
NATIONAL RADIO ASTRONOMY OBSERVATORY
VERY LARGE ARRAY PROGRAM

VLA COMPUTER MEMORANDUM NO. 144

Post-Processing - Phase I: Technical Memorandum

The Beginnings of NIPS
Eric V7. Greisen

March 28, 1978

NIPS, short for NRAO Image Processing System, is a collection of

software designed to run on the Modcomp IV/25 in Charlottesville. It

will drive a variety of output and processing devices including the

Dicoraed, the TEK 4012, and the line printer (Centronics) which we already
2possess and a television-based image processor (probably from IS), an

array processor (probably from Floating Point Systems), and a printer/

plotter (probably a Varian) which we expect to get sometime this year.

The disks attached to the Modcomp are two 1.25M-word cartridge disks

(one demountable, both use 100 words/sector) and a 12.5M-word demountable

disk (@ 128 words/sector). However, procurement of at least two 84M-

word disks (@ 128 words/sector) has already begin.

The purpose of this software/hardware collection has not been de

fined in suitable detail and there is strong pressure to make it be

everything for everybody. As I see it, however, the system will deal

first with continuum interferometric (i.e., VLA and Green Bank Inter

ferometer) maps. The programming effort will concentrate initially on

user communication and basic display methods and routines. When

these are well grounded we may then develop the numerical processing

and advanced display routines to which we’ve made allusions in earlier

memoranda. Although we must be careful to avoid excluding spectral-line

and non-interferometric maps in these early stages, we can’t give them

special attention until the third stage in this development. In the

2

fourth (or perhaps third) stage, we will add uv (Fourier transform)

data to the data base and develop uv-plane displays and routines

involving transformations between uv and map planes.

This memorandum is devoted principally to a detailed discussion

of the first stage of this development process. I present here my

current ideas, some of which are already coded, for various technical

aspects of NIPS. This version of this memo is not intended for general

distribution within the scientific/administrative community. Instead,

it is a request for comments - both positive and constructively critical -

from the computer-oriented community. The program is not so developed

that it cannot undergo major changes. Furthermore, I have tried to de

sign it in a modular, pointer-passing manner which ought to minimize the

disruptions arising from alterations.

1. Operating system: I am using MAX IV, Rev A.O at the moment. Rev A

is out of date and contains a variety of errors. In particular, (1)

the ROLLER doesnft work, (2) the FORTRAN run-time package (~8K bytes) is

not re-entrant and, hence, must be attached to each FORTRAN task, and

(3) several processors contain rather annoying errors. These problems

have been fixed, I believe, in Rev. C. However, Rev. C is based upon

Modcomp's new, flexible File Manager System. This development is described

with great detail and no organization in Modcomp's latest manuals. The

needed overview would have to come from Modcompfs courses on the subject.

Unfortunately, these courses aren’t offered in the Spring quarter! Thus,

until I can understand File Manager, I will continue to use Rev. A. It

3

is my impression that the ROLLER is useful in efficient systems only

when long background tasks must make room infrequently for urgent, but

quick, real-time tasks. We shouldn't have such an environment. Thus,

we avoid an inefficient, clogged system by omitting the ROLLER at the

expense of limiting the number of concurrent tasks. The waste of core

for extra copies of the FORTRAN run-titoe package will become a problem

since we have only 192K bytes of core. The processor errors may be cir

cumvented.

2. Program language: The structure of Modcomp's subroutine packages, pro

cessors, and executive services provides a strong inducement for the use of

Assembly Language. However, the political (but nonetheless reasonable and

perhaps practical) desire to create exportable programs encourages the use

of Fortran. I feel that a mixture of the two languages is acceptable.

Fortran will be used for the main algorithmic routines. Assembly will be

used in small subroutines supporting the Fortran routines and in areas in

which FORTRAN is just too cumbersome (principally I/O). In fact, the 5500

lines of code generated to date are all in Assembly but they deal predomi

nantly with menus (I/O, parsing), file management, and bulk data movement

for which FORTRAN would be extremely inefficient.

