NATIONAL RADIO ASTRONOMY OBSERVATORY

Charlottesville, Virginia

March 6, 1975

VLA COMPUTER MEMORANDUM #119

IMPLEMENTATION CODING STANDARDS FOR THE
ASYNCHRONOUS SOFTWARE DEVELOPMENT PROJECT

D. L. Ehnebuske

This memorandum presents the standards for coding in SAIL
which have been adopted by the software development group for
the VLA asynchronous software development project. This standard
will be used until extensive experience with coding in SAIL has

been gained by the group members. This document will be subject
to revision then.

Currently, the coding standard discussion forms chapter 3
of volume four (the manuals part) of the asynchronous computer
project book.

4,3 Asynchronous Implementation Coding Standards HEEEN

Version 1
4,3,1 Introduction SHRRS
4,3,1,1 SAIL and Notation HHNNR

The main implementation lanauvage used by the asynchronous software
levelopment aroup {s SAIL, SAIL i{s ALGOL=68 extended and was developed
Yy the Stanford Artificial Intelliagence Lahoratory at Stanford
Unvi{ersity, Stanford, CA, 94325, The notation used for syntax in this
haoter of the Project Rook Is taken from the SAJL User Manual by Kurt
'. VanLehn, NTIS Document AD=765 353, to which the reader {s referred,

The purpose of this chapter §is to eStablish the coding standard to
le used by the asynchronous software develonment aroup in codinag SAIL,
ike all of the Project Books, this chapter will evolve as the ideas in
it are refined but unlike many parts of the Boek this one will do so
nly in fairly major sters in order that the coding remain of fixed
tvle,

4,3,1,2 Justification for Having Standards 1 2222

The question of whether trhe asynchronous software development aroup
hould have anv coding standards at all §{s one that ouaht not be
iismissed without some consideration, The maijor reasons for NOT havinag
ne are?

All of the people in the programming qrouo have been
proaramming for sometime and have develoned their own
programring styles (idiosyncracies?) and the chanqge
to a uniform and somewhat foreiogn stvlie {s likely to
slow the writing of the code == we have a LOT of code
to write and not much time to write it §{n,

Restrictions in the loagical lavout of code wi{ll
sometimes mean that coding will have to be written
in the "Standard" way when there exist more computationally
efficient ways to express the same thing,

It’s a pain,

hese considerations must however he weighed aagainst the potential gains
f using a standard, The major items here are:

The "Public Property" nature of the code for the proiject
entailed by our decision to use the Chiefe=proqrammersteanm
scheme of Raker et al, means that we will all have to
be able to read and understand each other’s code, A
uniform standard would certainly help in this area,

The longevity nf the project will reauire people, including
the oriainal authors, to successfully modify parts of the
code, Standard ways of doing and writing things would
surely be of value to them,

4 Finally, we desire to produce a package that is a pilece

Bolure 4, Chabpter 4,31 Coding Standard R 108
--.-.-----.Q-..----..--.------.------.----.-.—-----.-...----..........-'
of quality workmanship, functionally complete and
aesthetically pleasinag, Uniform coding practices {is
certajnlly an aid to this end,

4,3,1.3 What this Chapter Contains and What Tt Doesn’t (2222

This chapter of the Proiect Rook contains the standards for how
de {s written ==~ {ts physical and loaical lavout, Physical layout is
w code appears on tnhe padgde, where {t is {indented, where not, ho¥ names
are decided upon, where commentary {s to be placed and the like, Loglical
vout is concerned with how the code i{s hroken up into modules, what
";nd of execution €£low control structures are used, how errors are

andled etc,

The standards are not concerned with how the code will be
maintained, modified, stored or made into librarjes, It does not contain
specifications for testina code, or for evaluatina execution efficiency,
lstkms not even consider whether the code will perform any function,

ch less what was desired,

4,3,1.,4 How the Standards Were Developed HEERE

These standards were develoned by combining considerations in three
areas, First, the already well developed codina practices of the
roaramming~type aroup members, In this cateagory many of the usages of
rious memhers were culled to extract those that seem particularly
clear, sometimes meraina two stvles, Second, discussions with findividual
roup members concernina what thinas they felt were important teo a good
odina standard were considered, Much of this {nput was in response to a
preliminary version of this document, Third, a aocod deal of thinking
pout SAIL and about what other proacramming Projects have felt were
mportant to codina standards was stirred in,

The result s a blend that, {t {s hoped, will aid the developmrent
Ind maintenance of the project’s code while not disrunting our
ndividual styles to too great a deqree,

4,3,1,5 How the Standards Are Presented HENEE

For this renort, the standards have been divided into three rartss
he first section deals with the logical lavyout of nroqrams, The second
is concerned with tre physical lavout, The third is a reference sheet
hich summarises the standard but presents no Justitication for the
{tems listed, It is this third section to which we will refer during the
Bctual coding,
4,3,2 Logical Lavout %

