NATIONAL RADIO ASTRONOMY OBSERVATORY

Charlottesville, Virginia

May 24, 1974

VLA COMPUTER MEMORANDUM \#108
B. G. Clark

VLA SYNCHRONOUS COMPUTER - GLOBAL COMMON--SYSTEM CONTROL BLOCKS
PRELIMINARY SPECIFICATION

The body of this memorandum contains a synoptic description of the data area about which the VLA synchronous system computer programs will revolve. This description will be a primary reference for the detailing of the programs, as it describes the global common which is one of the primary means of communication between tasks (control communication will be by way of ACT/WAIT/RESUME services). Because of the great detail and the synoptic nature of the descriptions, this memorandum is not suitable as a general reference. A memorandum giving slightly more exposition is in preparation.

The system control blocks as described herein will appear in multiple copies. The number of copies to support the full, 27 element VLA as now envisioned is given in table one. The full control blocks will reside in the Boss computer. Truncated versions of the blocks will also reside in Monitor. The point of truncation is also given in table one.

All system control blocks will contain a pointer to the address of the next block of the same type. All device service routines will be entered with the address of the first control block of that type, procured from the array control block. After servicing the device, they will load the pointer to the next control block and reenter themselves, unless this pointer is zero, in which case they will return. In this way the code for the device service routines may be made independent of the location, number, contents, and, to some extent, the length of the various control blocks.

There is not a separate control block for each correlator to provide one requires excessive amounts of core. Instead, a control block will be generated for each correlator found to be in error. The connectivity of the correlators will be handled by special programs.

For data output purposes it is convenient to order things by subarray, so a backwards link through the IF's connected to a subarray is provided.

Monitor data of each type is assumed stored all together and in identical format for each device of the same type.

The columns beyond the description give the variable type and scaling and the owning task. Floating point quantities are indicated by E (two word floating point) or by D (three word floating point). For fixed binary quantities, A B indicates single word, and an S indicates double word precision. The number following the letter gives the scaling. That is, $\mathrm{B}+0$ indicates a binary point immediately following the sign bit of a sixteen bit word, $\mathrm{S}+31$ indicates a binary point at the end of a double word, etc. Units are given in the following column. Only the owning task is permitted to modify the quantity, though other tasks may inspect it. To avoid interruption during modification, multiple precision quantities should be modified by a store file command.

TABLE 1

BLOCK TYPE	ABREVIATION	NUMBER	LENGTH	TRUNCATION POINT
Array Control	ARACB	1	70	46
Arm Control	ARMCB	3	3	3
Subarray	SCB	5	141	83
IF Group	IFGCB	4	11	6
Antenna	ACB	27	73	17
Front End	FECB	216	5	5
Preamp	PACB	54	4	4
IF	IFCB	108	23	7
Faulty Correlator	CCB	varies	4	4
			$\begin{gathered} \text { Approx. } \\ 7 \mathrm{~K} \end{gathered}$	Approx. 3.5K

BIT SIGNIFICANCE
$\begin{array}{ll}\text { HARNING } & + \\ \text { ERRCR } & +\end{array}$
ERRCR + SET DURING NCRMAL ARRAY OPERATION
SEVERE ERRCR
CANGER
MARNING
ERRCR + +
SEVERE ERROR +
CANGER +
CARNING +
ERRCR
SEYERE ERRCR
SEVERE ERRCR
CANGER