3. Program structure - general remarks: Part 1 : The program package

can be regarded as consisting of roughly four parts. The first part,

NINIT, is active when the system first comes up. It initializes global

common including setting data set size information into data base manage

ment areas. Thus, only NINIT need change when more disc becomes avail

able. NINIT also talks to the user to obtain the time and user ID

4

needed to assign a user block in the default file (see below). Finally,

NINIT activates NIPS and self destructs.

Part 2 : The main user communication task is NIPS. This task

handles menu preparation, menu communication, parameter interpretation,

a large part of data base management, program start up, and, occasionally,

even carries out the requested operation itself. Along the way, NIPS

provides user assistance and error checking services. NIPS is a heavily

overlayed program in which the root segment contains many subroutines

which handle common processing needs and a main routine which deals with

category and operation selection menus. Conceptually, each overlay seg

ment will be a menu processing subroutine peculiar to the selected

operation. Since the form of these segments is at the heart of the

package and since I've done most of my work to date in this area, I will,

describe these segments in considerable detail.

We may identify three types of operations. Type I includes very

quick operations done in the NIPS overlay segment itself and interactive

tasks which require the TEK 4023 and, hence, which require NIPS to sus

pend itself. Type I operations are, thus, never found to be running

upon a new execution of a NIPS overlay. Type II operations are done

by separate tasks which are normally quick and are not conducive to

user interference other than orderly murder. Type III operations are

lengthy, done by separate tasks, and conducive to interuption, parameter

alteration, and resumption^ The full menu overlay process is then:

1. Test program activity bit located in Global common (Types

II and III). If active, ask user if he wishes to kill
(Types II and III) or to change (Type III) the currently

5

active program. If user says kill, turn off activity

bit and abort program. If user says change, go to

change-menu process (see if 12 below).

2. Get selected set of default values and format into

menu.

3. Write menu to TEK.4023, provide HELP if required, read

parameters back.

4. Parse and interpret parameters including error

checking.

5. Locate requested maps including preparing space for any

maps to be added to the data base.

6. Test program activity bit (Types II and III). If

active, ask user whether to wait for it to finish

or to abort menu routine. Act on user’s answer.

7. Place parameter and map location data in global

common words assigned to task.

8 . Update current and, if requested, user defaults.

9. If operation done by separate task, set program acti

vity bit and activate the task. Otherwise do the

operation.

10. If operation done by a separate task which requires

the TEK4023, then suspend NIPS.

11. Return to root segment to get a new operation.

6

12. Change mode: less certain since none coded but raaybe-

a. Set bit telling program to stop for the

moment.

b. NIPS suspends until, bit reset.

c. Program at logical suspension point has placed

data indicating its progress into Global common,

turned off active bit, turned off stop bit and

suspended itself until active bit set.

d. NIPS overlay resumes, formatting current values

and progress data into a change mode menu.

e. Do steps 3, 4, 5, 7, and 8 above (in change mode

version).

f. Set program activity bit on.

g. Return to root segment.

The change mode described above allows the user to change his program

at whatever iteration is occurring when step 12a is executed. An addi

tional and more useful change mode can be developed, however. In this

version, the user, at program start-up or the previous change, specifies

some event (e.g., some number of iterations) after which the program is

to wait for the change mode to be entered. The program could tell the

user when it starts to wait using the line printer and then remind the

user by repeating the message periodically using a timer. A prime ex

ample of a changeable program is CLEAN. It is, for example, entirely

reasonable to loosen the restrictions on the search area after some num
ber of iterations.

7

Part 3 of the program package consists of those tasks which prepare

displays for user interaction. These tasks place their output on devices

from which cursor position data may be read, e.g., the television and

the TEK4012. They also place information in global common to allow the

association of cursor position with sky coordinates and true map inten

sities. I am being vague here because the program structure depends on

the complexity of the routines needed to communicate to the device. A

possible scenario is as follows: For the TEK4012, we have a task or tasks

to draw countour and profile maps and to leave the necessary map data in

common. Other tasks may change the picture on the screen (e.g., to plot

a single profile), but won't alter the commons. Cursor reading should be

simple enough to allow even fairly straight computational tasks to read

the cursor. However, for the television, I expect a single task to handle

all direct communication to the device. This task would handle data

scaling, anotation (e.g., ticks, contour, profile plot), intensity altera

tion (e.g., pseudo coloring), and similar operations. This task would be

invoked by interactive graphics tasks (perhaps as overlays to NIPS just

for map display manipulation) and by interactive versions of computational

tasks.

