
NATIONAL RADIO ASTRONOMY OBSERVATORY

Charlottesville, Virginia

March 6, 1975

VLA COMPUTER MEMORANDUM //119

IMPLEMENTATION CODING STANDARDS FOR THE

ASYNCHRONOUS SOFTWARE DEVELOPMENT PROJECT

D. L. Ehnebuske

This memorandum presents the standards for coding in SAIL
which have been adopted by the software development group for
the VLA asynchronous software development project. This standard
will be used until extensive experience with coding in SAIL has
been gained by the group members. This document will be subject
to revision then.

Currently, the coding standard discussion forms chapter 3
of volume four (the manuals part) of the asynchronous computer
project book.

»
4.3 Asynchronous Implementation Coding Standards #####

Version 1

4,3,1 Introduction #####

4,3,1,1 SAIL and Notation *####

The main implementation lanauage used by the asynchronous software

Ievelopment aroup is S U L , SAIL Is ALGOL»60 extended and was developed
y the Stanford Artificial Intel 1 laence Laboratory at Stanford
Unviersity# Stanford# CA, 94305. The notation used for syntax in this

I
haoter of the Project Book is taken from the sajl User Manual by Kurt
i VanLehn# NTIS Document AD»765 353# to which the reader is referred,

(
The purpose of this chapter is to establish the codina standard to
e used by the asynchronous software development group in codlnq SAIL,
ike all of the Project Book# this chapter will evolve as the ideas in

it are refined but unlike many parts of the Book this one will do so

I
nly in fairly major steps in order that the codina remain of fixed
tyle,

4,3,1,2 Justification for Having Standards #####

The question of whether the asynchronous software development aroup

I
hould have any coding standards at all is one that ought not be
ismissed without some consideration, The major reasons for NOT having
ne are:

All of the people in the programming grouo have been
prooramming for sometime and have developed their own
programming styles (idiosyncracies?) and the change
to a uniform and somewhat toreion style is likely to
slow the writing of the code -- we have a LOT of code
to write and not much time to write it in.

Restrictions in the logical layout of code w i n
sometimes mean that coding will have to be written
in the "Standard" way when there exist more computationally
efficient ways to express the same thing,

It's a pain,

I
hese considerations must however be weighed against the potential gains
t using a standard. The major items here arex

The "Public Property" nature of the code for the project
entailed by our decision to use the Chief»oroqrammer"team
scheme of Baker et al, means that we w i n all have to
be able to read and understand each other's code, A
uniform standard would certainly help in this area.

The longevity of the project w i n require people# including
the oriainal authors# to successfully modify parts of the
code. Standard ways of doing and wrltinn things would
surely be of value to them,

Finally# we desire to produce a package that is a piece

Bolume 4, Chapter 4,3* Coding Standard 108

of quality workmanship# functionally complete and
aesthetically pleasing, Uniform coding practices is
certainlly an aid to this end,

4,3,1,3 What this Chapter Contains and what It Doesn't * * * * *

This chapter of the Project Book contains the standards for ho*
■ode is written *- its Physical and logical lavout, Physical layout is
Jow code appears on the page# where it is indented# where not» how names
are decided upon# where commentary is to be D l a c e d and the like, Logical

»
ayout is concerned with how the code is broken up into modules# what
ind of execution flow control structures are used# how errors are
andled etc.

The standards are not concerned with how the code will be
■aintained# modified# stored or made into libraries. It does not contain
specifications for testing code# or for e v a l u a t i n g execution efficiency,

K
does not even consider whether the code will perform any function#
ch less what was desired,

4.3.1.4 How the Standards Were Developed * * * * *

These standards were developed by combining considerations In three
areas, First# the already well developed codinq practices of the

I
rogrammino^type o r o u D members. In this category many of the usages of
arious m e m b e r s were culled to extract those that s e e m particularly
clear# sometimes merolna two styles. Second# discussions with individual

I
 roup members concerning what things they felt were important to a good
odino standard were considered, Much of this input was in response to a
preliminary version of this document. Third# a good deal of thinking

About SAIL and about what, other programming projects have felt were
Important to coding standards was stirred in.

The result Is a blend that* it is hoped# will aid the development

I
nd maintenance of the project's code while not disrupting our
ndivldual styles to too great a degree,

4.3.1.5 How the Standards Are Presented * * * * *

For this report# the standards have been divided into three parts:

t
he first section deals with the logical lavout of programs, The second
s concerned with the Physical lavout, The third is a reference sheet
hich summarises the standard but presents no justification for the
items listed. It Is this third section to which we will refer during the

Bctual coding,
4,3,2 Logical Layout * * * * *

4,3,2,1 Modularization * * * * *

4,3,2,1,1 Introduction and the Concept of Strong and Weak Modules
«###«

The first question we must address is simplvi what is a module? We
adopt the a n s w e r p r o p o s e d b y S t e v e n s e t a l , (S t r u c t u r e d d e s i g n # I B M S Y S J

I
o, 2 1974 p, 116), “The term module is used to refer to a set of one or
o r e c o n t i a u o u s p r o g r a m s t a t e m e n t s h a v i n a a n a n e by w h i c h o t h e r p a r t s o f
t h e s y s t e m c a n I n v o k e It a n d p r e f e r a b l y h a v i n g i t s o w n d i s t i n c t s e t of

variable names1'.