4,3,2,1 Modularization RN RY

4,3,2,1,.1 Introduction and the Concept of Strong and veak “odules
X X X X

The first aquestion we must address {s simplvs what {s a module? We
adopt the answer prorosed by Stevens et al, (Structured design, I8M SYSJ
Io. 2 1974 p, 116), "The term module is used to refer to a set of one or

ore contiquous pProagram statements havina a name by which other pnarts of
the system can {invoke it and preferablyvy having its own distinct set of
gariable names",

Bolume 4, Chanter 4,331 Coding Standard ARNN 109

LA K A L L L X 2 X & X A L XX 2 L X & L R LA A AKX 2R LXK KL RLNELLELX X LAKE A2 X XA KL XL KK ERELYEYXLEX KR LN X]

The reason for defininag such a thing s that it has been shown that
Pprograms which are divided into multiple modules (as opposed to a
rogram consistinag of one huge module) are easier to maintatn, desian,
ind understand, It has also been shown that there are ways of dividing a
rogramming task {nto modules which maximize the advantaages of
modularization and ways, which when used, do very little,

Recently, there has been auite a debate in the literature over
which modularizati{on techniaques are hest and trom this debate there have
merqged Several valuable concepts, The most {important two aopear to be
'odule strenath and length, Module strenath is measured {n terms called
Binding”", "Counling", and "Information Hiding", Lenagth §{s measured {n
ines of code, A "good" modularization yields modules of ootimum length,
ihich nide a lot of information, are highly bound, and minimally

oupled,

4,3,2,1,2 Information Hiding HRERN

A module is sald to hide information if by {ts construction and

ocumentation the users of that module need not know anvthing about HOW
‘he module {s {mplemented, Obviously, the users need to know what the
module does and how to call it un, A common example Of a module which
hides information 1S a sine routine, In order to use a sine routine the

ser need only know what it does, what its name {s and how to call {t,

ow {s the routine implemented? Does it use fixed point or floating
point? Does it do a polvynomial £{t? The user doesn’t know or care,

The advantaage of routines which hide informattion from theilr users

goes hevyond those arparent to the user of the routines, It is also of

se to the routine implementer, If it hecomes desireable to change a
'outine {for instance to speed it up or change the method of attack for

esthetic reasons) this may be undertaken without fear of disrupting the
routine’s callers =~ for they know nothing about the insides, which
Bleads us to the conceot of couplina,

4,3,2,1,3 Couptling LA E 2L

Couplina 1s a concept which deals specifically with the connections
tween modules, A connection is any reterence made in one module to
somethina defined in another module, Things tyoically referenced {n
other module include data items (rassed parameters, gqlobal varianles)
Ed control {tems (entry points and returns from subfunctions), Couopling
measured in two ways, First, and most obviously, by the number of
connections, Second by the auality of the connections, A connection {s
{d to be strona §f {t is to a control item or to a data item global to
th modules, weak if to 3 passed data item, The strenath of a data
connection {s also affected by the way in which the writer of the
l1linag routine views the contents of the nassed data, If he thinks of
as telling the called routine what to do (a control item) the
connection {s stronger than {t would be {f it were 3Just data (a data
J_tem).

Let us examine what it {s that coupling measures, First, low
couplinag means that it shonld be easy to understand the functioning of a
IEven modyle without too many references to other modules ({f the

inciple of information hidina is adhered to as well one need only
understand what the other modules do and not refer to their internal
working at all), Second, {f the system has errors in it the low coupling

molume 4, Chapter 4,33 Coding Standard L X222 119
ans that the number of paths alona which errors can propaqgate i{is very
{mited, easing the task of bug extermination, In sum, coupnling is A
measure of inter=module complexitys the lower the coupling the simpler
Lhe inter=rodule relationships,

At this point let us consider the effect of alohal data areas
(common oOr control blocks) on coupnlina, Every module sharing a qglobal
Irea is {nvariably counled (stronaly) to every other throuanh every data

tem {n that glohal dAata area, It doesn’t matter whether the routine in
question actually uses each data {tem or not since any routine sharing
e glohal data area CAN change anvthing §n the area it fust miaht, In
sters with lots nf moduyles and larae alobhal areas the couplina 1is
enormous, Enormous coupling nearly always leads to the "vad Bomber
yndrome" in which a seeminagly healthy module {s bombed bv the Mad
omber through the glohal data area, but who {s {t?