Part 4 of the program package consists of all those tasks which do

the real work on the data. These tasks are started by NIPS, use parameters

placed by NIPS in global common, and communicate with the rest of the

programs via activity bits in the regular and the database management

global commons.

8

4. Default management: A default file will be maintained on cartridge

disk. The file has space for 1600-word default blocks assigned to "cur

rent", "system", and 20 users. A directory in the file records the user

ID and date last used for the 20 users. When a user logs onto the pack

age, the program NINIT searches this directory for the user's ID. If

it is found then the corresponding default block is reassigned to the

user and he recovers those parameter values which he chose to store

during his last run(s) on NIPS. If the user's ID is not found in the

directory, then the oldest default block is reset to the system values

and assigned to the user. The current defaults are initialized, by NINIT,

to the user defaults. Each time that a menu is read, the parameters en

tered are used to update the current defaults. The user's defaults are

also updated if he so requests (using a blank which will appear on all

menus). When the user selects an operation, he may specify that his

own or the-initial system defaults be used. If he specifies neither,

then the current defaults are used.

A service program to create the default file and to add new para

meters to each block has been written.

5. Menu management: A menu consists of 19 lines of text information

including protected, non-transmittable fields used for descriptions and

unprotected, transmittable fields used for parameters. The menu forms

are stored on disk with the system defaults already filled in. When an

operation is selected, the associated menu number is found via look-up
table in the main part of NIPS. After the menu is read into core from

disk, the NIPS overlay fills out the menu form with the default values
(found using the specified default block) and transmits the completed

menu to the TEK4023. Note that this process means that the later parts

9

of the NIPS overlay need not differentiate between default and new, user-

entered values. When the user transmits the completed menu back to

the computer, only the transmittable parts plus control characters are

actually transmitted. A subroutine converts the control characters and

any non-transmittable fields to blanks before the NIPS overlays

attempt to parse the answers. Should an error be found, the overlay

will ring a bell, write the word error, and cause the erroneous field

to switch to black characters on a white field. The menu read is then

reinitiated. Since users have a tendency to ask for things they don’t

want, each menu will have a parameter which will, if selected, cause

NIPS to restart at the beginning.

If a user becomes confused concerning the meaning of a parameter,

he may obtain additional information about it by first positioning the

cursor within the parameter area and then pressing the ESC and] keys.

This key sequence causes the cursor position to be returned to the

reading subroutine. REDMEN recognizes the request by the leading control

character, calls HELP, and finally reinitiates the menu read. The HELP

subroutine uses the menu number as the entry to a look up table to find

the record number within the HELP disk file of the pointer block assigned

to the menu. These pointer blocks contain lists of the positions of the

parameters on the screen and the associated record numbers for 5-line

messages about the parameters. Thus, the transmitted cursor position

leads to a message which is displayed just below the menu on the

TEK4023 screen. Finally, the cursor is repositioned to the input loca-

t ion.

6. Data base management: I will describe the data base management (DBM)

scheme which I plan to use for maps. Although I presume that a similar
DBM scheme will apply to uv data, it is premature to worry about that

10

problem. I have set aside a map header file, part of a DBM file, half

of a page of global common, and N (<5) large data files to handle the

map DBM.

Maps may be identified by the input source name, map number, and

map type. In addition they may be identified by a number (called NIPS#)

which represents their sequential position on input to the NIPS and also the

record number of the header in the header file. A 12-word manager block

is used for each map to contain these identifiers plus information on

map size, map location on disk (block offset and file number), and cur

rent map activity. This last parameter is used for map deletion and to

prevent tasks from using the map in a conflicting manner (e.g., to pre

vent one task from changing the map while another tries to read it).

Eight of these manager blocks appear in each record of the DBM file.

