
fcATJtONAL RADIO ASTRONOMY OBSERVATORY

SOCORRO# NY.W MEXICO

December 29# 1976

VLA COMPUTER MEMORANDUM rtO, 134

VLA Correlator Data Formats

for the DEC-ttf System

by A, Braun# D, Ehneouske# J* Hudson

1, Introduction

A revised data fonnat is presented here/ toqether with a description
of the access programs, A tentative schedule for implementation is also
included* The data format described here represents a number of
viewpoints and satisfies what we hope is a majority of observing needs.
Your comments are solicited.

Two major requirements are met by this choice of data structure:
First# it will be possible for user programs to access the data base
without recourse to more than a minimal package of routines; second# the
structure provides a natural and simple interface to the CANDID data
reduction system. While SAIL is to be the implementation language for
the access programs# it should be Dossible at a later date to re-code the
programs in the DEC-ltf macro assembler languaoe# once requirements are
better understood. At that time# interfaces to other lanquage processors
can be provided.

2, Procedures

Let us outline here what we think will be a reasonable set of
operating procedures for handlinq data files on the asynchronous
subsystem.

Each observer on the VLA will be assigned a project/programmer
number# where his visibility data files# indices# gain tables# and
synthesized maos will be held. No guarantee is made by the nrao staff
that his d i r e c t o r y a n d f i l e s will be i m m u n e to s y s t e m e r r o r s # and so the

observer should take care to back up those files which he considers
valuable. After a designated time period/ the files will be deleted as a
matter of course. Some data may be considered "public," and kept as
files under the lil,lj directory. In this category fall observations of
calibration sources and monitor data.

A program called FILLEK generates the user's data base and also the
public files# either from magnetic tape or fixed head disk, Frior to
running FILLEK, the user gives the program a list of sources to be
written on certain files, and the ordering in which he wants the data on
those files. Those sources designated as calibrators will also be
written onto a public tile# with a preset amount of time-averaging
applied to the visibilities. The observer may choose between two major
modes of ordering his data: (1) Time — Baseline (natural), and (2)
f(u,v). Records sorted according to some function f(u,v) will be ordered
according to values of that key computed from the stored (u,v) coordinate
in each record. For example, f(u,v) s I u I might oe a reasonable sorting
key for purposes of gridding for the Fast Fourier Transform. The observer
also selects the degree of averaging desired for the records. Jt is
understood that the ordering and averaging are constant for a given file,
^hile the opportunity is obvious here for abusing file space, we suggest
that the file lists be cleared with the systems staff prior to observing
to ensure that excessive duplication does not take place, and that there
is sufficient disk space available.

3. Data Structure

Conceptually, the data structure takes the form:

1 Observer,
2 Visibility data set (several),

3 uata record (l:wrecs),
2 Visibility data set index (1 tor each vis, data set),

3 index record (IsKobs)#
2 Gain table (1 tor each vis, data set),

3 G ai n t a b l e r e c o r d (l : N t i m e s) ,
2 -Monitor data table aostract,

1 Public,
2 Index of observations,
2 Visibility data set (one for calibrators),

3 nata record(1:Nrecs),
2 Visibility data set index,

3 index r e c o r d (l : N o b s) ,
2 Monitor data file,
2 Antenna station table;

2

Under the file directory for his project/programmer number# the
observer's visibility data* index to the data# gain taole# and monitor
table are represented by different files, visibility data are Kept in
separate files# principally according to whether the user intends to map
the data or to use the observations for experimentation requiring access
by time -- baseline. A facility will exist to permit breaicing# say# one
source out of a given file and copying it to another. Files intended for
mapping are sorted according to some function of (u#v), say lul. The
index file pertaining to each visibility data set contains such
information as source name and gualifier# start and stop times# and
indices for retrieval from the visibility data set (which looks like a
large array of data records). Other information# such as the definition
of freguencies# bandwidths# and polarizations of the IK channels# is
stored in the index. The gain table contains nominal antenna phases#
sensitivities# calibrated gain factors# and polarization corrections. The
antenna station table lists the antenna positions and station
designations# with a separate record for each time period for which any
one antenna was moved. The monitor data ta^le contains an abstraction of
monitor data which is of interest in the calibration and correction of
the visibility data. It is kept in tlme-seguence with a legend
describing the data that were logged.

