
USEFUL PRECISION FOR THE MEASUREMENT
OF A SIGNAL MIXED WITH NOISE

BY MARC VINOKUR

NATIONAL RADIO ASTRONOMY OBSERVATORY

NOVEMBER 1961



USEFUL PRECISION FOR THE MEASUREMENT
OF A SIGNAL MIXED WITH NOISE

In gen.eral, when one repeats a measurement of a fixed quantity S mixed with some random

riable X, in order to reduce the uncertainty of the measured value by averaging, the problem

arises of knowing how the precision of the individual readings affect the final result. In other words,

how low can the precision of the readings be without introducing a significant inaccuracy in the final

value obtained for S? For example, consideration of this matter is essential when the number of

quantities to be measured is so large that the elimination of unnecessary digits in individual mea-

surements is worthwhile.

If we consider a signal S, constant, mixed with a ga.ussian random variable X, the rms of which

is uo, and if first we assume that S + X is measured with an infinite precision, then when we take the

average of n samples of S + X, the random variable added to S becomes: X' = —

1

Xk, with a rmsn k

a. between cro and \-
9ibn , according to the degree of correlation of the values of Xk (a. =17

9-A. when they are

independent).

If now each value S + X is measured with a finite precision, an error of measurement is added

to the random variable X, so that the uncertainty of the value of S after averaging n samples is greater

than in the ideal case of an infinite precision.

Let Ybe the contribution of the lack of precision of the individual measurements to the final un-

certainty of the value of S. The purpose of what follows is:

To show that Y i is a random variable, the statistical distribution of which
tends, when n increases, to a gaussian law.

To calculate its rms € as a function of the precision of the individual mea-
surements.

To define and to evaluate the useful precision as the minimum precision for
which E can be considered as negligible with respect to cr.

As a general definition, if one says that an unknown quantity Q is measured with a relative pre-

vision + 1/2k, one means that in its representation by an integer k, the absolute error Von Q is cer-

tainly between -1/2 and +1/2. Since the exact value of Q is not known, there is an equal probability
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of having any value between -1/2 and +1/2.

For instance, if one measures a weight Q by comparison with elementary weights of 1 gr,

one knows that Q is greater than k gr4 and smaller than (k+1) gr. If one decides to represent

Q by k, then the absolute error Y on Q is between 0 and +1. A better representation is to apply

to Q the value (k+1/2) and to say that Y is between -1/2 and +1/2, with a probability density p(Y)

equal to 1 in this interval:

P(Y) = 1 for -1/2 < Y > + 1/2

p(Y) = 0 for II > 1/2 (1)

Mean value of Y:

—Y = f+°° Yp(Y)dY = f /2
+I/2 YdY = 0
-1

Variance:

r 2 1E2 +°°y
-2 = j Y2 p(Y)dY = +1/2  LI' 12o

E 1 
o

Characteristic function:

(2)

(3)

It is obvious that if Q is a constant quantity, the absolute error made in each measurement will

be systematic and equal to (k + 1/2)-Q.

If now Q is the sum of a constant signal S and a noise X and if the unit of measurement is much

smaller than the "range" of X (by range we mean twice the value X 0 such that the probabi,lity for

X to be bigger than Xo is less than a given percentage; for instance, for Xo = 4a, this probability

is below 0. 01% for a gaussian noise), then from one measurement to another Q is represented by a

different value of k and the error (k + 1/2)-Q becomes random.



tend to 0 when n tends to the infinity.one

The preceding applies now to the set of measurements. For each one, the characteristic function

of p(Y) is (equ. 3):

sin. a
(P(12)

2

For n measurements, the characteristic function of p(Y'), the probability density of the final error

is: n
A

(n sin. 2
gh(11 ) = [(P(12) i = A

2

and the variance: Es2 = f+: V I2P(YWY1

is equal to: €2 = j2 (pi' (0)

(

2

For 12 -->- 0, 0 n(A) ---' 1- 12

24 n

and after calculation, one has:

Therefore:

E
,F1:1_

- 2 3

To prove that the statistical distribution of the random variable Y' tends to a gaussian law

with the same rms E one may show that its Fourier transform, the characteristic function:

(,.., sin 11,1/37ni e n
Onvt ) = 1/3 /II

I
 cA

tends to the Fourier transform:

F(p) = e_1/2/2E

of the gaussian distribution:

_V2/2E2F(Y)  e

For that one may write the series expansion of log Co(p), and see that all the terms, but the first

(4)
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Log (Pn(I L ) --> 1- when n -->2

(Pn(A) --> e-1/2122E2

Therefore:

and:

To see how fast this distribution tends to the gaussian law when n increases, one can use the

development of Gram Charlier (1) which permits one to express a given unknown statistical law

in terms of a known distribution and the moments of the unknown law. One finds:

144 1 n-1_______ + ____ 3 / ,,1 1 Pn 80 48 'Y'
p(Y)= E-t-2---- e_ 

'Y' 2 / 2 E2 -6 — -4- 3 -I-

El

1 [ 1728 1 + n-1 5(n-1) (n-2) .45 144 1 n-1 -Y8 14 2

576
•

n 80 ± 48 + 
3 
° 

-"E'c--6 -15 -E774 + 45 -.-..--1 -156! n2 448 64 +

For n = 10, for instance, one has:

4° (5)

,
p(y) = 2/2€2

6rf e - 0.005 (E4 -6 T +31 +O. 001
y4 y2

I I
yv y4 y2

E
6 -15 —€5. +45 -15 +

One can also see this tendency to the gaussian law by plotting the distributions corresponding to

n=1,2,3,4

ciA

-2 -1 +1 +2

CONCLUSION

We have shown that when a value Q of a signal S mixed with a gaussian noise X(rms go) is measured



with a precision of + 1/2k, this lack of precision acts as a random variable Y. Its statistical

1distribution with an rms = 2.a. is not gaussian, but linear. Therefore, these two random

variables cannot be compared immediately. But, when an average of n measurements is taken,
n

the statistical distribution of Y'  Yk tends to a gaussian distribution as n increases, and
k = 1

its rms is:

1 \
n 

The rms of X' = — Xk is a = f(n) ao with f( n) = Nrri. when the values of the noise are independent.
k = 1

The variables X' and Y' are now comparable; their sum is gaussian and its rms is
f2j

+ 202)

It is therefore possible to define the useful precision of the measurements in terms of the minimum

number of units by which the rms value of the noise must be represented so thatE 2 /202 can be con-

sidered as negligible with respect to 1. In the simple and usual case where ab, one has:

12 1 
2a2 2no-0

2 240-0
o-'Below, the variations of G.
—

 are plotted versus the number of units by which ao is represented.

If one agrees, for instance, to have the final rms increased by a factor of 4%, then it is enough

to measure the amplitude of the signal with a precision such that 1 unit corresponds to cro.

In other words, this means that, for instance, signals up to 100 times the rms of the noise

can be represented by only two decimal digits without an increase of more than 4% in the

final rms.
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