4,3,2,1,4 Bindina BREEN

Coupliina is a concept concerned with the connections hetween
elerents in different modules, RBinding {s concerned with the connections
etween elements of the same module, While it §s desirable to reduce
louplirm da case for auite the coposite can be made for hinding, Bindinna
can be thought of as a measure of the cohesiveness of a module,

Stevens, Mevers, and Constantine 1ist six wavs in which elements of
B module may be boundt

Coincidental
Logical
Temporal
Communicational
Sequential
Functional

x & % Kk % %

Mnese types of binding are {n order from the weakest to the strongest,

Coincidental bindina occurs when a module {s jJust a hodge=-podge of
ode, YeS, there Aare coinclidentallv bound modules helieve=iteor=not, An
lxample i{s a module that does nothina other than eliminate duplicate
coding in other modules and {s usvally a sign of "shop worn" software,
ogical binding occurs when the code in a modyle has some logqical
‘ohestveness. Many “aeneral purpose" routines are loaically bound, For
nstance "disketty I/0" routines are porobably loaically bhound, Temporal
bound code {s code that {s not only loaically bound but also related in
ime, GooAd examples of temporallv bound code come from the
housekeenina® aqgenre (in{tializatien, termination & c,.), ldeally
temporally bound code cnuld be executed all at once more or less,
ommunicatifonally hound conde is cnde that does a3 whole bunch of thingas
'o the samne data, For {nstance, writing the U=V data in the data base
and on an archive tare, Seaquential bindina as its name i{mplies, comes
bout when a module does several thinas which, hecause of the nature of
'he problem, must he done one after the other, Fxamples {nclude routines
hieh read this and upbdate that, which calculate X and output it to the
TTY, The highest classitication of binding is functional bindinag, Tn
Iunctional bindina all of the code 1s dedicated to performing one
unction, Mathematical functions are the first examples of functional
binding that come to mind but there are many moret! read a line of text

grom the srecified terminal, Convert the text string to reverse polish,

Volume 4, Chapter 4,3t Codina Standard Ty 111

Seafch for record X on device Y,

Further discussion of binding categories may be found in Stevens et
al,

As one can see from the descrirtions of binding cateaories, the
point of the concent of binding {s to pnrovide A handle for estimatina
the cohesiveness of a module, The hiaher the cateagory that a module may

ogically be assjioned to the more hiahly bound {s that module,

4,3.,2,1,5 Lenath BEEER

The last parameter that we will consider which affects the way that
conceptualized systems are broken into modules is that of lenath, A aoo4d
ase can be made for the idea that there is an optimum length, meAasured
Fn lines of code, that modules ought to have, Fstimates of this optimum
have been made for the last Several vearsS and the concensus now lies at
omewhere {n the ranae 50«203 and there has been a gradvual shift toward

he lower end of this range,

What are the considerations involved in these estimates? They Aare
trimarilv the answers to the aunestfions: "How many linmes of code can vou
rite and still hold the whole thing clearly in mind?" and "How many
lines of code can proqrammers write Iin one ao without makina a mess of
t?" and "How manv lines of code are there in modules of ‘’successful’
oftware systems?" Answers to these questions usually €all {n the ranqge
aiven above and as was pointed out have been falling of late (accordina
o one source the answer aiven {n the mid=50‘s was on the order of
Eeea). Are we agettinn stunider or are we learnina what Dijkstra called
humble proarammi{ng”?

4,3,2¢1.6 Putting It All Together EnRN

What does an "{deal" modularization look likxe? The easy answer {s

hat all modules composing the svstem should be funmctionally boundg,
!1n1ma11y coupled to each other, hide information and be about 102 lines

onqg, As far as practical quidelines d0 the only really useful thinag

hat tells us {s the 1A2 lines prart, In order to make use of the other
Eoncents in the actual codinqg effort {t seems to make sense to try to

bstract a few heuristics, some do’s and don’ts, Obviouslyv, these
heuristics are no suhstitute for understanding the concepts but they
Rhould be directly arolicable,

Question: ¥hat does the module do?

£ the answer takes A 1ot of space just to acet 3 good idea across the
odule {s probably pretty poorly bound and ought to be rethought,

~Ouestiont: “hat {s the minirum I need to tell the module {n order
Mor it to wark?
Questiont: “hat information does the module have access to?

Bf the answer to these gquestions {s not the same sorething could
probably be done to unecouple the module from the rest Of the system,

Ouestiont Yhat information can the module mess up that it doesn’t
Teed to change?

olume 4, Chaoter 4,33 Coding Standard e 112
f there is something that the module can write on that it doesn’t need
0r think ahout passina the information to the module by value instead

f by name,

Questiont Does the user Send my module anvthing that tells me what
HPo do?

£ the answer is yes the module is probably either not functionally
ound since {t does more than one thina or it {s couprled more closely
han need he by the control {item helng passed in as data,
Question What does the user need to know ahout the module {n order
WMo make effective, error free use of it?

f the answer to this auestion even hints at how the module works inside
here’s some information the module is_not hiding, Ideally, the answer
should bet what the module does, what {ts name {s, what {ts parameters
re, where {ts results come out, and (if aoplicable) what the error
eturn flaag values mean,

The last and hardest aquestion {ist _

Question: Has the way I’ve organized the internal workings of my
Wodule made it essentially impossible to write "ocood" modules {n the
next level down (which is, of course, stubhed)?

