NATIONAL RADIO ASTRONOMY OBSERVATORY
SOCORRO, NEW MEXICO
VERY LARGE ARRAY PROGRAM

VLA COMPUTER MEMORANDUM NO. 145

1, VLA SORTInNG ENGINE=«DESIGAN COMSIDERATIONS

8y J4, itudson, G, Hunt, b, Ehnebuske, A, Brauyn
May 2, 1978

The VLA sorting engine has as its task the ordering of spectral line
and continuum data in (u,v) sequencing to facititate gridding the data
for Fast Fourier Transtorming (¥rFT) {into a map of the radio source, It
also has the task of breakinag out frequency channels, a job which perhaps
can be shared with other processors,

In specifying the architecture of the computer system for this
proplem we need to consider first the requirements of the griddaing
machine, since this will put constraints on tne ordering and layout of
visibility data records, Second, we need to consider the source and
ordering of tne data records arriving from the spectral line array
processor (AP) via the MODCOMP minicomputers "Cora® and "Corbin,"
Finally., we need to give some thougnt to the sorting process itself, in
order to get an 1dea of throughput times and memory requirements to be
expected,

1.1, A Hypothetical Gridding Engine

It is not our intention to desigr anv part of the mapping system at
this time, but we must have better than a vague notion of the
requirements of the first stage of that process: the gridding, It is
supposed that, the gridding machine will prepare a two-dimensional array
of data, of size ranging up to 8192 X 8192 complex numbers, perhaps
truncated to half that size if we take advantage of the Hermitian
proverty of the visibility function:

V(u,v) = V*(~u,=-v),

It §{s also a necessary requirement for the gridaing engine that tnhe data
be convolved with some function C(u,v) having limited range in the (u,v)
domain. If the present continuum mapping system is any guide, that range
can be as large as 6 X 6 grid points, meaning that 6 columns at a time ot
the array must reside in fast memory, For the 8192 map size, this
requires fast storage capable of holaing 49152 complex numbers, We
anticipate the most common map size to be 1924 X i1¢24, whence it would be
practical to organize visibility data records with no more than 8
freaguency channels per record, (For the larger maps, this leads to an
obvious inefficiency unless the user is content to map only a fragment of
his data, or to have the channels averaged together,) If input records
¢contailn more than one frequency channel, tnen mass storage 1s required to
ola the gqridded data for all channels but the one currently being
mapped, Most probably, mass storvage will be reqguired anyway for the
three-dimensional transforms (required to correct for the map curvature

jperration),

1t 1s &lso anticicated that calinratior will pe accomplished by the
jridding enoine, usinag a concept similar to tne anterna Jgaln tapbles in
current use in tne kC-10 continuur svstem., 1nus, records must bear suc
inforrkation as the antenra palr and a date/time stawp, in addition to thg
(w,v,w) coordinate, [t data recoras contain & trequency channels, with
ovtes (32 hits) per complex visibility, the overnead tor these additiona
data can be Kept to 24% (assuming 8 nhytes of overhead per record). If]
turther breakout of frequency channels is desired, one shoilld use instea
ah indexina scheme wherebhy the record’s position in the data base
dictates the location of its identitying information.

From this we conclude that visirility data records to be nandled by
the sorting and aridding englnes should be broken down into at least 32
d1ifterent data sets (R freauency charnels per record), assuming 256
channels, Further breakdown may bhe cesirable, but at the expense Ot
separating identification dats fronr the visibility data.

1.2, Cora ana Corbin

It would be nlighly desirable tor the proposed system to tie in with
the two MobComp Il minicomruters, Cora and Corbkin, which will receive
visipility data from the Array Processor, COra and Corbin are limited tq
64K words of memory, and are somewnat inhibited by a maximum OMA data
transfer rate of “64Yv Mpytes/second, severtheless, it is felt they can
perform useful functions as an adjunct to the various sorting algorithms
discussed bhelow, 7They should be able to accomplisn 3 32-way split into
frequency groups, as an assist to the customary external sorting
algorithm; they should also be anle to accomplish a randomeaccess store
of records to facllitate the "ptdgeonholing” processe.

