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The subject of truncation errors in digital FFT transforms has 
been extensively explored. The general result has been to suggest 
that errors rise at a rate of about 0.4 to 0.5 bits per stage. A 
map problem arising with the VLA is, for instance, a 2048x2048 map, 
which is a 22 stage FFT suggesting that 9 to 11 bits of precision 
will be lost from whatever word length the computation is done with. 
However, little is known about a sudden truncation in the middle of 
the FFT process. In the large map case, an expensive component is 
the transposing memory used to hold the intermediate results 
between row transforming and column transforming. To hold down costs, 
we would like to hold the word length as small as possible. This, 
then is an attempt to determine the necessary word length.

Rather than doing a two-dimensional FFT, with different distribu
tions in the two dimensions, the problem is simplified to a transform, 
truncate, inverse transform case, instead of a transform, truncate, 
transpose, transform sequence. The consequence of this simplification 
is the dependence on the assumption that the effect of the truncation 
error is not strongly dependent on the distribution of the numbers 
being truncated. In order to find a conservative worst case several 
distributions were investigated.

The FFT routine used was a single—precision FORTRAN program taken 
from the IBM System/360 Scientific Subroutine Package. This routine 
performs discrete, complex Fourier Transforms using the Cooley-Tukey 
algorithm on a complex, three-dimensional array with each dimension



equal to a power of 2. After the program was set up, the routine was 
tested by transforming a given one-dimensional array, then inverse
transforming it and checking that the original array was obtained.

*1The accuracy of the FFT routine was typically 1 part in 10 or 
better.

The method used in this investigation was to generate a complex 
(Hermitian) array by transforming a given real function, then taking 
the inverse transform of the array before and after truncation and 
calculating the resulting error in the output. Only one-dimensional 
arrays were considered. The procedure is outlined in more detail 
by the following steps (sketched in Figure 1):

1) Choose a function f(x) to represent the one-dimensional 
brightness distribution of a source.

2) Generate a one-dimensional array of size N(=*2n) by sampling 
the above function at N equally spaced points in some interval. 
The real part of the it*1 element of the array equals the value 
of the function at the î *1 sample of the function and the 
imaginary parts are all set equal to zero. In this investi
gation the interval within which the function is sampled has 
been taken to be £-l,l].

3) Fast Fourier Transform this array to simulate the visibility 
data for the source. Since the array generated in step (2) 
is real, its transform is Hermitian.

4) Take the inverse transform of the visibility data to get 
back the brightness distribution. This will differ from 
the original function by about 1 part in 107 because of the 
error inherent in the FFT procedure. For the same reason, 
the imaginary parts will also differ from zero by a similar 
amount. The real part of this output array is referred to 
as the signal. Calculate the peak value of this signal.

5) Truncate the real and imaginary parts of each element of 
the visibility data to a specified number of bits of 
precision.
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6) Now inverse transform the truncated visibility data. Since 
the truncated data is still Hermitian, this output also is 
essentially real. Compare this output with the output for 
the untruncated input (i.e., with the signal) and calculate 
the peak value of the error and the rms value of the error. 
Express these errors as a percentage of the peak value of 
the signal:

peak value of error% peak error = — :--- =-----— :---- x 100peak value of signal
rms value of error „ _% rms error = ---:--- :---- -— :---- x 100peak value of signal

7) See how these errors vary with the precision, the array size 
and the type of function used to generate the visibility data.

These steps are shown schematically in Figure 1.
Some tests were made to check that the procedure was working
correctly:
1) Since the truncation is done in terms of the number of bits, 

scaling the simulated visibility data V by powers of 2 
should have no effect on the percentage errors. In other 
words, if the real and imaginary parts of each element of V 
are multiplied by same power of 2, then the percentage errors 
should remain unchanged. This was verified.

2) The truncation routine works in a fashion such that if the 
precision specified is zero bits, the truncated visibility 
data will be identically zero and its FFT will also be 
identically zero. The peak error will then equal the peak 
value of the signal and so the percentage peak error will 
be 100% irrespective of the array size and the type of 
function. This was also verified.

RESULTS:
Figure 2 shows the variation in the percentage errors as a function 

of the precision from 0 to 20 bits for an array size of 2048 =■ 2̂ *.
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Both the percentage peak and rms errors are plotted on a logarithmic 
scale. Two functions have been considered here:

1) A pulse with a height of unity and a width of 0.5. Since 
the interval is £-l,lJ, this means a duty cycle of 25%,

1 |x| < 0.25

0 0.25 <|x| < 1
i.e. f (x) =

2) A Gaussian with an amplitude of unity and a full width at 
half-maximum (FWHM) of 0.5,

i.e., f(x) = e X , |x| < 1 

where cr2 = (FWHM)2/4 In 2

The data for Figure 2 are given in Table 1. Some points of 
interest are:

1) Percentage errors increase roughly by a factor of 2 for 
every bit cut off. This is true for both functions for a 
precision > 10 bits.

2) For the pulse: a) the peak error stays constant until
approximately 9 bits, then falls off.

b) the peak error is roughly 20 times the
rms error at the same precision (>10 bits).

c) peak error < 1% for precision >15 bits and 
rms error < 1% for precision >11 bits.

3) For the Gaussian: a) both errors fall off relatively smoothly
as the precision goes up.

b) the peak error is only about 3 times 
the rms error.

c) peak error £ 1% for precision >8 bits and 
rms error £ 1% for precision >7 bits.