Record layout for visibility records is as follows:

word 0

word l

word 2

word 3

• • •

u 1 V
(18 bits) 1 (18 bits)

1 Base linel Date I//I Time I//I
1 (10 b .) 1(6 b.) I//I (16 bits) I//I

1 w 1 Weight I//I Flags I//I
1 (6) 1(10 bits) I//I (16 bits) I//I

Re (cor. 1) 1 1m (cor. 1)
(18 Pits) 1 (18 bits)

1 1 1
1/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/

The 18-bit halfwords represent data which is only of 16-bit precision;
hence# the entire format is readily translated into a Modcomp or DEC
minicomputer storage format, (u#v) are kept in 16's of nanoseconds. The
w component is stored with only sign and 5 most significant bits. The
baseline number is a pair of 5-bit physical antenna numbers. The 6-bit
date is the low order 6 bits in the Modified Julian Atomic Date, Time is
seconds# 1AT# past midnight# divided by 2, The weight field allows for
averaging up to 1024 time-wise adjacent records together. The flags field
is broken into groups of 2 bits for each correlator (assuming a maximum

3

of 8 correlator data words)* It Is suggested that only 2 classes of
records be maintained: of lengths 7 and 11 words# to hold data for 2 and
4 active IF channels# respectively*

The visibility data index is organized as follows:

1 Visibility index
2 Recsize
2 Source name
2 Source gual
2 toode gual
2 Calibr code
2 Gain code
2 Sort code
2 Averaging time
2 Source ptrl
2 Source ptr2
2 Antptr
2 Gain ptrl
2 Gain ptr2
2 Source link
2 RA195&
2 decl95?
2 RAobsdate
2 decobsdate
2 Start m j a u
2 start I AT
2 Start l s t

2 Correl(l:4)
2 Band(1:4)
2 Freg(1:4)
2 Bandw(l:4)
2 S u m L O (1:4)

(1:Nobs)#
integer #
char(10)#
integer #
integer #
Integer #
floating#
integer #
floating#

integer #
integer#
integer #
integer #
inteqer #
integer #
f1oating#
floating #
float ing #
floating#
floating #
floating#
float ing#
c ha r (5)#
c h a r (5)#
floati ng #
floating#
floating ?

All character strings in these various files will be storea in the
format

I char* count (integer) I word e of cnar str
l-- 1

Ichar llchar 2lchar 3lchar 4!char 5101 word 1

Ichar hlchar 71 ••• I fc) 1 0 Itfl . . •

wher e zero p a d d i n g is us ed tor the u n u s e d c h a r a c t e r s f i l l i n g out the
m a x i m u m st r i n g l e n g t h (to a l l o w ror a c o m p a r i s o n of cnar, data). This will

4

thus pertain to such fields in the above structure as source name#
correl# band# etc. The number of words occupied by a string of length N
characters is 1 ♦ l(N+4)/5J.

The index file contains a number of records equal to the number of
times the observer switched from one source to another in the case of one
sub-array; more index entries will be made if the observer used multiple
sub-arrays each observing different sources or with different frequency
settings. Each index entry corresponds to a set of visibility data
records# whose first and last numbers in the corresponding visibility
data file, are recprd.ed in Source ptrl and Source ptr2. Antenna positions
used during the observation can be obtained from the antenna table file#
at Antptr, The gain table entries pertinent to tne observation are
pointed to by Gain ptrl and Gain ptr2. The mode qualifier is the same one
used by the syncnronous subsystem. If there are more observations of the
same source at the same mode later on in the file# the Source link field
will contain a. pointer to the index recoro pertaining to that group of
visibility data records, Thj calibrator code indicates whether the
source was a calibrator (if non-zero); codes 'ltfl# '102# (the ASCII
characters "A"# "B"# ...) stand for various types of calibrator. All
coordinates are expressed in radians. Dates are modified Julian atomic
dates. Start IAT is in seconds. LST is Kept in radians. The field
"correl” is used to name the 4 correlations in each correlator group of
the visibility data (e.g.; "PR"# "RL"). Band may be "L."# "C"# HK", "U".
Frequencies and the field "SumLO" are keot in Hertz. "NrlFs" counts the
number of IF frequencies used (2 or 4)# and determines whether the
logical record length of the visibility data is 7 or 11 words.