{t is assumed it will be Possible tor the AP to feed data to Cora
and Corhbin in one or two frequency groups (256 or 128 cnanne}s), with
baselines ordered in any way desired, For instance, they could arrive i
order of the desired (u,v) sorting key,

1,3. Some Assumptions

Let us suppose that computers are selected for the sorting machine
whicn are capable 0f virtual memory addressing, and that context
switching between address spaces (64 kKbytes in size, say) requires very
little effort, +e assume the program can reside outside the address
space, Jde suppose the computers are capable of interfacing to large
capacity disk drives having capacities of 499 mbytes, average seek times
of “44 msec, and byte transfer times of ~1 usec/byte,

1.3. iiisk Sorting

Ut the various aniroaches availsble tor achieving tne desirea (u,v)
orderinag, perhaps the custoixary =~ethod shoula be explored first: that of
sorting the data into “"strinas" ot correctly sequenced records, tollowed
ny merding the strings into ore correctly seguenced data set. Let:

1f = Total nuwner ot fredJuency channels (256 assumed earlier)
Nu =

Total pnuimbter of (uv,v) cata voints In entire data set

S = vata set size, bytes = 4,4f,hNu, roughly

¥ = Nymber of partitions of S into freaquency groups

B = Amount of core availapble for buffers during merge

X = Blocking ractor of data records (we will read x at one
time)

" = Mergye order

p = vumcer ot rerage passes througn entire data set

= Loalcal record size, bytes (holding &f/f complex numbers +

everhead)

Lp = Physical record size, bytes

tc = Comnute time to compare 2 sortinrg Keys

ts = Lisk seek time

tt = Data transfer time dyring 1/0

de will neglect for the moment the proolem of internally sorting the data
records., (This will perhaps be accomplished comwplelety by Cora and
Corpin,.). Assuning now that we have sSorted strings of length x records. we
proceed to make p passes through each frequency group (S/F bytes 1ong).,
merging the strings of length x until there is one string for each
frequency groap, of length Nu records, To simplify the discussion we
assumne

Thus
P = loa hNu,
M

In practice (and in tre time estimates below), we round p up to the next
greater integer, This does not result in the optimum merge pattern for
the given nuwmber of records, a problem taken up by Knuth (1973, pp,
361-=378), Tne total number of '1/0 operations for a merqge -of Nu records
is then

wio(per freq, qgroup) =. 2.,(¥u’/xl).log Nu,
M

where we count both input and output operations, For the entire data
set, we jrust accomplish this ¥ times, and so we write for the total
mumber of 1/0 operations:

S

Min = 2,(8/XxL) .10 sy

Ay

2,(m+1).(5/B),l00 XNu,

“here we have assumed the avallable bufter space, B, is occupied by #+1
ouffers (# innut, 1 output), each nolding x. records of length , w#io is
ninimized for «=4, a result which is indepencent of the data set size,
buffer slze, and number ot frequency groups.

The total 1/0 time for merging is

tio = Kio.ts + 2.p.S.tt

2.(1097 Nu).S.l(M+1). LS/ + ttl],
M

The total compute time is

FeDoelHus(=1),tc + F,p.lutt

Te

(log Hu),,(S/L).L(M=1),tc + tt},
M

where W#e assume the same transfer time for core-core transfers as for
core-disk, - Puttina some numbers in for ts, tt, and tc, let:

ts 4¢ msec/I0 operation,

tt = 1 usec/byte,
tc = 3 usec/byte,
we see that the ratio

2,{(M+1),ts/B 4+ tt]

{(M=1) ,tc + CLI/L

is considerably greater than unity, for just about any choice of M, Be.
and L. Thus, IO time dominates the throughput time in the normal merging
process. We can safely assume that most compute time can be overlapped
with disk seeking, whence it dlsappears from consideration, except
perhaps for arquing for 1 minicomputer in olace of 2. We now arrive at
TABLE I, which shows total merging time as a function of merge order., M,
and buffer size, B,

From TABLE 1., we conclude that it is marginally possible for one

ragik L, “erge time for 1?72 nour data sawmple.

v, Abvtes
M

259

| |
\ |
') 64 | ! 512
- . e | i
3 L 13) 39,4 nr, I 8.0 br, L 15,1 nr,
4 t il ! 39.6 I 17,2 i 13.5
|] | !
5 | 9 | 37.2 | 15.3 i 11,7
6 ! b | 37.5 f 14.7 ! 12,9
7 t]) 41,8 ! 15,8 i 11.4
B i 7 } 40,4 [14,4 1 14,5
9 i 7 1 44,2 $ 15.6 i 11.9
{ i i I
Lo] 7 i 47,9 ' | t1.4

'6.7

minicomputer sith tne capability ot virtually addressing > 512 K bytes of
menory to handle tre sorting task, In doing so we have glossed over some
fsaravare~dependent considerations: 1) Can the computer perform cirect
Aenory access. data reads and writes from and to disk of blocks of memory
exceeding the range of directly addressable storage? (Probably not,

this is only A4 kbvtes on some machines.) 2) is there a penalty assessed
in data transfer whenever a disk track boundary is reached? (we are
sunposing not; there would be & penalty only when the heads must move
from cvlinder to cylinder.) 3) Since the merge time is heavily dependent
upon seek tiwe, we have ignored the saving that would result from having
the input data set on several different spinadles, with perhaps separate
data paths (via seprarate disk controllers).