Figure 3 shows the variation of the errors with pulse width for 
a unit height pulse, a precision of 16 bits and an array size N=2048.
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The data are given in Table 2.
Figure 4 consists of plots of errors as a function of width for 

four different functions. In addition to the pulse and the Gaussian, 
the functions investigated are:

1) 3 identical Gaussians uniformly spaced and added, i.e.,

f(x) -(x-s)2/a2 -x2/a2 -(x+s)2/a2 = e + e + e

where s is the separation between the axes of adjacent 
Gaussians. The value of s has been taken to be a constant 
at 0.5. For small values of a, the curves are essentially 
distinct but as- O increases (and so does the FWHM), the 
curves overlap to an increasing extent.

2) the sine-squared function, i.e.,

. . Sin imrx f(x) =
■ [ “ mirx

where m = the frequency of the function. It has zeros at
1 2x = ± — , ± — , etc. and the number of maxima in the interval m m

|-l,l] is 2m-1. As the value of m increases, the peaks of 
the function become narrower and in order to be able to 
compare this function with the others, m has been plotted 
in decreasing order.

In all four plots, the function is narrowest at the left and broadest 
at the right. There is a general tendency for the errors to increase 
from left to right for all functions, but the variation is not always 
monotonic. Furthermore, the increase in error from narrowest to 
broadest is within a factor of 10 for all functions except for the peak 
error in the case of the three Gaussians. The data are given in Table 2.

Figure 5 displays essentially the same data as Figure 4 in a 
somewhat different manner in order to see easily how the errors depend 
on the type of function. The functions have been arranged in order 
such that the errors increase from one function to the next. It is
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evident that the Gaussian is the least error-prone and the pulse the 
most error-prone. However, all errors are below the 1% level for 16 
bits precision. The errors due to a stochastic function are also 
plotted in the same Figure. These were calculated by using a pseudo
random number generator from the FORTRAN library. This routine returns 
a random number between 0 and 1 each time it is called. This data is 
also given in Table 2.

The last figure, Figure 6, is a plot of the errors as a function 
of the array size N for 16 bits precision. Curves are plotted for a 
25% duty-cycle pulse and a Gaussian with a FWHM of 0.5. In the case 
of the pulse, the error rises steadily as N increases, with the peak 
error rising somewhat more rapidly than the rms error. However, for 
the Gaussian, the errors change very little and in fact appear to 
decrease somewhat for some values of N. When interpreting this curve, 
it should be kept in mind that as N increases, the function is 
sampled more accurately since the interval of consideration remains 
the same. The data for this figure are given in Table 3.
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TABLE 1

N=2048 ERROR vs. BITS PULSE AND GAUSSIAN

No. of Bits
PULSE (25% DUTY CYCLE) GAUSSIAN (FWHM=0.5)

% rms error % peak error % rms error % peak error

20 .0013 .0194 .00015 .00062
19 .0026 .0387 .00034 .00107
18 .0053 .0793 .00063 .0020
17 .0122 .2413 .00104 .003
16 .0221 .3338 .00214 .005
15 .0519 1.084 .00436 .012
14 .0883 1.482 .0100 .029
13 .2059 4.448 .016 .048
12 .4624 10.44 .035 .103
11 .7245 13.38 .049 .136
10 1.662 37.24 .120 .314
9 2.312 50.13 .221 .596
8 3.104 50.14 .418 1.18
7 4.344 50.69 .833 2.35
6 6.251 50.69 1.708 4.69
5 8.570 50.69 2.903 7.81
4 11.05 52.90 4.692 12.5
3 17.24 57.32 9.30 25.0
2 24.06 57.32 20.58 50.0
1 43.30 75.0 34.3 75.0
0 50.0 100.0 43.3 100.0



TABLE 2
N=2048; ERROR v s . SHAPE FOR 5 FUNCTIONS; 16 BITS

PULSE
Duty Cycle 10% 20% 25% 30% 40% 50% 60% 70% 80% 90%
% rms 
error .0073 .0143 .022 .029 .029 .043 .058 .058 .058 .057
% peak 
error .133 .268 .334 .547 .552 .726 .899 .893 .861 .899

GAUSSIAN
FWHM .05 .1 .15 .2 .25 .3 .35 .4 .45 .5
% rms 
error .0004 .0006 .0010 .0010 .0016 .0014 .0016 .0008 .0010 .0021
% peak 
error .0042 .0044 .0057 .0048 .0068 .0056 .0062 .0026 .0033 .0054

3 GAUSSIANS
FWHM .05 .1 .15 .2 .25 .3 .35 .4 .45 .5
% rms 
error .0016 .0022 .0017 .0030 .0026 .0033 .0082 .010 .012 .014
% peak 
error .0088 .0077 .0057 .010 .006 .022 .087 .139 .194 .243

SINC -SQUARED
Freq.(m) 10 9 8 7 6 5 4 3 2 1
% rms 
error .0006 .0005 .0006 .001 .001 .001 .0008 .0016 .0016 .0029
% peak 
error .0027 .0025 .0026 .0037 .0039 .0048 .0048 .0084 .0077 .0153

STOCHASTIC
% rms error 0.0566
% peak error 0.1820





TABLE 3

ERROR vs. ARRAY SIZE; 16 BITS

PULSE GAUSSIAN
ARRAY (25% DUTY CYCLE) (FWHM=0.5)
SIZE % rms % peak % rms % peak
N error error error error

32 .0026 .0053 .0023 .0061
64 .0037 .0137 .0025 .0080
128 .0048 .0204 .0029 .0100
256 .0073 .0397 .0027 .0079
512 .0103 .0745 .0020 .0068

1024 .0175 .2307 .0020 .0055
2048 .0221 .3338 .0021 .0054
4096 .0365 1.066 .0022 .0059
8192 .0443 1.429 .0021 .0059