MODIFIED JULIAN ATOMIC DATE
TIME, INTERUPT COUNTS SINCE O HUURS THIS CAY
IIME. IATERUPT COUNTS SINCE LAST IU SEC INTERUPT
CCNTROL PROGRAM 10
beservel to icentify reuuncant system
ARRAY STATUS FLAGS
TIME, IAT, FRACTION OF A DAY, AT LAST 10 SEC INTEKUPT "
TIME, LST, FRACTIUN JJF A DAY, AT LAST 10 SEC INTEKUPT "
ARRAY STATUS hURD
REDUNCAAT ITENS STATUS
STATUS
POINTER TO FIRST AHM CCNTKCL BLCCK
FOINTER TO ARN MGNITUR OATA
LENGTH CF NCNITCK DATA PER ARN
FCINTER TO FIRST SUBAFIGAY CCATRUL BLOCK
PGINTER TO SUEARRAY MLNITUR CATA
LENGTH CF MUNITOR DATA PER SUBARRAY
POINTLR TO FIRST IF GRUUP CONTROL BLOCK
PCINTER TO IF GROUP MCNITOR LATA
LENGTH OF MONITOR DATA PER IF GKUUP
FCINTER TO FIRST ANTENNA CONTROL BLOCK
PCINTER TO ANTENNA MONITCR CATA
LENGTH LF MGNITOR DATA PER ANTENNA
FCINTER TO FIRST FRONTEND CCNTRCL BLOCK
POINTER TO FRCNT EUN MCNITCR JATA
LENGTH OF MUNITUF DATA PEY FRONTEND
PGINIER TC FIRST PKEAMP CCATRCL PLCCK
POINTER TO PKEAMP MCNITUR CATA
LENGTH CF MONITCK OATA PER PREAMP
PCINTER IC FIRST IF CCNTROL RLCCK
PUINTER TO IF MUNITOR UATA
LENGTH DF MONITOR DATA PER IF
POINTER TO FIRST FAULTY GORRELATCR CENTROL BLCCK
PGINTER TO CORRELATCR MCNITOR DATA
LENGTH CF CCRRELATOR MCNITCR DATA
COSINE SIDEREAL TIME LAST 10 SEC INTERUPT
"
"
sine sidereal tine, last 10 sec interupt
"
tIme, IAT, at next 10 sec Interupt "
TIME. LST. AT NEXT 10 SEC INTERUPT
\because

$s+31$	CLC.CKR	nays.
$s+31$		
$3+15$		
	r.93. 0	
D	$\begin{aligned} & \text { CHERK } \\ & \text { GE,714]O } \end{aligned}$	PAT.IABSETKMPIXRAYS
0		OAOIAPS

Cherk
C(II. 0

GTiOM10
contents

```
            CGSINE TIME, NEXT 10 SEC INTERUPT O
            ""
    SINE TIME, NEXT 10 SEC INTERUPT O
```

 DERIVIATIVE OF UTI WRT IAT E
 deriviative of equation uf the equingx e
 APPARENI LST CF MIDNIGHT IAT
 "
 refraction constant for pointing
CURRENT SURFACE REFRACTIVITY
estimated atmespheric phase path

INIT
E
0

E
E

Jaysfeay -
TURNS/GAY
PADIAA:S

TUENC
$\mathrm{N}-1$
NAMISGFC(NOS

LOC CONTENTS

ARM IO
ARM SIAILS hORD
POINTER TO NEXT ARM CCNTROL BLOCK

COLO
CHECK
CuLD

CONTENTS

```
    SUBARRAY IO N IR CHARACTERS MAXI 
```

contents

$\cos _{n}$	2	$+$							
SIN	2	+							
$\cos _{\prime \prime}$	A	+							
SIN	A	+	ALTAZ	COORDINATES	LAST	10	SEC		NTERUPT

$\begin{array}{rr}\text { COS ETA } & + \\ \text { CIN } & + \\ \text { SIN }\end{array}$
SIN ETA
$\begin{array}{lll}2 & & \\ & \text { II } & + \\ & & + \\ & 11 & +\end{array}$
CHANGE IN ALIMUTH SINCE LAST 10 SEC INTEKUPT
CHANGE IN ZENITH ANGLE SINCE LAST 10 SEC INTERUPT
COS CEC ${ }_{-}^{+}$
SIN DEC
SIN DEC +
" \quad TRIG FUNCTIONS OF SCURCE COORCINATES
REFERFED TO MIDNIGHT TCDAY
F GECMIO
$S+1$ TUPNS
$B-6$
TUWNS
\cos
\cos
n
n
SIN RA
"
DRA/DT +
D CEC/DT
DERIVITIVES CF SOURCE POSITION
D V/OT
COS DEC
$+\quad+\quad$ GAIN CODE
COS DEC $\begin{array}{r}\text { GAIN } \\ +\end{array}$