Bo-lume 4 c Chapter 4,3i Coding Standard 109

The reason for defining such a thing is that it has been shown that
“Programs which are divided into multiple modules (as opposed to a
uro g r a m consistina of one huqe module) are easier to maintain# design#
■nd understand. It has also been shown that there are wavs of dividing a
Programming task into modules which maximize the advantaaes of
modularization and ways, which when used# do very little*

Recently# there has been auite a debate in the literature over
which modularization techniques are best and from this debate there have

Imerqed several valuable concepts. The most important two appear to be
odule strenath and length, Module strength is measured in terms called
Binding"# ’’Coupling’1# and ”Information Hiding”, Length is measured in

lines of code, A "good” modularization yields modules of optimum length#
■hich hide a lot of information# are highly bound# and minimally
V o u p l e d ,

4.3,2.1,2 Information Hiding #####

A module is said to hide information if by its construction and
documentation the users of that module need not know anything about How
■he module is implemented. Obviously# the users need to know what the
Module does and how to call it u p , A common example of a module which
hides information is a sjne routine. In order to use a sine routine the

I
ser need only know what it does# what its name is and how to call it,
ow is the routine implemented? Does It use fixed point or floating
point? Does it do a polynomial fit? The user doesn't know or care.

The advantage of routines which hide information from their users
goes beyond those apparent to the user of the routines. It is also of

«
se to the routine impiementer, If it becomes desireable to change a
outine (for instance to speed it up or change the method of attack for
esthetic reasons) this may be undertaken without fear of disrupting the

routine's callers -- for they know nothing about the insides# which
leads us to the concept of coupling,

4,3,2,1,3 Coupling *###*

Coupling is a concept which deals specifically with the connections
Jetween modules, A connection is any reference made in one module to
somethino defined in another module. Things typically referenced in
p o t h e r module include data items (passed parameters# global variables)
vtd control items (entry points and returns from subfunctions). Coupling
Ps measured in two ways. First# and most obviously# by the number of
connections. Second by the aualitv of the connections, A connection is

K
id to be strona if it is to a control item or to a data iter* global to
th modules# weak if to a passed data Item, The strength of a data
connection is also affected by the way in which the writer of the

F
iling routine views the contents of the Passed data. If he thinks of
as telling the called routine what to do (a control item) the

connection is stronger than it would be if it were just data (a data
l_tem),

Let us examine what it is that coupling measures. First# low
coupling means that it should be easy to understand the functioning of a

E
ven module without too many references to other modules (if the
inciple of information hldino is adhered to as well one need only

understand what the other modules do and not refer to their internal
iiorking at all), Second# if the system has errors in it the low coupling

■oiume 4, Chapter 4,3i Coding Standard 113

■
eans that the number of paths along which errors can propagate is verv
lmited# easing the task of bug extermination. In sum# coupling is a
measure of inter-module complexity* the lower the coupling the simpler

£ he inter-module relationships.

At this point let us consider the effect of global data areas
(common or control blocks) on coupling, Every module sharing a global

I
rea is invariably counled (strongly) to every other through every data
tem in that global data area, It doesn't matter whether the routine in
guestion actually uses each data item or not since any routine sharing

*he global data area CAN change anythinq in the area It lust might. In
Jystems with lots of modules and large alobal areas the coupling Is
enormous, Enormous coupling nearly always leads to the "Mad bomber
Jiyndrome" in which a seemingly healthy module is bombed by the Mad
Bomber through the global data area# but who is it?

4,3,2,1,4 Binding #####

Coupling is a concept concerned with the connections between
elements In different modules. Binding is concerned with the connections

Ietween elements of the same module, While it is desirable to reduce
oupling a case for quite the opposite can be made for binding. Binding
can be thought of as a measure of the cohesiveness of a module,

Stevens# Meyers# and Constantine list six ways in which elements of
^ module may be bound!

Coincidental
Logical
Temporal
Communicational
Sequential
Functional

■hese types of binding are in order from the weakest to the strongest.