The first 100 words of the global common COMDBM contain the "in use"

record from this DBM file. Words 100-124 of COMDBM contain information

on the data files including name, next available record number, and

maximum number of records. COMDBM also contains counters of the total

number of maps, the number of tasks using the current DBM-file record,

and the number of changes made in this record. Only one subroutine is

used to access the DBM file. This routine first checks that other ver

sions of itself are not already reading or writing the DBM file. Then

it waits until all tasks are through using the current DBM record,

rechecks the I/O activity, saves the current record (if needed), gets

the new one, increments the in-use counter, and returns. The calling

programs must make prompt use of the DBM data, increment the change

11

counter when appropriate, and then decrement the in-use counter re

leasing COMDBM for use by tasks requiring other records in the DRM

file. This DBM scheme certainly contains the potential for serious

logjams. However, since the number of simultaneous tasks is severely

limited in the Modcomp IV and since most tasks won't need the DBM file

for very long, I believe that this DBM scheme is usable.

7. Formats: The map header format planned for NIPS is listed in Appen

dix A. I believe that all needed parameters are present, but there are

a lot of vacant words if I've forgotten some. You will note that the

format is generally compact and uses no floating point. For use on

the Modcomp at the moment, data will be on unlabeled, 1600-bpi tapes

with none of the control words associated with standard tape formats

(e.g. IBM's VB format, the VLA's uv-plane export format)* Each row of

the map will constitute a separate tape record and the data will be in

half-word integers. The data are normally oriented such that the first

datum is associated with the north-east (upper left) comer of the map.

In the future we may wish to add to the tape format the control

words and record structure now used in VLA uv-plane export tape format.

Since the latter is the logical uv-plane data format to use on the Mod

comp, it seems reasonable to make this addition while we also add uv-

plane routines to NIPS.

8. The IBM 360: We already have a large body of software available on

the IBM 360/65. These routines are described in User's Guide for VLA

Data Reduction in Charlottesville by Eric W. Greisen and Fred Schwab

12

(Users’ Manual Series #29). The programs are used to edit, sort, cali

brate, map, and display d.ita received from either the synchronous or

asynchronous subsystems of the VLA. We will continue to develop and

maintain these packages. At the moment, we are working on new algorithms

for antenna-based calibration, for delay beam correction, and for model

fitting in both the uv and map planes. In addition we are developing a

new group of map making, processing and displaying routines based on

the new format discussed above. Although these routines will not offer

new algorithms, they will offer enhanced capabilities through allowing

for rectangular maps and rotated coordinates. I believe that these pro

grams are important and that they will continue to be used long after

NIPS is a functional system. I believe that the NIPS program will be

used mostly to acquaint the user with his data and to help him decide

what to do with them. The main work will still be done in the multi

user, batch environment of the 360.

9. Personnel: I wish to give here an outline of my feelings about the

roles of our current personnel.

a. Bob Burns: overall supervision with emphasis on purchasing,

public and administration relations, and integration with

the rest of NRAO.

b. Eric Greisen: detailed supervision, project design, appli

cation programming particularly on the Modcomp.

c. Fred Schwab: mathematical studies, algorithm development
including application software.

13

d. Betty Stobie (currently available roughly half time for

this project): application programming on the Modcomp.

e. Claude Williams: user support, documentation develop

ment, application programming on the 360.

f. Scientific Staff: assist with program debugging, advise

on desired/required capabilities.

This group is small enough to make all of us overworked, but large enough

to require some formal organization. For these reasons, I would like

to request that the scientific staff direct their suggestions principally

to me and in writing. (Informal notes on scrap paper will do.) This

will assist in maintaining a cohesive group effort and in providing as

many of the needed programs as possible.

10. Current programs: At present, the NIPS system consists of some

service programs (to build the menu, help, and default files), a variety

of detailed menu handling subroutines, and a few menu overlays and/or

programs in the data movement area. The current, as yet untested, capa

bilities are:

1. Move maps from tape to disk with subarray selection.

2. Move maps from disk to tape.

3. Flag/unflag maps.

4. List disk contents on terminal and/or printer.

5. Compress map data sets.

I am in the process of testing these programs and of determining what

needs to be fixed in our TEK4023 terminal. The next area for program

development is display on the TEK4012.