he purpose of askina this question is to force us to look ahead to tne
next level of mecdularization to aveid some of the pitfalls before we

ctually get there, Naturally, the lower levels will be a hit fuzzier
iut much of the techniocue of moduvlarization is easiest if the general

utline is thought through ahead of time, It isn’t very cood practice to
say "Oh we’ll make all that into a module in the next level down,"

nless what that module {s to do and what data it needs to 40 {t to {is

lear already,

4,3,2,2 Control of Execution Flow P
4,3,2,2,1 Recommended Structures Y EEY

Difkstra and others have considered the aquestions of what flow
Wontrol structures are necessary for writinag proarams and which that
aren®t actually necessary are convenient, They have also asked which

ontrol structures are clear and easy to understand and which obscure
Ind confusina, These considerations have led to the major part of the
collection of techniques known as structured programming,

Fortunatelv, there is a set of control structures which meet the
Wesired criteria, All of these structures are among those available In
the SAIL lanaquaae and {t was primarily for this reason that the major

mblementation lanquaqge used in the asvnchronous software development
roject is SATL,

The control striuctures found to be necessary for writinag proarams
P21l into two aroups either of which is sufficient to write any program,
Only one of these arounps Is used {n structured proaramming because the
ther contains confusinag (error prone) structures, The control
'trUctures minimally required for structured proaramming are generally
alled the If=then=else and the While constructs,

Mojume 4, Chanter 4,3: Coding Standard RUBNN 113
The While and If=theneelse constructs while sufficient to nroqgram
By flov control reauired are not the only constructs that are clear and
useful, In narticulAar, thev nrovide no means for modularization, So we
180 will find freaquent utility in what are generally known as the Call
'nd Return constructs, There are two more constructs which, while they
an alwavs be written as a composite of While and lf~thenwelse, occur so
frequently in proaramm{ng practi{ce that they arpear in many languaages,
hese are the s0 called Incrementalewhile (For or Iterativewdo) and the
ase=o0f, The two constructs have, {n addition to frequency of encounter,
the additional merit of being clearer in their meaning than the
Borresponding translation into the more bhasjic types,

Translating the common names for the ahove control structures into
he ALGOL RNF definitions (used {n SAIL) so that they may be cross
eferenced with the User Manua) we havel

Table 4,1 RNF Nares of "Good" Control Structures

oW SwoONn (A X} LA K X X 1 - MOMET0 TGOS LA B K X AN A X & J

Common name(s) ALGOL BNF Name
L X B N L N X N A B 2 XN 2 J L X X R K R % R & % N R N 2 J
It=then=else <conditionalastatement>
While <vxhjle_statement>
Incremental=while or <forwstatement>

For or

Iterative=do
Case=of <case.sStatement>
Call <procedure.statement>
Return <return.statement>

AIL syntax definition of the ahove constructs is not exact in every
case, In partijcular, the <while.statement>, the <for.statement> and the
<€case.statement> have a wider ranage of optional forms than s usual,

'nfortunatelv the correspondence between the commonly used terms and the

The <while_statement> and the <for.sStatement> have the NEEDNEXT
forms and the <case.Statement> has a form without the
lnunbered-state-lisb. None of these forms are included {n the

efinition of their common counterparts,

4,3,2.,2,2 Other Control Structures HERER

In addition to the control structures discussed in the previous
section, SAIL has A large number of o6ther control structures avallable,
e question which naturally arises is: what should our attitude toward
eir use he? The answer 1s that we should use only those that are in
keepina with the ideas of structured programming, That i{s they should be
Blear in their meaning anrd not introduce a high rate of system buas,

In this liant, what can we sav about the other control structures
SATL? In order to elirinate anv of them on the basis of the
.:oposition that {t should not lead to hiah error rates, one needs
airly extensive exverience in using {t, In the case of most of the ax
candidates we don‘’t have verv much knowledae of what to exnect, There {s
e excention however == the <go.to.sStatement>, The <go.to.statement>
as been attacked {n so many studies that {t seems fair to elimirate it
on the basis of beina hichly prone to errors,

lo~1ume 4, Chanter 4,33 Coding Standard * 50 % 114
’----...-.--.---------.Q----'--.----...---Q--.-'----...---.---..--------
The only other {fustification for eliminating a structure is lack of
larity, The obvious problem here {s that clarity has a qood deal to do
with trainina and personality, Perhaps {f we reaqularly use the remaining
tructures {n SAIlL we will become adept at understandina what they mean
ind consider them all extremely clear, In fact, there are those whose
til1ity and meaning are clear at first siaght, Since the asynchronous
sottware development qroup will be working on the programs for quite a
lhile and will no doubt have to train a considerable number of new
embers durina this time, the criterion for savina that a agiven control
construct is clear shauld he that {t be readily understood without
mubstantial experience in SAIL codina,

Adoptinag the idea that a construct s clear {f it can be eas{ily
nderstood by proaramming types without exnerience in SAILina seems to
iead to the conclusion that the <done.statement> {s reasonably clear but
hat the <next.statement> {s not, It also points to the conclusion that
the MEEDNEXT forrms of the <while_.statement> and <for.statement> as well
ls the form of the <case.statementd> which lacks the

numbered.state.list> are lacking in clarity,

As a practical.matter, there will no doubt arise instances during
he coding of the data reduction svstem when the use of the features of
AIL that lack clarity could be of areat value 3and 0f course we ouaht
ot close our eves to them, The ahove discussion is set down as a gquide

io make our work easier not more heroic, When such a situvation arises
ne ought to ask, hefore using one of the less clear control structures,
"Is there no easy way to use the clear constructs to do the same thing?"