$\operatorname{COS}_{n} R{ }_{\sim}^{+}+$
TRIG functicns of source coordinates.
NEXT 10 SEC INTERUPT

CONTENTS

101	SIN RA
102	"
103	"
104	CCS FA
106	"
106	1
107	SIN HA
108	- 1
1 Cs	1
110	Ccs 2
111	"
112	SIN Z
113	"
114	Cos A
115	"
116	SIN A
117	"
118	CCS ETA
119	"
12 C	SIN ETA
121	${ }^{\prime \prime}$
122	2
123	"
124	A
125	"

$S+1$
tuppis

2
$+$ $+$
$=$
+
+
+
+
"
$+$
$\operatorname{ccs}_{n}+$
SIN Z
$\operatorname{Cos} A$
altaz cCCRDINATES NEXT 10 SEC INTERUPT
POINIER TC THE FIRST IF CCNAECTED TO THIS SUBARRAY
compife
$+$

E
contents

```
IF GROUP ID
    if grcup status flags
    POINTER TO SUBARRAY CCNTRCL ELCCK
    pointer to next if croup centrol block
SYNTHESILER SETTING NCW DOPPLER DATA FOR LINE OBSEPVATITINS S+ - + 
LINE REST freguency
    ""
SyNTHESIZER SETTING FOR O H TODAY + + S+3
```

rrith
CHERK
CIT:R:F.C Cill GFOM1O If:IT

117
(;1!)

112

CONTENTS

LCC		CONTENTS				
52		"	+			
53		U'	+	E		
54		"	+			
55			have delay, next 10 SEC interupt	D	6:0m 20	Navisers
56			"			
57			"			
58			have delay, next 10 SEC interupt			
55	+		+	B-8	INIT	turvs
60	+		+			
61	+		+			
62	$+$	AZ				
63	+		+			
64	$+$		+			
65	$+$		- antenta pointing ccistants	$s+1$		rumids
68	$+$		+			
67		+	+	8-8		ruons
68		+	+			
69		+ EL	+			
70		+	+			
71		+	+	$s+1$		Jugys
72		+	+			

CONTENTS

FRCNT ENO 10
fointer to antenna control bleck
FRONT ENO STATUS FLAGS
FIRST LC FREOUENCY
POINTER TO NEXT FRONT END CCNTROL BLCCK

Culn
CONNEC
CHECK
INIT
COLO 11

LOC CONTENTS
$\begin{array}{lll}\text { C } & \text { PREAMP IO } & \text { CILL } \\ \mathbf{1} & \text { POINTER TO FRCNTENO CONTROL ELOCK } & \text { INIT } \\ 2 & \text { PREAMP STATUS FLAGS } & \text { CHECK } \\ \mathbf{3} & \text { FOINTER TC NEXT PREAMP CCNTRCL ELCCK } & \text { COLD }\end{array}$

If 10
IF PECULIAR PHASE
If PECULIAR DELAY

```
PHASE
RATE
delay
PHASE
RATE
QUAD TERM
IF STATUS WORD
        POINTER TC FRCNT END CCNTRCL ELCCK
        POINTER TO ANTENNA CONTROL BLECK
        FGINTER TO IF GRCUP CGNTROL BLOCK
        POINTER TO THE NEXT IF CCNNECTED TO THIS SUBARRAY
        POINTER TO NEXT IF CONTROL BLOCK
PHASE
RATE + + + NEXT 10 SEC INTERUPT
QUAD TERM
```

 IF NOMINAL SENSITIVITY
 NOISE TUBE SYNCHRONCUS DETECTCR
 NOTE--GAIN = SORT(NOM.SENS.*SYNC.DET)
 FLUX (IN JY) \(=\) GAIN(1)*GAIN(2)*COKK.COEFF
 (IN THEORY, ANYHAY)

CONTENJS

CORRELATOR ID

easeline io

ChECK
CGRRELATCR STATUS WORC
POINTER TO NEXT fAULTY CORRELATOR CONTRCL BLCCK