The gain tables are organized as follows:

1 Gain table (l:Nobs)#
2 nomgainC1:28# 1:4) halfword complex# (112 words)
2 corrgainC1:28# 1:4) halfword complex; (112 words)

where nomgain is that indicated by the synchronous subsystem (perhaps
feedback from the asynchronous subsystem based on past history of
correlators)# which has already been applied to the data# and corrgain is
that which should be multiplied into the data whenever they are accessed.

The antenna station table is organized as follows:

1 Antstations C1:Ne n t r i e s)#
2 Antennas (l:Nant)#

3 Station name char (5)#
3 X floating#
3 ¥ floating#
3 Z floating;

where there will be an entry each time the antennas are moved. The
antenna array is kept in order of the p h y s i c a l antenna number, ihe

5

station name is by array# arm, and number* "CW9,* The station
coordinates are in a right-handed system with Z toward the north
celestial pole# x toward the E point on the horizon.

4, Processing Routines

Initially# the following jrautines# capable of being called from
"stand-alone" SAIL programs* will be provided:

1. FILLER: Accepts raw <iata which have been read from fixed-head
disk or tape# as generated by the Synchronous subsystem. Initially,
FILLER is instructed as to what files are to receive what data# and how
to sort it. .FILLED .constructs .orue or jno&e visibility data € lies* with-
corresponding index files and gain tables.

2. SUMARY: Prepare* a text file suitable for display on terminals
or line printer giving a summary of the data in a given visibility data
file. The report is based on the contents of the index file. Output may
fce sorted on source or time, at the user's option,

3, VLIST: Prepares a text file suitable for display on terminals
or line printer giving the same information as SUMARY# followed by a
listing of all records pertaining to a set of baselines requested by the
user. Plots of Re(V)# Im(V) or moduius(V)# pnase(V) w i n also be
provided.

4, VGRIDs Grid the data in a visibility data file tor a given
source# polarization component# and freguency. Produce an output file
suitable for Fourier transforming via the FFT algorithm. Various options
will be provided tor weighting# tapering the data. Reguires data in input
file to be sorted according to lul.

b. COPY: Copy data for a given source ln the input file onto an
output file containing only that source.

fe. OPNCOR: open file for GET or ED functions# below.

7. GETCOR: Get one record of correlator data from Input file for a
given source# source gualifier# mode of observing.

8. EDCOR: Replace one record just obtained by GETCOR with its core
image# after the user has modified it.

9. CLSCOR: Close correlator aata file.

Of course# CANDIU access is automatically provideo by having all
files formatted as external structures.

6

5. Accessing Algorithms

For files that are to be sorted on a particular Key, IuI say# either
the sorted strings can be merged upon request, or at certain intervals,
we prooose not to merge until a file has been filled: this providing a
simplification which will be useful in getting started. There is nothing
in the data structure# however# which would preclude occasional merging
of strings^ into a longer string# slaving repetitious processing later on
CBarry Clark's suggestion). If strings are kept sufficiently long (say# 2
minutes' data for 351 baselines# or 1^ minutes' data for the interim)#
tnen merging of the 700 or fewer strings wltn# say# a merge orner of 10#
would only reguire 3 passes through the data# with seguential binary
access. Especially now, the strings are apt to be snort and few in
number# so this is not regarded as a major inconvenience, Merging of data
recoras containing# say 450 12-word blocks (5 min, of 10 sec, records
from 15 baselines)# for 3 passes# takes ,3 to ,5 sec,/merge string# or 45
to 70 sec, for 12 hours' data,

Extracting data from (u#v) files in baseline-time oraer would
proceed as follows: After the first index record for the source is
found# the time is compared, if the time interval for the string
overlaps the time interval desired# the entire sorted string is
retrieved, (u#v) for the baselines are computed for the start time ot
the string# and used to help search the data records for all pertinent
baselines and times to be extracted. Then the source link is pursued to
the following time interval and the Process repeated.