Aside from time, one must also consider disk Sspace occupbied by the
data sets durinG the sort/merge, If we break the 12 hour sample into F
portions, it is necessary to have (F+1) tiwmes the space occupied by one
portion during the merge, For F=32, this is an extra 3.1%. Also, the
approach taken to handling tne data in the real world is not to wait
until a full 1?2 hour ioad has been accunuylated before starting the merge:;
instead, we want to begin the first stage of meraing as soon as enough
data aCcumulate to warrant the effort. When M sorted strings of length M
records are accumylated, we want to perform pass 2 of the merge

2
pperation, creating a data set of size B , and so forth, Assuming we
can merge as fast as the data flow, as Table I sugoests, we will be left
at the end of 12 hours with data strings of varying length: let us say, #
2

strinas of length #, pM~=1 strings of length ¥ , and so forth, including

pel
sl Strirngs of lenstn « Inis leaves us »jitn some Cleaning=-un to do:
2
OLe “A=aaV -merqQe Of i recoras, ore ¥=way merqge cof » records, and so
forth, up to an “=way nerae of the last stage, The traction of tne
meraing eftort left to dn atter corpletjon of a 12 hour observation is
tnens

2 2 v+l
[+ eee + ™M] - M B
o} P
O g DO(M-I)'M p_..(”-l)

shich, for 4 = 8, r = 7 (best case in Table 1) works out to 16,3% of the
total time. wnile this is qoing on:s of course, »~e can be dolag the first
fev merges reauired for the next 12 nour observation, But we are left
#ith an extra “2+ per cent, storage reaujirement, in addition to the 16%
delay. FRequests to make maps during the mergoing process we think would
reanire pretty sophisticated coordination in order not to disrupt the
proceedings while making most of the pleces of partially merged strings
avajlable for orocessina.

1,5, HKkeysortinag arnd Pidgeonholes

Fof‘ooth.of these tecnnhlques (¥hich we shall see are very similar),
it is advantageous to Keéep the frequency channels together during the
(u,v) sort, and then to break their out later,

The keysorting process becomes practical when the length of records
is targye, Then one simply records for each record the place where it has
been written, touvether with the Xey on which he desires to sort, when
all data records are stored, a sort of the Key records takes place;
rhence the data records are simply retrieved according to the pointers
kKeot with the keys, Storage of data records 1s sequentlial:; retrieval is
random, with each read operation requiring time for head seeklng, For

6
1,6 X 1¢ data records of length 1224 bytes (256 complex numbers), it
would require roughly 1/2 hour sequentially to write the data, and 17,8
hours to retrieve them, assuring, as apove, tt = 1 usec/Byte, and ts = 49
msec/nead Seek. Thus, two independent gata paths are called for,

The operation of breaking out frequencies into F different groups.
reauires filling F large buffers, to be written into F different places
on d4isk storage, Ttaking F=32 and assuming, say, 4 Kbytes/buffer, the
output side of this operation requires 399999 head seeks, at the rate of
4dms/seek, . or 4.32 hours. 1In practice, we would break the input data set
into several chunks while data is being collected, and overlap the
operation of freaquency breakout, This has the virtue of cutting down on
extra disk storaae to jnst those disk spindles required to retain the

col lectei".i data as if cM ies in# »iius tnose involved in emptyino oata to
tne frequency breakout jacninee

Kiuiva 10Mt in its dep> jruis on tne sorting enoine 1is a 'nid jeonnole™
sort# wnereov the oaf* are >.ritt.°r, selectively on different parts of the

ciskK# so teat tney carl he retrieved sequentially in (u#v) order. This is
nade possible by a priori Knowledge of the baseline projections vnich
determine tne sort Key 1iu,Vv). mat 1is to say, we could, 1in principle#
carry out the <ey sort ahead of ti-~e. v,e also then allocate exactly what

disk area 1is reeien# so pointers can be stored with tne keys* A slightly
Tore Tlexible approach would be not to worry about# say# the v
coordinate# and group tne data into tertaps 2748 oins# each for a s”all
range in u. (Say# YA birs tor a half-plane# taking into account the
Her»*_itian property of the visibility function.) mow# as each 256
frequency (174 Byte) recoro is received# it is written onto one of the
I V'i disk partitions. It is pest to allocate clusters of# say# A
records, as needen. Gbis leans to rnucn less waste than allocation
accordion to estimated storage requirements per bin; statistical
fluctuations in the record counts lead to nigh coonce of overflowing one
or nore bins vnen the rins are on the average only 60 to 70% filled. It
is sua-nested that one frequency channel be sacrificed to hold tne ((u#v)
coordinate# and another to hold a bacKward link# 1linking tne record to
its predecessors belonging to the sare range 1in u coordinate. One aid
can oe dra”™n fro:n a priori knowledge of the sorting keys: 1in any
10-second 1interval tne optimum seek pattern is very similar to the see*
pattern in the preceding interval. It is possible in principle tor tne
pidaeonnoi ing computer to reguest its iInput records 1iIn the order
optimizing head seeKs on tne output nisk drives# tbus ensuring that a
bac<log will not occur. At the rate of 351 records/10 seconds, we can
allow a heao seex "budget"™ of 2S.S msec/record.