4,3,2,3 Inter=module Error Handling %

So far we have discussed two of the major considerations in the

'oqical layout of proarams, The first {s the criteria that should be

sed to divide larae svstems into managably small chunks called modules,
The second is concerned with the structures that are used to control

xecution flow, nrirarily within a module, In tnis last section we will

{scuss the problem of the wavy in which modules and their callers should
behave in cases where a called module discovers that the data passed to

t by its caller precludes calculating a prorer result, Such occurences
lre an unfortunate result of having to deal with the real world ==
Murnhy’s Law or some derivative of it insures that we are in deep
&rouble {f we donft think about what to do When,

When definina how we should handle errors, as is truve of other
aspects of irplementation technicue, there is a lono term advantage to
igh uniformity; it avoids our havinag to spend tive tryinag to fiqure out
hat we have done when, ronths later, we have to understand why thinas
don*t work, Inter=module error handling may be thovaht of as corprisinag
wo distinct thouan interrelated rartst the resronsibilities of the
aller of modules and the responsibilities of the called module, Since
all modules except the tor and hottom level are both callers and callees
he authors of modules agenerally will have to deal with both concents at
'nce. Nonetheless, for the purposes of discussion we will deal with each
art separately,

l.3.2.3.1 Responsibilities of the Called Module to Its Caller Y

"The main thing that a module should do for its callers is to carry
gut its function in a repeatable manner == post haste, If unable to do

Volume 4, Chapter 4,3t Codina Standard RN 115
jl {t must tell its caller why it was unable to do0 so in terms that are
nsible to the caller, In addi{tion, it must not destroy any data that

the caller gave it to work with unless {t can corplete its function

,thout error, The reason for the dictum against nassing back halt
gested data on an error return (a very hard one for sure) is that,

since the caller has no {dea how the callee has been {mplemented (the
dules are uncoupled), the caller can make no sense out of the data,

q!nce {t has no way to recover from the error, On the other hand if the
llee has not chanaged the data and {f, at the same time, the callee has
14 the caller what was wrona the caller may be able to fix the problem
d try aqgain,

Consider a concrete examplet a module which takes$ as a parameter a
oating point number and renlaces it with the sauvare root of the
1Imber. Obviously, it is unable to find4 the square root of a neaative
numher, Jt we calculate, by sore time consuming process, a number and
en reaui{re the sauare root of it we may call the root tinding rovtine,
’. the square root routine qets a neaative numbher and then ruins f{t in
e process of telliny us that {t {s havirg trouble we’ve lost our
numher and must recalculate it (if we are anle), In contrast, {f the
ot routine merely told us that we gave it a negative numher, we might
able to fix it ur and trv agajn, “hile this examnle {s trivial, the
same applies in a more forceful way to more complex routines,

summineg up then, a module must behave In the followinag ways?

A) Tt must carry out its function when ever nossibhle,

R) It must not alter anv data passed to {t i{f {t {s
not Able to cemplete withnut error,

C) It must, on detectina an error condition, tell {ts
caller what is wrona {n a way that is meaningful
to its caller,

D) It must not die horribly == contrel must return
to the caller,

4,3,7,3,2 Responsinilities of the Caller to Its Callee 2 X2 2

The caller=callee interface is bidirectional and although the
mjority of the responsihility for its maintenance lies with the callee,
the caller too has {ts share for there are thirgs that the callee cannot
Botect itself amalinst,

The caller must know what the callee {s supposed to do, The
bordinate module can hardly be to blame {t {ts caller exnvects it to do
lEmethinﬂ other than what it §{s AdAesianed (and documented) to do, Yext,
e caller must understand the subordinate’s interface, The callee
annot (under most lanauaces) nrotect itself verv effectively aaainst
Ells made throuah an {ncorrect {nterface, Lastlyv, the caller must
terrogate and understand the meaning of any error flags that {ts
subordinate may pass back,

The utili{ty of the above resnronsihilities should be clear {n lianht
of the discussion about what a callee should do for {ts caller, They are
@masically just those that the callee has little or no control over,

4,3,3 Physical Laynut of Proaqrams I ZX 22

4,3,3,1 Overview enny

Wiume 4, Chapter 4,3: Coding Standard BHEER 116

We have so far considered what standards should be applied to the
logical layout of code, that is how control should flow within and
tween modulesy what structures should be used to control the €low and
][w information is to be pushed around in a system of interacting
dules, In this section we will consider the other aspect of wvriting
code =~ the physical lavout of the code on the page(s),

