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Notes on our ier Transforms

C, N. Wade

The Fourier transformation is one of the basic mathematical tools
required in dealing with problems of signal correlation. These notes
summarize some of the basic aspects of the Fourier transformation, al-
though they do not pretend to be complete in any way. There are many
books which deal with the subject at length. The following should be
adequate for most of the radio astronomical applications:

. Fourier Transforms and Convolutions for the
EmsEirlsnlaillt, R. C. Jennison, Perga on, 1961.

Transformation de Fourier et Thebrie des
Distributions, J. Arsac, Dunod, 1961.

3. Fourier Transforms, I. N. Sneddon, McGraw-Hill,
1951.

Extensive tables of Fourier-transforms can be found in Volume I of the
Bateman Manuscript Project, Tables of  Inte ral Transforms, McGraw-Hill,
1954.

I. Complex  Variables

We start with a brief review of the rudiments of complex algebra,
since much of the discussion to follow will involve complex quantitie,,4

Consider the complex quantity

= x

where j = . x and y are respectively the real and imaginary parts
of z. It is often convenient to express z in polar form using
modulus or magnitude r and a phase angle19:

i9z= r e (2)
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The complex conjugate of z is defined as

For reference, we note de oivre s formul
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In general, one obtains the complex conjugate of a complex quantity or
expression by inverting the sign of j wherever it occurs. Clearly

Note that z can be regarded as a two—dimensional vector of length r
with an orientation specified by 19. The Argand diagram is a convenient
aid in visualizing the relatinship:
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The Fourier Series Represen a

We shall treat the Fourier series representation in some detail
since the basic concepts needed in understanding the Fourier trans-
formation can be developed easily in this way.

Consider a function that repeats itself exactly at intervals of 2R
in its argument:

+

f this relation holds for all integral values of k, positive or negative,
the function is said to be periodic. A periodic function which repeats
at an interval different from 271 can always be forced into the above
form by a suitable change of variable. In the following, we shall always
assume that the function has 271 as its period.

A function can be represented by a Fourier series if it meets
two requirements:

1. It has no more than a finite number of discontinuities
any finite interval of its argument.

2. It is absolutely integrable over a single period; i.e., the
integral

cf.
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exists.

Most, if not all, of the functions used to describe physical laws and
quantities meet these conditions. Thus they are not very restrictive
for practical purposes.

The Fourier series representation of a function f(19) is usually
expressed as

where
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It should be noted that throughout these notes we assume that angles,
or quantities treated as angles, are in radians.

The series always converges to the value of the function except
at a discontinuity, where it converges to the midpoint of the discon-
tinuity.

There are alternative ways of writing the Fourier series. The
following probably gives the most direct insight into the nature of the
representation:

69) = aoh. c,as 61 79 — 'r/Q (8)

where

t
C`,1 1/ a e, 1re,1 >

= teL: I -,r0A.‘

+69) 1429 ,129

f(4) )1 80119

We see that the function is resolved into a "d.c. component" expressed
by a0 /2, and an infinite number of "a.c5 components" at discrete fre-
quencies n = 1, 2, 3, .... . Here n is the number of "wave periods" in
one function period of length 2R. Each "a.c. component" is described by
an amplitude c n , a frequency n, and a phase angle O n . The diagram
illustrates the relationships:
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The function f(19) is the sum of all these waves and the "d.c. component".
Each constituent wave is a Fourier component of f(19).

The Fourier series can be written in complex form. This is the most
compact way of expressing it, and it is the form that we shall generalize
for non-periodic functions to obtain the Fourier integral representation.
From de Moivre's formula, one can readily derive the relations
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Substituting these in (6), we obtain
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If we let g o = a0/2 and g_n = NI , we can rewrite (10) in the condensed
form



(13)

Equation (12) is the complex form of the Fourier series.

We have been calling n the frequency of the nth Fourier component.
Thus it seems strange that (12) requires n to take on negative values over
half its range. This is simply a matter of formalism, as we can see by
looking at (10), which is exactly equivalent to (12). In view of (9),
we see that

Then we can write the bracketed term under the summation sign in ( 0) a
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Substitution of this result in (10) would give us (8). In the notation
of (12), each Fourier component is the sum of the terms in n and -n.
Each component can be thought of as the sum of two oppositely rotating
vectors, with the sign of n determining the sense of rotation.

Finally, we note two essential properties of the Fourier representation.
First, it is unique: identical functions have identical representations,
and vice versa. Second, it is complete except at discrete points: except
at discontinuities, the representation contains all of the information
that is present in the function itself, and vice versa.

III. Fourier Transforms and the Fourier Inte ral

The Fourier series representation can be generalized to include non-
periodic functions. This is achieved by taking limits as the period tends
to infinity. The principal change in the representation is that in this
case we have a continuous distribution of frequencies instead of a discrete
series of harmonics. Therefore the series is replaced by an integral. We
have
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These relations are analogous to (12) and (13). They comprise a Fourier 
transform pair. We shall speak of (15) as the direct transform, and of
(14) as the inverse transform. We can think of g(404) as a spectral function
describing f(id9).

From (14) and (15) we obtain directly the Fourier integral representation
of (a):

This is analogous to the Fourier series representation of a periodic
function.

The conditions a function must meet in order to have a Fourier integral
representation are analogous to those for a periodic function to be ex-
pressible as a Fourier series. It must have no more than a finite number
of discontinuities in any finite interval, and it must be absolutely
integrable from -0 to 4- 00

must exist. Similarly, the representation possesses the same features
of uniqueness and completeness as before.

In two dimensions, the transform relations are
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To express these in polar coordinates, we define the radial variables



and the angular ablesva
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Iv. Some Properties of Fourier Transforms

Fourier transforms have a number of properties which frequently
are of use in practice. Let us define the operators

Q direct Fourier transform

inverse Fourier transform

Then we can write a number of corresponding pairs of properties. Bach
pair is symmetrical except for occasional changes of sign.

(20)
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