Listing of a file in strict time order is simply a matter of reading
the index and visibility data in the order they were stored.

6, Timetable

It is proposed to start coding FILLER as soon as a data structure
design is agreed upon, we estimate about 2 man-months of effort would be
reguired# to be accomplished by Dave thnebuske and Jerry Hudsor>r during
the same time# Dave will be working closely with A1 Braun in creating
necessary CANDID operators and routines for generating skeleton data
structures and accessing them. Following completion of FILLER# it is
estimated that the other routines would reguire another man-month of
effort# principally by jerry Hudson.

7

A P P E N D I X

File Headers for External Storage

All files used for data storage by the above programs are also
organized as c a n d i d external storage files* The first few physical
xescor4s oa.each tile contain-a description of thecontents# which
represent a c a n d i d structure or array-. The .same information -is essential
to non«*CANDlD access routines# since knowledge of the data organization
is necessary for them# even if only to know the logical record size#

Two types of pointer are utilized in the file header: word and byte
t9.-bit) ..j X&u b .-zero pointer in eljUuec: case reier-s to physixal -blo.ck zero#
word (or byte) zero within that block. Since the first writable (by the
user) block is numbered physical block 1, the word pointer to the first
word in the file is 128* its byte pointer is 512. Conversion from
pointer to physical block thus means dividing by 128 or 512# as
appropriate? the remainder numbers the word or byte.

The first six words in every file hold word pointers out to the data
origin# and to various file descriptors. These are organized as follows:

word
pointer contents

128 d o w p Data origin word ptr.
129 SYMTtoP Symbol table word ptr,
1345 MOLTwP Molecule table word ptr.
131 MOLTWL # words in mol. table
132 ATMTttP Atom table word ptr.
133 ATMTtoL # words in atom table

Macro names referring to the pointers are defined in EXTFlL.DCL (11#12J.
DOWP always points to the top of a physical block. The symbol table is
described below, Tne molecule and atom tables are essentially lists of
standard data aggregates and primitives in use at the time the file was
generated# and whic-n are ref^rred to by the symbol attribute word,
Examples of molecules: vectors# matrices. Examples of atoms: real
numbers# complex.numbers•

The symbol table is organized as follows:

word
pointer contents

SYMTWP+0 EFST.LENGTH Length of this area
♦1 EFST.PTO Offset for arry hdr

8

+2 EFST.LINK Link to other symbols# if
this is a data structure,

+3 EFST.ATTR Symbol attributes
♦4 EFST9LS1ZE Length of arry elt (bytes)
+5 EFST,SYMLEN Length of name (chars)
+6 EFST,SYMBOL Name# 7-bit ASCII

• • •

♦EFST•PTO Array Header

Strictly speaking# EFST,PTO may not point to the array header# but
instead to the datum itself# if the datum is not dimensioned as an array*
In all files that concern us# however# it will be an array header offset#
relative to the beginning of the symbol table. The link contains a word
offset within the symbol table where the next symbol can be found (it the
file contains a CANDID data structure). The attribute word contains such
information as the atomic and molecular type for the symbol# whether it
is the node of a data structure# and whether it is dimensioned. The last
of these is perhaps the only information of interest to non-CANDID
programmers? bit 33 will be set (mask with '000000000004) for arrays.
The array header is organized as follows:

word contents

♦ 0 Total size of array (bytes)
♦ 1 Virtual origin (bytes)
♦ 2 Number of dimensions

♦ 3 (Upper bound 1 (leftmost)
♦ 4 < Lower bound 1 (leftmost)

5 (Multiplier 1 (leftmost)

♦ 6 (Upper bound 2
♦ 7 < Lower bound 2

8 (Multiplier 2

The byte address for subscripts (i #i #,,,#1) is calculated to be
1 2 n

n

\
V ,0, + / riu1t .Subscr ,

JL__ i i
1 = 1

For the files described above# a singly-dimensioned array suffices
to describe the structure.

9