Coincidental binding occurs when a module is just a hodge-podge of

I
 ode. Yes# there are coincidentallv bound modules believe-it*or-not, An
xampie is a module that does nothing other than eliminate duplicate
coding in other modules and Is usually a s i g n of. "shop w orn” software,

t
oglcal binding occurs when the code in a module has some logical
ohesiveness. Many "general purpose" routines are looicaJlv bound, For
nstance "dlsk-ttv I/O" routines are Probably logically bound. Temporal

bound code is code that Is not only logically bound but also related in

I
ime, Hood examples of temporally bound code come frorr the
housekeeping" genre (Initialization# termination £, c ,) , Ideally
temporally bound code could be executed all at once more or less,

Iom^unlcatlonallv bound code is code that does a whole bunch of things
o the sane data. For Instance, writing the U-V data in the data base

and on an archive tane. Sequential binding as its name implies# comes

(
b o u t w h e n a m o d u l e d o e s s e v e r a l t h i n g s w h i c h # b e c a u s e of t h e n a t u r e of

he p r o b l e m # m u s t b e d o n e o n e a f t e r t h e o t h e r . E x a m p l e s I n c l u d e r o u t i n e s
h i c h r e a d t h i s a n d u o d a t e t h a t # w h i c h c a l c u l a t e X a n d o u t p u t It to t h e

T T Y , T h e h i g h e s t c l a s s i f i c a t i o n of b i n d i n g is f u n c t i o n a l b i n d i n g , Tn

Iunctional binding all of the code is dedicated to performing one
u n c t i o n . M a t h e m a t i c a l f u n c t i o n s a r t * e f i r s t e x a m p l e s o f f u n c t i o n a l
b i n d i n g t h a t c o m e t o m i n d b u t t h e r e a r e m a n y m o r e l r e a d a l i n e o f t e x t

^rom the specified terminal, Convert the text string to reverse polish.

Volume 4, Chapter 4,3? Codina Standard 111

Search tor record X on device Y,

Further discussion of binding categories may be found in Stevens et
al,

As one can see f r o m the descriptions of binding categories# the
point of the concept of binding is to nrovide a handle for estimating

Efche cohesiveness of a module. The higher the category that a module may
ogically be assigned to the more highly bound is that module,

4,3,2,1,5 Length * * * * *

The last parameter that we will consider which affects the «av that
conceptualized s y s t e m s are broken into modules is that of length, A good

E
ase can be made for the idea that there is an optimum length, measured
n lines of code# that modules ought to have, Fstlmates of this optimum
have been made for the last several years and the concensus now lies at

j>omewhere in the range 50-200 and there has been a gradual shift toward
the lower end of this range,

What are the considerations involved in these estimates? They are
primarily the answers to the ouestions: * H o w many lines of code can you
write and still hold the whole thing clearly in mind?" and " H o w many
lines of code can programmers write in one oo without making a mess of

{
t?" and "How many lines of code are there in modules of 'successful'
oftware systems?" Answers to these guestions usually fall in the range
given above and as was pointed out have been falling of late (according

t
o one source the answer given in the mid-50's was on the order of
000), Are we getting stupider or are we learning what Dijkstra called
humble programming"?

4 , 3,2 #1,6 Putting It All Together * * * * *

What does an "ideal" modularization look like? The easy answer is
Jhat all modules composing the system should be functionally bound#
linimally coupled to each other#_hide information and be about 100 lines
long. As far as practical guidelines go the only really useful thing

(
hat tells us Is the 100 lines P a r t . In order to make use of the other
oncepts in the actual coding effort it seems to make sense to try to
bstract a few heuristics# some do's and don'ts. Obviously# these

heuristics are no substitute for understanding the concepts but they
Ihould be directly applicable.

Question: v*hat does the module do?

■f the answer takes a lot of space lust to get a good idea across the
module is probably pretty poorly bound and ought to be rethought.

Question: ^hat is the minimum I need to tell the module in order
^ o r it to work?

Question: ’*hat information does the module have access to?

| f the answer to these questions is not the same something could
probably be done to un*conple the module from t h e rest of the s y s t e m .

Q u e s t i o n ! W h * t i n f o r m a t i o n c a n t h e m o d u l e m e s s u p t h a t it d o e s n ' t
" n e e d t o c h a n g e ?

olume 4, Chapter 4,3; Coding Standard * * * * * 112

If there is something that the module can write on that it doesn't need
■o# think about passing the information to the module by value instead
B f by name.

Questions Does the user send my module anything that tells me what
| o do?

«
f the answer is yes the module is probably either not functionally
ound since it does more than one thina or it Is coupled more closely
han need be by the control item being passed in as data.

Question: What does the user need to know about the module in order
■o make effective# error free use of it?

