
October 1976

VLA COMPUTER MEMORANDUM NO, 13Z

An Algorithm for Mapping Selected Regions of the Field of View

by Jerry Hudson

It is often desirable to make a map of only a limited region within
the field of view (defined* say# by the principal beam of the antennas)
of a radio interferometer, Similarly, it might be desired to examine the
profile of a single spectral line feature when doing time-domain spectral
analysis, when other features were within the band-pass of the recording
instrument• ignoring the possible presence of outside features while
mapping a limited region with the Fast Fourier transform (FFT) is to
invite aliasing; direct evaluation of the eguation

M
\

f(x »y) = / 2 Re V .exp -2nj(u x + v y)
k I /— m m k m 1l=m

where the V's are calibrated measurements of the fringe visibility# u, v
the baseline projections# and the set {k,l> of points on the x, y plane
are assumed to form a square grid, K,L in size, requires some K,L,M
iterations of an elementary step involving 6 multiplications and 3
additions. Even in microprocessors where the elementary steps could be
kept down to, say, 1 usee, the size K,L of the region is severely limited
by processing speed, (For 21,000 input data and a time limit of 10
minutes, the map size is limited to 169 X 169 points. In ordinary
processors, where 60 usee is more typical, the size is cut to 22 X 22
points i)

An alternative to both of the above techniques is obviously in
order. To this end, a modification of the FFT Is suggested here, which
should provide more reasonable computational speeds while avoiding
aliasing. It would be required that the region of interest be a power of
2 in size, as with the conventional FFT,

We then proceed as follows:
1) First, the V(u,v) datamust be sorted on, say, the u coordinate,

Barry Clark has suggested that, for the VLA, the data from 351 baselines
in a 10-second sample be initially sorted? the sorted sequences can then
either be merged on demand, or automatically merged at fixed time
intervals. Calibration would depend upon past history.

2) Next, the origin of the map is shifted by multiplying the
visibilities V by a phase factor:

V9 = Vfexp -2nj(u,x0 + v,y0)

where (x0, y0) is centered on the region of interest. This step can
proceed concurrently with the following one,

3) As the V data are read from the sorted file* rows of width du in
the (u, v) plane are constructed and transformed with a modification of
the FFT, in the following manner* Suppose we have made du of such a size
that 1/du is somewhat greater than the field of view (area of sensitivity
on the sky) of the instrument, Suppose furthermore that we treat the (u,

n
v) plane as consisting of N X N elements of size du X du# where N = 2 =
Q,L, L being the size of our reqion of interest* and Q of course also a

q
power of 2# Q = 2 , say* In the modified FFT, n passes through the data
are needed* but many nodes in the ’’butterfly* diagram can be skipped, as
seen in the examples in the figures. In fact# the rule for skipping

n-i n-»i
nodes at pass i, i=n-q*1,n-q+2,,,,,n, is DO 2 r SKIP Q - 2 , We note
that the outputs in locations 0, Q, 2Q, are in the bit-reversed
sequence for the (n-q)-bit indices 0, 1, ..*» L-l, and so bit-reversing
takes place much as usual, except that the inputs are retrieved from
every Qth cell in the row, Only the L outputs are written out on
secondary storage, but it is necessary to write out all N rows, as these
are transformed.

We note that the computation time required for this modified FFT
goes approximately as (1 + log L),N, or roughly Q times the computation

2
time for a row of length L,

(A word of explanation for the figures. At each node, the lines
converging from the preceding pass on the left are understood to cause
the inputs on the left to be added (complex addition), A dashed line
indicates negation before adding. The symbol w is the nth root of unity;
where w to some power appears, it multiplies the input*)

4) It should be noted that some effort is saved if instead of
writing out N rows of length L complex numbers, we instead write N/2 + 1
rows corresponding to indices 0, 1, <».*, N/2 in the u coordinate. We can
thus take advantage of the Hermitian nature of the data by not bothering
with the redundant half-plane, (I thank Larry D'Addario for suqcresting a
scheme for handling the half-plane without excessive data shuffling. The
scheme now in use in our DEC-10 programs involves a modification of
Larry's suggestion, which works as follows: The complex plane is taken
to hold w/2+1 rows of length N complex numbers. After the row
transforms, the half-length columns are modified according to the scheme:

1/2 -k n/2-k
C = 2 Cc ♦ c* f jc w + jc* w)
k k n/2-k k n/2-k

FoIlowing the convention* as we do, that real and imaginary components
ot a complex number are stored in successive storage locations, we have
the convenient result that, after the FFT, the column of length N/2
contains the N real values for that row of the output map, stored in
successive memory locations,)

5) Transposition of the array can be carried out by an
algorithm which consists of transposing sub-matrices of size Nc X Nc,

b
where L = A,Nc , A, b integers, where the rows of the matrices

P
are fetched at intervals of Nc , p = 0, 1, b, with an
exception at the end (or better yet at the beginning) to handle
the matrices of size A X A. The transposition thus requires
CEILClog (L)) passes for each L X b section of the L X N array,

Nc
The algorithm resembles that of Fklundh (1972), although inspired by
that of Knuth (1973),

6) We now do the column transform on what are now "rows"
which we piece together from Q different places on the file (or
Q different files). Again* we use the modified FFT in order to
skip processing nodes which do not affect the desired L points in
each row. Writing out the L points after bit-reversing, we are
finished,

Barry Clark has suggested an alternative to the above algorithm,
2

applicable if fast memory capable of holding L (q + 1)
complex numbers is available.
Output on mass storage intermediate between sorted visibility data and
the final map .output is avoided. Sorting ot the data is such as to
place rows 0# 2, Ij , 4 ,1 j , 8, L, • *, * 1, 2, L +1, 4 ,1» +1, ,•« in that
sequence. We work from right to left on the butterfly diagram,
calling upon a recursive procedure which, at pass i (i = 0, i, 2, n)
attempts to merge pairs ot inputs from the left, according to the lines
on the diagram. Here, inputs are entire rows, of length L* which have
presumably been Fourier transformed in one direct ion. If the inputs
are available, the procedure combines them, keeping one and discarding
the other (provided i>n-q). If the inputs are not available# the
routine calls itself recursively, putting i«-i-l* If the routine
reaches level n-q without obtaining inputs* it proceeds to read from
the input file the rows 2,L+j, 4,L4j, j being the row number
belonging to the node sought. The rows are Fourier transformed in

the row sense, and then combined through n-q passes, as indicated
on the butterfly diagram. In the worst case, one may have (q-l)tL
rows awaiting partners plus 2,L rows which have just been read in,
for a total of (q+l),L rows.

For example, in Fig, 2, we would start at node 0, pass 3,
Failing to find inputs 0 and i at pass 2, the procedure recurses,
seeking an input at node 0, level 2 (call it input(0,2), say).
Of course, the procedure immediately recurses again, since inputs
(0,1) and (0,2) are unavailable. Now we reach level l=n-q, The
procedure therefore reads rows 0 and 4, Fourier transforms them,
combines them according to the first pass indicated on the diagram,
and then returns. Back at level 2, the procedure finds input (0,2)
has been satisfied, but (0,2) is missing. Back to 1, this time
seeking row 2, Two more inputs, rows 2 and 6,, are obtained,
transformed, and combined. Back at level 2, the procedure is at
last satisfied, whence it now combines all pairs of level 1 inputs
to make a level 2 node, discarding the lower of the two, (Thus we
make (0,2) out of (0,1) and (0,2), discarding (0,2); (4,2) out of
(4,1) and (6,1), discarding (6,1),) The procedure returns. Up at
level 3 we discover input (2,1) is missing, whence another excursion
which will not terminate until rows 1 and 5, then 3 and 7, are read.

Of course, recursion is not absolutely necessary in the
implementation of this algorithm, but it aids the explanation.

I would like to thank Barry Clark tor helpful discussion and
criticism, and for encouraging me to find a way to reduce the
computation of the FFT's.

References
Fklundh, J.O, (1972) A Fast Computer Method for Matrix Transposing,

Cfltapafcftts, Cs2.1, 801--803,

Addison-Wesley, Reading, Mass,

Itvd 0 Utod 1 itvtlX levd 3

Fig? 1» Butterfly diagram for Q=2 (2:1 reduction)

JUvit 0 Xtx/tl 1

Fig. 2, Butterfly diagram for Q=4 (4:1 reduction)