The reasons for ennsidering physical layout are closely parallel
with those tor loaical layout (narely to reduce the rate at which errors
e introduced while codina or modifving and to make the coded programs
telliqgible) hut the emphasis of our considerations of phvsical codina
standards will have a slianhtly different tone, Physical layout is mainly
ncerned with the readahility of proarams as they appear in a rrinted

][stinn. not so much with the structure of the proarams, All that a
ogram is is already encoded in the statement of that vorogram to the

compiler, Phvsical lavout is for people onlv, It is intended to be
dundant {nformation which leads a person reading the proaram to
derstand the loafcal structure of the program by looking at how the

program i{s laid out on the pacge, The idea is to force the viewer to see
e structure of the forest by planting the trees in a meaningful
ttern,

In the subject of phvsical lavout, since the information presented
totally redundant, there is a considerably wider range of successful
thods for oraanization than for loaical lavout, Indeed, what
programmers consider the essence of their programming styles seems more
toselv pound up in the physical lavout of proarams than in the loaical
yout, Thus any attempt at standardization is more 1ikely to run afoul
of the programmers involved when considerinn the physical side of the
estion than when considerinag its loaical aspects, Nonetheless, in a
'Erqe system such as the one we are bujlding, the need for
standardization of the presentation of code is very qreat, Also, since
ere is a larae range of successful methods that could be used for
lEandardization the choice of one over the others i{s largely a matter of
ste, Here we have chosen one of the many possible, The choice of the
overall method was made considerinag the various ways in which the
:oqrammino types in the asynchrenous software develonment group already
nd to do things, The choice of the details was made exXx cathedra,

4.,3,3,2 Cormentary %R

Perhaps the least controversial subject under the "Physical Layout"”
eading i5 commentary, Perhans this s because all proqrammers bpelieve
itat commentary is a aood thing that they really ought to do more of, Re

at as it may bere {s the standard,

At the start of a module there should be sufficient commentary,
@eparated from the text of the proaram, to explaini

1) What version this proaram is e,q, a version numher,
2) What the module does e,J, a functional description,
3) what the proaram®s interface {s, That is the
commentary should state how to call the module,
what {ts parameters are, what alobal data references
are made and what kind of data {s returned, If the
routine has DCL files they sShould be mentioned here,
4) wWhat the error indicators are and what they mean

‘llun'e 4, Chanter 4,33 Codina Standard RN 117
in terms that someone with a functional knowledge
0of the routine only can understand,
5) which sub=functions are called on in the module,
6) What macro files are reagufred for compilation of
this routine,

Next, separated from the above and fror the text of the module below,
’ould he an overview of new the module is Iimnlemented indicating what
gorithms are used and where they may be found, what the overall
structure of the flow in the prroaram {s, what the major varlables of the
oaram reoresent, any helpful rints about the implementation that one
'ould he aware of and the like,

Followina the garp abhove {is the main text of the program, It {s
lcommended that we name each of the main blocks of the module, If the
ock {s a major section of the mpdule there should be 4 short
accompanving conrment statina what the block Is goina to do, Something on
e order of "loop around agettina a new estimate on the sanare root
ltil the error is known to be less than 0" {s probably sufficient,

Durinag "straiaont" code inside a block cormentary should bte Attached
1y to code that {s not clear {n its own riont, Aveid savinag exactly
at the code says, The reasonina beina that comments should be stuck {n
s auides where the reader miaht aet the wronq {dea, A
itonditional_statement> is a mlace where readers tend to go the wrong
v and so {s A nood place to think about leavina a sianpost,

4,3,3,3 Indentation R

In addition te comtentarv there are two more devices which we may
e to alid trhe reader {n urderstandina how a module works, They are
.Edentation ard naaing, In this section we will set down the standard
r indentation and in trhe next (and last) ve will consider paaginqg,

Proaram modules roughly consist of commentary (which {s {qnored by

e compiler) and code (which {s nrocessed bv the comniler), Cnde {s
usually thouaht to bhe A4Aivided into statements, each statement being a

rt of independently digestable "chunk" of pProgram, In many lanauaqes,

,GOL {ncluded, the code staterments can he further divided into the
cateaoriers of declaratory and executable statements, Leclaratory

atements tell the compiller aknyt the symbols that are to he
iEninu1ated, white the executahle statements tell the comp{ler how to

rry out the desired maniculation, Taken toqgether, the two types of
statements form a complete descrintion of the rmodule interoretahle both
lt man and machine, But vhi{le the machine rays attention to each anAd

ery symbol peonle {n aeneral do not, The ournose of indentatfion {s to
arrange the staterents of the program on the page so that people will
gee what {s {rportant for them to see at each level of detail,

For people the most difficult part of understandinag comes {in the
icecutable portion of the code and {t §{s with the executable statements
a proaram that {ndentation {s concerned,