If the answer to this guestion even hints at how the module works Inside
here's some information the module is not hiding, Ideally# the answer
should be: what the module does# what its name is# what its parameters

^re# where its results come out# and (if applicable) what the error
■eturn flaa values mean,

The last and hardest guestion is:
Question: Has the way I've organized the Internal workings of my

■odule made it essentially impossible to write "oood" modules in the
next level down (which is# of course# stubbed)?

| h e purpose of askina this guestion is to force us to look ahead to the
next level of modularization to avoid some of the pitfalls before we

(
ctuallv get there. Naturally# the lower_levels will be a bit fuzzier
ut much of the techniaue of modularization is easiest if the general
utline is thought through ahead of time. It isn't very good practice to

say "Oh we'll make all that into a module in the next level down,"

I
nless what that module is to do and what data it needs to do it to is
lear already,

4,3,2,2 Control of Execution Flow *****

4,3,2,2,1 Recommended Structures *****

Diikstra and others have considered the guestlons of what flow
Control structures are necessary for writing proarams and which that
aren't actually necessary are convenient. They have also asked which

I
ontrol structures are clear and easy to understand and which obscure
nd confusina. These considerations have led to the major part of the
collection of techniques known as structured programming,

Fortunatelv, there is a set of control structures which meet the
d esired criteria. All of these structures are among those available In
the SAIL languaoe and it was primarily for this reason that the major

Implementation lanauage used in the asynchronous software development
roject is SAIL,

The control structures found to be necessary for writing programs
|all into two oroups either of which is sufficient to write any program.
Only one of these qroups is used in structured programming because tbe

I
ther contains confusing (error prone) structures. The control
tructures minimally regutred for structured programming are generally
ailed the If-then-else and the while constructs.

Bolume 4, Chapter 4,3: Coding Standard ***** 113

The While and If-then*else constructs while sufficient to program
J n y flow control required are not the only constructs that are clear and
useful. In particular# thev Provide no means for modularization. So we
A lso will find frequent utility In what are generally known as the Call
Bnd Return constructs. There are two more constructs which# while they
" a n always be written as a composite of While and If~then«else# occur so
frequently in prooramming practice that they arDear in many languages,

I
 hese are the so called Incremental-while (For or Iterative«do) and the
ase»of. The two constructs have# in addition to freguency of encounter#
the additional merit of being clearer In their meaning than the

Corresponding translation into the more basic types.

Translating the common names for the above control structures into
^he ALGOL Bmf definitions (used in SAIT,) so that they may be cross
Beferenced with the User Manual we have:

Table 4,1 RNF Names of "Good” Control Structures

Common name(s)

It"then-else
While
Incremental-while or

For or
Iterative-do

Case-of
Call
Return

ALGOL BNF Name

<conditional«statement>
<while_statement>
<for-statement>

<case«.statement >
<procedure„statement>
<return«.statement>

Unfortunately the correspondence between the commonly used terms and the
■AIL syntax definition of the above constructs is not exact in every
case. In particular# the <while.statement># the <for-statement> and the
_icase«.statement> have a wider range of oDtional forms than is usual,

The <while«stater«ent> and the <for«.statement> have the NEEDNEXT
forms and the <case.statement> has a form without the

I
 numbered.state.list>, None of these forms are included in the
efinition of their common counterparts,

4,3,2,2,2 Other Control Structures *****

In addition to the control structures discussed in the previous
section# SAIL has a large number of other control structures available,

t
e guestion which naturally arises is; what should our attitude toward
eir use be? The answer is that we should use only those that are in
keepina with the Ideas of structured programming, That is they should be

Hlear in their meaning and not introduce a high rate of system bugs.

In this liqht# what can we say about the other control structures
Xn SAIL? In order to eliminate any of them on the basis of the
Broposition that it should not lead to hiah error rates# one needs
Tairlv extensive experience in using it. In the case of most of the ax
candidates we don't have verv much knowiedoe of what to expect. There is

I
ne exception however •• the <oo»to»statement>• The <qo_to«.state^ent>
as been attacked in so many studies that it seems fair to eliminate it
on the basis of beina hichly prone to errors.

Bolume 4, Chapter 4 #3i Coding standard ***** 114

The only other justification for eliminating a structure Is lack of
Jlarity, The obvious problem here Is that clarity has a good deal to do
with training and personality, Perhaps if we regularly use the remaining

Itructures in SAIT, we will become adept at understanding what they mean
nd consider them all extremely clear. In fact# there are those whose
tllity and meaning are clear at first sight# Since the asynchronous

software development group will be working on the programs for guite a

I
hile and w m no doubt have to train a considerable number of n e w

embers during this ti^e# the criterion for saying that a given control
construct is clear should be that it be readily understood without

■ubstantial experience in SAIL coding.

Adopting the idea that a construct is clear if it can be easily

(
nderstood by programming types without experience in SAiLing seems to
ead to the conclusion that the <done_statement> is reasonably clear but
hat the <next„statement> is not. It also points to the conclusion that

the NF,EDNEXT forms of the <whi 1 e^statement> and <for-statement> as well

I
s the form of the <case-staten'ent> which lacks the
numbered«state«.llst> are lacking in clarity.

