
o
 = 0.032 cps

to which corresponds, for the signal alone, the optimum sampling interval:

1= = 15.6 secs 2v
o

If now an actual record of signal and noise is sampled every 0 = 10 sec. the RC

filter time constant being T = 10 sec, the standard deviation on the signal com-

ponents is increased by a factor varying from 2% for the DC component to 22% for

the cut-off frequency.

Choosing 0 = 5 sec, and T = e= 5 sec, would imply a range of 2% to 8%.

The distortion effects caused by an RC filter on the output signal of a parabolic

antenna have been studied, both by Mezzger [1$] and by William Howard III [13].

They can be represented by the following three quantities of the output function re-

lative to the input function: 1) reduction in amplitude, 2) delay in reaching the

maximum and 3) increase of the width at half intensity points.

In reference [13], the values of these parameters have been computed in the case

where both input function and antenna beam are Gaussian.

Considering, in the present example, a source narrow compared to the antenna beam,

and assimilating what would be the beam of the uniformly illuminated 300 foot para-

bolic antenna to the Gaussian curve having same width at half intensity points, we

haves
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1. For r = 10 sec.

Reduction of amplitude: 25%

Delay of the output function maximum: 6.7 sec.

Increase of the width at half intensity points: 28%.

2. For T = 5 sec.

Reduction of amplitude: 18%

Delay of the output function maximum: 4.2 sec.

Increase of the width at half intensity points: 12%.

Actually, these effects of the low pass filter on the output function can be eliminated

in a restoration program which would correct together the filtering effects of the

antenna and of the RC filter.
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