Key to the understandina of when a series of staterents should be
lxdented further than those around it {s the i{dea of nesting level, The
rst level of nestinn consists ot those statements In the proaram that
are alwavys exccuted, The next level consists of those statements that
e executed conditinnally on a single test, The third level of nesting

Wivme 4, Chanter 4,3t Coding Standard Ty 118

mPrises all of the statements that are conditional on a test which {s
]self part of the second level nesting, And so on,

The {dea is to indent all of the statements at a aiven nestina

’lvel the same ampunt, each leve) beina indented further than those with

wer level numhers, To fix the whole thina we assume that the first
nestina level is not ingented at all, ¥nile that is the basic ldea,
.ere are usually minor flourishes added to it as a sort of "fine

ning" to further improve readability, Since the flourishes are, to a
considerable dedgree, a matter of taste and a rather small perterbation

that those that are presented here are jncorporated without further

stification,

Tre indentation from a aiven level to the next deeprer {s a a matter
taste, Four or flve spaces is reasonable, What ever you choose, be
nsistent,

The first statement of a aivepr nestina level appears on a new line
Ehdented to indicate {ts nestina level, A statement mav not aonear on a
1ine that is indented to a depth incorrect for {ts nesting level,

A BEGIN « END block marks the boundaries of a nestino level, The
#bde betweep the BEGIN and the FND {s at a level one deever than |t
would have been {f the REGIN = END were not there, The BEGIM {is not a
lbrt of the nestino level that it defines but the END {s,

A <conditifonal.statement> marks the beairnina of a nestina level,
e <statement>’s that follow the THEN and the ELSE (if {t anpears)
Iquther with the THEN or ELSE constitute the whole of the nesting
level, Exception: {f the conditional {s short enouah to to fit on a line

it mav be so placed,

A <Ccase_statement> defines a series of nestinag levels of equal
depth, one for each case of the variable, The nurhers of the
‘umbered-state_lisw are a part of the level each defines,

<for.statement>’s and <while_statement>’s both mark the start of a
EEstina level consisting of the <statement> wnich follows then,

These definitions are prettv horrible to read, For examples see the
Aprendix *Standards Reterence Sheets’,

443,3,4 Paaina NHBAR

The last subject we w{ll consider {s that of naaing, Compared with
Blhe preceedina mess paaginiy is a dream, The hasic {dea §s that a sinale
{dea should not sran paces of the listina but that there should not be a
hole bunch of {deas on any sinale naqe withont separatina them from
Iach other by some blank lines,

Despite the paper shortage we are not lacking in paper to print our
istinags on, In tact {f throuah proper paqing we_can save havina to
ecaompile code by having it understood properly in the first place we

may even Save paber,

1,3,4 Appendix: Standards Reterence Sheets * N

4,3,4.,1 Modularization Standards W

olume 4, Chanter 4,3t Coding Standard LA 2 2 119

Whes:

A module should have the following characteristics:

1)

2)

3)

4)

It should be highly bound, That {s {t should 40 one
and only one function and it should do all of that
function, The majn aquestion to ask is "What does this
proposed module do?" The answer should be short, If
the answer MUST be lonag and complicated something {s
wrong,

It should be l100Selv counrled to the rest of the system,
That is {t should have avallable to {t excatly that
information required by it and no more, If it does not
need to change a piece of information it should rot be
ahle to change that {nformation, This point is against
common or external data shared by routines, It {s asainst
passina information intended to control @ subproutine,

It should be about 50 = 207 1lines {n length, tending to
the shorter end 0f the range,

It should "hide information®™ from jits user, That is the
user should not have to know anvthing about how the
module works inside to reljanly use {t,

Consequences oOf the ahove?

1

Parareters should he nassed to a module by {ts caller
in preference to usinag common/external data vhenever
possible,

2) Parameters should be passed by VALUE not hy REFERENCE,
3) Functions should be used in preference to Subroutines
to pass back single values,
4,3,4,? Standard Control Structures 2222
The followina control structures in SAIL are the only reccomended
1) <conditional.statement> =« all forms
2) <for.statement> == except NEEDNEXT FOR
3) <while.statement> we excent NFEDNEXT WHILE
4) <case.Statement> =e <numbered.state.li{st> form preferred
5) <procedure.statement> == all forms
6) <return.statement> == all forms
7) <done.statement> == form without <block.nrame> preferred
4.3,4,3 Standards tor Inter=module Error Handling *Hnn

Modules are rccommended to follow the following conventions

Boiume 4, Chapter 4,3: Coding Standard HEREN 120

@or error handlinat

As Caller

1) Understand what the module vou are agoing to call {s
subposed to do,

?2) Understand the callee module’s interface,
3) when the module returns, check the error indicator,

As Callee

1) No matter what DO NOT blow upp control MUST return to
the caller,

2) Until it {s clear that you can complete without error
NO NOT chanage anythinag that is passed to vou except
the error indicator(s),