As a practlral.matter# there w i n no doubt arise instances during
B h e coding of the data reduction system when the use of the features of
™ A I L that lack clarity could be of great value and of course we ought

I
ot close our eyes to them, The above discussion is set down as a guide
o make our work easier not more heroic, when such a situation arises
ne ought to ask# before using one of the less clear control structures#

"Is there no easy way to use the clear constructs to do the same thing?'*

4,3,2,3 Inter-module Error Handling *****

So far we have discussed two of the major considerations in the

(
ogical layout of programs. The first !s the criteria that should be
sed to divide large systems into managably small chunks called modules.
The second is concerned with the structures that are used to control

Ixecution flow, primarily within a module, In this last section we will
iscuss the problem of the wav in which modules and their callers should
behave in cases where a called module discovers that the data passed to

It by its callcr precludes calculating a proper result, Such occurences
re an unfortunate result of having to deal with the real world --
Murohy's L a w or some derivative of it Insures that we are in deep

trouble if we don't think about what to do when.

When defining how we should handle errors# as is true of other
aspects of implementation techniaue# there is a long term advantage to

I
igh uniformity: it avoids our having to spend time trying to figure out
hat we have done when# months later# we have to understand why things
d o n 't w o r k , Inter-module error handling may be thought of as comprising

I
 wo distinct though interrelated nartsi the responsibilities of the
aller of modules and the responsibilities of the called module, Since
all modules except the ton and bottom level are both callers and callees

«
he authors of modules generally will have to deal with both concepts at
nee. Nonetheless# for the purposes of discussion we will deal with each
art separately,

|.3,2,3,1 Responsibilities of the Called Module to Its Caller *****

The main thing that a module should do for its callers is to carry
(Ut its function in a repeatable manner -- post haste. If unable to do

Volume 4 v Chapter 4,3: Codinq Standard 115

A It must tell its caller why it was unable to do so In terms that are
dinsible to the caller. In addition# It must not destroy any data that
the caller qave It to work with unless It can complete Its function

f
thout error, The reason for the dictum against passing back half
gested data on an error return (a very nard one for sure) is that#
since the caller has no idea how the callee has been implemented (the

M d u l e s are uncoupled)# the caller can make no sense out of the data,
» n c e it has no way to recover from the error, On the other hand if the
(Sllee has not chanaed the data a n d if# at the same time# the callee has
t^ld the caller what was wrono the caller may be able to fix the problem
Jid try again.

Consider a c o n c r e t e e x a m p l e : a m o d u l e which t a k e s as a P a r a m e t e r a

I
oatlnq point number and rrnlaces it with the sauare root of the
mber, Obviously# it Is unable to find the square root of a neaative
number, If we calculate# by s o m e t i m e consuming process# a number and

I
en renuire the square root of it we may call the root finding routine,
the square root routine gets a neqative number and then ruins it in

e process of telling us that It is havinq trouble we've lost our
number and must recalculate it (if we are able), In contrast# If the

I
ot routine merely told us that we qave it a neqative number# we might
able to fix It up and try aqaln, ^hile this example is trivial# the

same applies in a more forceful wav to more complex routines,

Summinq u p then# a module must behave in the followlnq ways:

A) Tt must carrv out its function when ever possible,
R) It must not alter anv data passed to it If it is

not able to complete without error.
C) It must# on detecting an error condition# tell its

caller what is wrono in a way that is meaningful
to its caller.

D) It must not die horribly -- control must return
to the caller,

4, 3,7,3,2 Pesponsibi1ities of the Caller to Its Callee * * * * *

The caller-cal lee interface is bidirectional and although the
TOjority of the responsibility for Its maintenance lies with the callee#
the caller too has its share for there are thinqs that the callee cannot
Protect Itself aaainst.

The caller must k n o w what the callee is supposed to do, The
subordinate module can h a r d l y h e to b l a m e it its caller expects it to do
E m e t n 1 n q other than w h a t it is designed (and documented) to do, "’ext#
^ e caller must u n d e r s t a n d the subordinate's interface. The callee

t
^nnot (under most lanouaaes) nrotect itself verv effectively against
alls made through an incorrect interface. Lastly# the caller must
nterroqate and understand the meaninq of any error flags that Its

subordinate may pass back.

The utility of the above responsibilities should be clear In liqht
of the discussion about what a callee should do for its caller. They are
basically lust those that the callee has little or no control over,

4,3,3 Physical Layout of Programs * * * * *

4,3,3,1 Overview * * * * *

TWlume 4, Chanter 4,3: Coding Standard 116

We have so far considered what standards should be applied to the
logical layout of code# that is how control should flow within and

X
 tween modules* what structures should be used to control the flow and
w information is to be pushed around in a system of interacting
dules, In this section we will consider the other aspect of writing

code ■-* the physical layout of the code on the page(s).