14

In conclusion I would like to mention a philosophical point. The

NIPS system should, eventually, be of use for interferometric maps

(Green Bank interferometer, VLA, VLBI, and other arrays) and for single

dish maps. It should be able to handle spectral line as well as continuum

data and it should process calibrated visibility data as well as map data.

Because the ultimate intentions are general, I have dropped VLA from the

title of this report and I use the program name NIPS (NRAO Image Processing

System). However, since we are responsible for the VLA batch system,

since the needs of the VLA in the image processing area are pressing, and

since a lot of the software developed for VLA image handling will apply

to other images as well, our work (and this memo) will be concentrated

on VLA problems for the moment.

I have given in some detail a review of my thinking on the NIPS

system. I will appreciate hearing your reactions to these plans.

15

WORD PARAMETER NOTES

0-3 Source name (ASCII characters left justified)
4 Source numeric qualifier
5 Map number (<0 = > deleted)
6 process level/parameter (1)
7 product/band (2)
8-9 frequency (kHz)

10-11 velocity (m/s)
12 units/coordinates (3)
13 gain (used to normalize map values) (4)
14 minimum map value (normalized)
15 maximum map value (normalized)
16 X dimension (N * 64 recommended)
17 Y dimension (any value ok)
18-19 X array spacing (m/s or 0700001 at field center)
20-21 Y array spacing (O'.'OOOOL ul field renter)
22 map rotation (0.1 degrees CCW)
23 minimum X array point of valid data (all of Y assumed ok)
24 maximum X array point of valid data
25 NRAO User number
26-27 right ascension (1950.0 current phase center, 31-bit

fraction of circle)
28-29 declination (1950.0 current phase center, 31-bit frac

tion of circle)
30-31 X of phase center (0.01 array locations)
32-33 Y of phase center (0.01 array locations)
34-35 clean beam: major axis (O'.'00001)
36-37 clean beam: minor axis (O'.'OOOOl)
38 clean beam: position angle (OfOl CCW from N to major)
39 number iterations used in CLEAN
40 map creation time: DD + 256*MM (local time)
41 map creation time: year (all 4 digits)
42 map creation time: MM + 256*HH (in IAT, can go to 29 hours)
43 observation date: MJAD
44 observation date: DD + 256*MM (local time)
45 observation date: year (all 4 digits)
46-47 right ascension (1950.0, original phase center, 31-bit

fraction of circle)
48-49 declination (1950.0, original phase center, 31-bit frac

tion of circle)
50-79 ?
80-99 user comment (ASCII characters, left justified)

APPENDIX A: Map Header Format

16

APPENDIX A (continued)

FORMAT NOTES

(1) Word 6 :
bit it off on

0 dirty clean
1 FFT MEM
2 data model
3 — dish beam correction
4 — delay beam correction
5 FFT convolution correct
6 ?
7 ?

The low-order byte contains the code for the type of data found in the

map. Currently assigned codes are

0 reserved to imply all 7 X = 0.5 * tan 1(U,Q)
1 beam 8 fractional polarization P/I
2 Stokes I 9 spectral index
3 Q 10 continuum (used for line work)
4 U 11 optical depth
5 V 12 velocity
6 p = /q *q+u*u 13 blanking

(2) Word 7:

"product" in higher-order byte current has assigned values:

0 all 3 points
1 normal 4 residual
2 components

and, at this time, would be useful only with CLEAN.

"band" in the low-order byte has values 1 to 5 to imply L, C, U,

K, X, and S, respectively.

17

(3) Word 12:

"units" in upper byte has assigned values:

0 all 3 none (as optical depth)
1 Jy/beam area 4 degrees (as angle)
2 Kelvins 5 km g-l

"coordinates" use lowest nibble for Y, next higher for X with

assigned values:

0 right ascension 3 galactic longitude
1 declination 4 galactic latitude
2 velocity

APPENDIX A (continued)

(4) Word 13: "gain".

The true map value is obtained from the recorded (16-bit integer)

value by multiplying by 2.0**GAIN.