3) The possible settinas of the error indicators should bhe
meaningful to the user of a black hox,

4,3,4,4 Commentary Standards ¥ YY)
At the head of a module there are two sections of commentary
quired, Thevy should be separated from each other and from the text of
the program, If of substantial lenath, the separation may be by a paaqe,

The two sections of commentarv at the head of the program module
Tontains

First section
Information describina the module as a black box,

Banelys 1) The version number of the module,
2) A functional descrintion of the module,

1) The interface to the module, Parameters passed, thelr
tvnes, prarameters modified, what ,DCI, files are to
be used in invoking the module etc,

4) What the possible settings o0f the error {ndicators mean,

5) What macro, ,NCL, etc, flles are reauired for compilation
of this module,

6) What routines are directly invoked by this module,
Second section
Information describina the implementation of the module,

Namelys 1) An overview of the loaic of the module including
references to published algorithms, prnject book

lume 4, Chanter 4,3: Coding Standard LR X2 {21

definitions etc,

2) A description of what the major variables of the
module represent,

3) An exposition of anvthing else that vou fee)l likely
to help someone tryina to understand the module,

Major hlocks should be named, There should be a short comment
®hdicating what the block s tn do,

Durina "straiaoht" code commentary should be used sparinglv, The
Wresence of cormentary should alert the reader that the author thinks
that here {s a place that {t is easy to misunderstand, Do nnot drown the

ader {n cormentary or he will stop readina {t and miss something
nportant that you have to say,

<condftioral_statement>’s have a higher tendency to he
B sunderstood than most others (in general),

4,3,4,5 Indentation Standards *HREN

_ Indentation from one level to the next deeper leve)l s a matter of
taste, vhen vou have chnsen be consistent, Four or five spaces {5 a
&fasonable number,

A staterent may not appear on a line {ndented to indicate a level
incorrect for that statement, MNote that this restriction does not
Beciude puttina more than one statement on a8 line,

The major "definer of levels" {s the RFEGIN = EMND block, The
pearence of a PEGIN e FND block makes all of the code after (khut not
cluding) the RKREGIN through the END one level deeper than it would

otherwvise have been,

pegin "Aarutley"
blar blah:
blanh blahy hiahs
nanae
thrunces
end "grutleyns

te that there is no distinction made between BFGTN = ENMD blocks that
eclare vartiables and those that do nott all REGIN = END blocks make a
new level,

A <copditional.statement> makes Zero, ohe Or two new new levels,
The number of levels dernends unnan the com™nlexity of the statement and
I[on whether or not the EULSE clause 0f the <conditional_statevent>
pears, If the FLSE appears, the conditional makes two levels of eraual
depth, If the conditionral {s short enouah to fit on one lime, it makes
levels, Other%{se {t makes one, The level(s) consist of the
'Etatement> construct which follows the THEN or FLSE and incliudes the
EN or ELSE,

i{f aiganticibooleantexdression
then statervent!of!the!lthen
else staterentlof!thelelsey

lnu'ne 4, Chapter 4,3: Coding Standard L E 2 X2 122

{f other!bhoolean
then beain
stmty
stmt?y
end
else stmtly

{1f expr then stmtiy

if exprr?
then stmt?2
else stmt3:

A <case_statement> defines a series of nestina levels of enual
Botn, one feor each case of the variahle, The hracketed numbers of the
<numberedaostatenl{st> form a part of the leve) that they head, The form

the case statemrent without the <numhered.state.list> {s permissihle

t not preterred,

case argqurent of heain
(A stmtiy
(1) beasn
stmt 2y
stmt 3
endy
(?2) stmtdy
ends

The <for.statement> and the <while_staterent> herave, with respect
to indentation, analoaocus to the <condi{tional.staterent>, without an
SE clavse, That s they define a new level consistina of the the
tatement> which follows them, The DO in them forms the first part of
the new leve) fust like the THFXN or FLSK {n the conditional,

while monio!lbooleanlexpression

do begin
stmt 1y
stmt 21
stmt 3y
end:

“hile true
do stmrty
blah: blahy

for {.1 step 1 untyl tenzillion
do reqgin
stmt iy
stmt2y
endy

4.3.4,6 Paagi{na Standards ey
The {dea hehind paning {s to separate distinct thoughts phvsically

the same page by blank lines but to try to keep a sinale idea all on
ohe paqe,

otume 4, Chapter 4,37 Codina Standard e 123
-.--.---.-.---.----..--‘-.-.-.-----.----O.--.--------.---.-----.--.-ﬂ--ﬂ
Thus, the required commentary at the head of a module should be set
£f from the text of the module and should itself be broken into its two
istinct pmarts, If the commentarv {s long enouah (like more than 1/2
page, sav) do a raqge un after (t, Followinn the declaratory statements
f the main lire, {nternal procedures are the rost usual things to
ppear next, Since each represents a complete thouaht set each off from
the main line code and from its fellows,