The reasons for considering physical layout are closely parallel
with those for loaical layout (namely to reduce the rate at which errors

(
e Introduced while coding or modifying and to make the coded programs
telliaible) but the emphasis of our considerations of physical codino
standards will have a sliahtly different tone. Physical layout is mainly

X
ncerned with the readability of programs as they appear in a printed
sting# not so much with the structure of the programs, All that a
ogram is is already encoded in the statement of that program to the

compiler. Physical lavout is for people only. It is intended to be

Idundant information which leads a person reading the proaram to
derstand the loaical structure of the program by looking at h o w the
program is laid out on the paoe, The idea is to force the viewer to see

K
e structure of the forest by planting the trees in a meaningful
ttern.

In t h e s u b j e c t of P h y s i c a l l a v o u t # s i n c e t h e i n f o r m a t i o n p r e s e n t e d

R
 totally redundant# there is a considerably wider range of successful
thods for organization than for loaical lavout. Indeed# what
programmers consider the essence of their programming styles seems more

I
osely bound up in the physical lavout of programs than in the logical
yout. Thus any attempt at standardization is more likely to run afoul
of the programmers involved when considering the physical side of the

p e s t i o n than when considering its loaical aspects. Nonetheless# in a
K r g e system such as the one we are building# the need for
Standardization of the presentation of code is very great. Also# since
there is a large range of successful methods that could be used for
Standardization the choice of one over the others is largely a matter of
Haste, Here we have chosen one of the many possible. The choice of the
overall method was made considering the various ways in which the

B
ogramming types in the asynchronous software development group already
nd to do things. The choice of the details was made ex cathedra,

4,3,3,2 Commentary *****

Perhaps the least controversial.subject under the "Physical Layout"
heading is commentary, Perhans this is because ail programmers believe

commentary is a good thing that they really ought to do more of, ne
Bnat as it may here is the standard.

At the start of a module there should be sufficient commentary#
Separated from the text of the program, to explain:

1) What version this program is e,g, a version number,
2) What the module does e,g, a functional description,
3) What the oroaram's interface is. That is the

commentary should state how to call the module#
what its parameters are# what global data references
are made a n d w h a t k i n d of d a t a is r e t u r n e d . If the
r o u t i n e h a s PCL files t h e y s h o u l d be m e n t i o n e d h e r e ,

4) What the error indicators are and what they mean

* l u m e 4, Chanter 4,3: Coding Standard * * * * * 117

in terms that someone with a functional knowiedqe
of the routine only can understand,

5) Which sub-functions are called on In the module,
6) What macro files are required for compilation of

this routine.

Next, separated f r o m the above and f r o m the text of the module below,

I
ould be an o v e r v i e w of now the module is implemented indicati.nq what
gorithms are used and where they may be found, what the overall
structure of the f 1 o * In the prooram is# what the major variables of the

Ioqram represent, any helpful hints about the implementation that one
ould be aware of and the like,

«
 Foliov?inq the qaro above is the main text of the program, it is
commended that we name each of the a i n blocks of the module. If the
ock is a major section of the module there should be a short

accowpanyinq conrent s tat 1no what the block Is aoinq to do, Something on

I
e order of "loop around qettinq a n e w estimate on the square root
til the error is known to be less than Q M Is probably sufficient,

Durlnq "straiqht" code inside a block commentary should be attached

*
ly to code thrit is not clear In its own rlnht. Avoid sayinq exactly
at the code says. The reasonlno beinq that comments should be stuck In

Js guides where the reader miqht qet the wronq idea, A
londitional«.statement> is a oiace where readers tend to oo the wronq
I y and so is a aood place to think about leavlnq a siqnpost,

4 , 3 , 3 v 3 Indentation * * * * *

In addition to commentary there are two more devices which we may

R
e to aid the reader in ur,derstandlno how a module works. They are
dentation and naoinq. In this section we will set d o * n the standard
r indentation and in the next Cand last) we will consider paqing,

Proaram modules rouqhly consist of commentary (which is ignored by
B^e compiler) and code (which is processed hv the comoiler), Code is
usually thouoht to be divided into statements, each statement beinq a

|
>rt of 1ndependpntIv dioestahle "chunk” of program. In many lanquaqes,
,G0L included, the code statements can be further divided into the
cateqorlps of declaratory and executable statements, Declaratory

K
ate^ents tell the compiler about the symbols that are to be
nioulated, whti^ the executable statements tell the compiler how to
rry out the desired m an ion 1 at .1 o n , T a k e n toqether, the two types of

statements form a complete description of the module interrretable both

K
man and machine. But while the machine rays attention to each and
ery symbol people In aeneral do not, The purpose of Indentation Is to
arrange the statements of the p r o g r a m , on the page so that people will

fpe what is Important for them to see at each level of detail.

For people the most difficult Part of understanding comes in the
£*ecutable portion of the code and It is with the executable statements
1 1 a program that indentation is concerned,

K e y t o t h e u n d e r s t a n a i n o of w h e n a s e r i e s of s t a t e m e n t s s h o u l d b e

t
 dented further than those around it is the idea of nesting level, The
r s t l e v e l of n e s t i m c o n s i s t s of t h o s e s t a t e m e n t s in t h e d r o n r a m that,

a r e a l w a y s e x e c u t e a , T h e n e x t l e v e l c o n s i s t s o f t h o s e s t a t e m e n t s t h a t

gpre executed conditionally on a single test, The third level of nesting

>Blume 4, Chanter 4*31 Coding Standard ***** IIP

f mPrises all of the statements that are conditional on a test which Is
self D a r t of the sccond level nesting. And so on.

The Idea is to indent all of the statements at a alven nestinq
■ vel the s a m e amount, each level beina Indented further than those with
Jlwer level numbers. To fix the whole thlna we assume that the first
nestina level is not Indented at all. While that is the basic idea#

I
 ere are usually minor flourishes added to it as a sort of "fine
ning" to further improve readability. Since the flourishes are# to a
considerable doqree# a matter of taste and a rather small Derterba ti o n

I
that those that are presented here are incorporated without further
st1f icat ion ,

The indentation f r o m a given level to the next deeper is a a matter

K
 taste, Four or five spaces is reasonable. What ever you choose# be
nsistent,

The first statement of a nlven nestina level appears on a n e w line
Bidented to indicate its nestina level, A statement "av not appear on a
line that is Indented to a depth Incorrect for its nestingv leve 1,

A BEGIN - EN’D block marks the boundaries of a nestina level, The
CXJde between the BEGIN and the ENn is at a level one deeper than It
would have been if the BEGIN • e n d were not there. The b e g i n is not a
^ r t of the nestina level that it defines but the END is,

A <conditional-statement> marks the beatnnina of a nesting level,

K
e <statement>'s that follow the THEN and the ELSE (if it appears)
gether with the then or ELSE constitute the whole of the nesting
level, Exception: if the conditional is short enough to to fit on a line

iUt may be so placed,

A <case_statement> defines a series of nestina levels of equal
deoth# one for each case of the variable. The numbers of the
B^urbered.state.list> are a part of the level each defines,

<for„statement>'s and <while_statement>'s both mark the start of a
pestina level consisting of the <statement> which follows them.

These definitions are prettv horrible to read. For examples see the
Appendix 'Standards Heference Sheets',

4,3,3,4 Pagina *****

The last subject we w m consider is that of paaing. Compared with
■he preceedina mess p a a 1 n a is a d r e a m , The basic idea is that a single
idea should not span oaaes of the listina but that there should not be a

I
 hole bunch of ideas on any sinale oage without separatinq them from
ach other by some blank lines,

Despite the paper shortaae we a r e not lacking in paper to orlnt our
■istings on, In fact if throuah proper D a q l n g we can save havina to
decompile code by havina it understood properly in the first place we
m a y even save paper,

4,3,4 Appendix: Standards Reference Sheets *****

4,3,4,! Modularization Standards *****

Jolume 4, Chapter 4,3: Coding Standard *#### 119

A module should have the following characteristics*

1) It should be highly bound. That is it should do one
and only one function and it should do all of that
function. The main guestion to ask is "What does this
proposed module d o ?” The answer should be short. If
the answer MUST be long and complicated something is
wrong,

2) It should be loosely coupled to the rest of the system.
That is it should have available to it excatly that
information reguired by it and no more. If it does not
need to change a piece of information it should not be
able to change that information* This point is against
common or external data shared by routines. It is aoainst
passing information intended to control a subroutine,

3) It should be about 50 • 200 lines in length# tending to
the shorter end of the range,

4) It should "hide information'’ from its user. That is the
user should not have to know anything about how the
module works inside to reliably use it.

Consequences of the above:

1) Parameters should be passed to a module by its caller
in preference to using common/external data whenever
possible,

2) Parameters should be passed by VALUE not by REFERENCE,

3) Functions should be used in preference to subroutines
to pass back single values,

4,3,4,2 Standard Control Structures ##*##

The following control structures in s a i l are the only reccomended
W n e s :

1) <conditional-statement> -• all forms

2) <for_statement> -- except NKEDNEXT FOR

3) <while-statement> except NFEDNEXT WHILE

4) <case_statement> -» <numbered_state«.list> form preferred

5) <procedure-statement> -- all forms

6) <return-statement> all forms

7) <done—statement> -«• form without <block_name> oreferred

4,3,4,3 Standards for Inter-module Error H a n d l i n q ####*

Modules are recommended to follow the following conventions

Jolume 4, Chapter 4,3s Coding S t a n d a r d # * # # #

£or error handlings

As Caller

1) Understand what the module vou are ooing to call Is
supposed to do,

2) Understand the callee module's interface,

3) when the module returns# check the error indicator,

As Callee

1) No matter what DO not blow u p j control MUST return to
the caller,

2) Until it is clear that vou can complete without error
DO HOT change anythina that is passed to you except
the error indicator(s),

3) The possible settinas of the error indicators should be
meaningful to the user of a black box.

4,3,4,4 Commentary Standards #*###

At the head of a module there are two sections of commentary
jeguired, They should be separated from each other and from the text of
the p r o g r a m , if of substantial lenath# the separation may be by a page.

The two sections of commentary at the head of the program module
trontain J

First section

Information describing the module as a black box,

unelyi 1) The version number of the module,
2) A functional description of the module,

3) The interface to the module. Parameters passed# their
tvpes# parameters modified# what ,DCTj files are to
be used in invoking the module etc,

4) What the possible settings of the error indicators mean,

5) What macro# ,DCTj# etc. files are required for compilation
of this module,

6) What routines are directly invoked by this module,

Second section

Information describina the implementation of the module.

Namely! 1) An overview of the looic of the module including
references to published algorithms# project book

definitions etc.

2) A description of what the major variables of the
module represent,

3) An exposition of anvthlnq else that vou feel likely
to help someone trying to understand the module,

Major blocks should be named, There should be a short comment
Pidicating what the block is to do,

Purina "straiaht* code commentary should be used sparingly. The
presence of cormentarv should alert the reader that the author thinks
that here is a Place that it is pasy to misunderstand, Po not drown the

K
ader in commentary or he will stop reading it and miss something
portant that you have to say,

<condJttona 1_statement>9s have a higher tendency to be
P s u n d e r s t o o d than most others (in general),

4,3,4,5 Indentation Standards #*###

_ Indentation f r o m one level to the next deeper level is a matter of
taste, when vou have chosen be consistent. Four or five spaces is a
Seasonable number,

A statement may not appear on a line indented to indicate a level
incorrect for that statement, ^ote that this restriction does not
Preclude puttina more than one statement on a line.

The major "definer of levels” is the BEGIN - END block, The
■>pearence of a pf,GIN » E u d block makes all of the code after (but not
J^cludino) the BEGIN through the E\’D one level deeper than it would
otherwise have been,

begin MarutlevM
blah blah:
blah blah: blah:
nange j
thr u n o e :
end "grutlev":

|
|>te that there is no distinction made between BEGIN - END blocks that
eclare variables and those that do not: all REGIN - F,n:D blocks m a k e a
nr w level,

A <condltional_statement> makes zero# one or two new n e w levels,
The number of levels depends upon the complexity of the statement and

t
on whether or not the ELSE clause of the <condltional_statement>
pears, If the else appears# the conditional makes two levels of enual
depth, If the conditional is snort enough to fit on one line# it makes

K
 levels, otherwise it makes one. The level(s) consist of the
tatement> construct which follows the THEM or ELSE and Includes the
E N o r E L S E .

if giqanticjbooleanlexnression
then statement! o f !the!then
else statement.JofJtheJelsej

J l u m e 4, Chanter 4,3: Coding Standard #**## \ ? \

|)lume 4, Chanter 4,3* Coding Standard 122

if o t h e r !boo 1ean
then bealn

stmt 1 r
s t * t ? i
end

else s tint 3 t

i f exnr then stmtlj

If exnr?
then stmt2
else stmt3?

A <case.statpment> defines a series of nesting levels of egual
ftpth* one for each case of the variable. The bracketed numbers of the
<nu^hered_state«l 1 st> form a part of the level that they head. The for*
* £ the case statement without the <numhered..state.l1st> Is permissible
lit not preferred,

case argurent of beain
O l stmt 1 j
C11 b e a 1n

S t. m 1 2 I
S t m t 3 t

end j
£73 s t m 14 j

end j

The <for_statement> and the <whi]e_state^ent> behave, with respect
to indentation# analogous to the <condltionr3l„state"rent>. without an

t
SF clause. That is they define a new level consisting of the the
tatement> which follows them, The DO in them forms the first part of
the new level lust like the THFM or Fl.SK in the conditional,

while m o n 1o !boo 1e a n 1 expression
do begin

s t m 1 1 t
s t m 12 i
stmtl?

e n d ;

while true
do stmt j

blah; blah*

for i-t steo 1 until tenzilllon
do begin

stmt 1 j
s t. n t ? i

end f

4,3,4,6 Panina Standards #####

The idea behind d a g 1 n g is to separate distinct thoughts physically
the same page hv blanfc lines hut to try to keep a sinole idoa all on

one page.

| o 1 u m e 4 # Chapter 4,3 j Codina Standard 173

Thus# the required commentarv at the head of a module should be set
■ff from the text of the module and should Itself be broken Into its two
distinct oarts. If the commentary Is Iona enouah (like more than 1/2
page# sav) do a nage uo after it. Following the declaratory statements

I
f the main line# Internal procedures are the most usual things to
ppear next, Since each represents a complete thouaht set each off from
the main line code and from its fellows.