1"idaeonhol ing# like keysortlng# also reauires the F-way breakout of
data records after tne storaoe is completed. Penalty in tit—e is slight
¢*4 hours) fTor the breakout# and the cost in storage to nold the data
during breakout can be kept to the sa”e Ilevel as tne kevsort technique.

1.6. A Hardware Configuration

one configuration which s.eems to satisfy the needs of all approaches
to the sorting problem appears in Figure 1.

The machinery would have «ifferlnd functions# depending upon the
choice of sorting algoritrn. For the classical sort/merge# Cora and
Corbin would be responsible for writing out the data into F distinct
frequency orouos on their disk storage units. For f=32# this would mean
(assuming a butter capacity of Kbytes fTor each computer)# the 123
second workload of 1fik Kbytes would be divided into 3 core loads#
requiring 3? disk head seeks apiece# or 9b seeks/to seconds (a budget of
w4 Tsec/see< allowed). Part of the tirce# Cora and Corbin access a large
orrouo of adjacent data belonging to one frequency group# and feed It to

arrsv

cornin

149 ~fcy,l 1 149 MBy, I
P-10isk + I p_IDisz + 1
IControll «Control 1
ICont, I-————- -
J
I3"HI MBy I-
I Oisk II]
_________ 1j
—_————— 1
(5)

Processor
Il Cora
|
119 #<y/._ i 149 f-bv .|
P-IDisK f 1 £i0iS< + i
iControll IControl!
= Peri-~
uneral
Contr ol
Switch I Interface |
I VOuCoOK¥Y" 7HIS!
I (64 Kbytes) 1
I Sorter >
I I;&X 1l/p” |
I (12B~5 t2Khv)I
ICont, 1
|
| 3W« MBYI -
1 Disk 11-
—_—— ____| |_
___________ 11-
_________ 1]-
_________ 1]
G)
I Gridley? |
I (Gridding \
« Engine) =
Fin. 1. The Sorting Machine

tne sorting e>line. me datd ar® soto”attcallv sorter by (u»v), a
service provided py rne array processor in conjunction with doss (tois

none o. a 1 second record oasis). ite next mact ine r-eroes the sorted 10
second groups into longer ones on t.elr vi;ay out to reside . tne
large-caoac iry nis* units. We Urevise t " soindies or Megaoyte

capacity, 6 of which are required for Holding 12 nours® data# 1 for
scratch, and 3 for Keeuinq previous observations, Tne ”“p”~ory required
for tre sorter snotjio re on the upper end of the scale 128*512 KBytes tor
n)re efficient o?eration.

For the pidgeonho lino process, Cora and Corbin %ould carry out 176
seeKs apiece/1” seconos (budoet of 56 Tsec/seeK), (in reality, it would
he more 1l1liKe 17b seeks/6 seconds (buoget of 34 msec/seek), to allow? more
flexibility for the array processor.) Tne -AP /.ould provide records of
256 frequency channels iIn some oroer (requested ny Cora and Corbin) that
optimizes disic access. When one entire disk o”~ck (holding records)
is Tilled (aoout every 4” minutes) it is turned over to the sorter for
emptying; nean”~nlle tne other disK is being written tv Cord or Corbin,
rhe sorter then proceeds with tne frequency breakout* Assuming a 32-way
split, with 4 kbytes /bo ffer (128 Kbytes for buffers), tne 12&"<{* writes
and 24vH) rea”s >.ouJa occupy it for 9.6 minutes. It must also perform tne
same service for the other 4HOO/® records coding over from the other
processor, woten Aill reauire a total ot 19.2 minutes, assumina no
overlap in the 1/0-

The purpose of tne *>0PCOi"P 7wU computer is to provide an interface
between the v)OCv>"P systems and the ot”er vendor UfcIC, say). Another
possibility fs to replace the Peripheral control switch system with one

navlno dual-nort diskKs, cutting down on the number of controllers. This
alternative nas the penalty of going to larder disKs, since the 49 tooyte
drives are not available with oual ports. since the sectoring of the

aisKs will differ from manufacturer to manufacturer, i1t will probably not
be possible to configure the system *ith different manufacturers-®
ocoi*buters on either side of the oual -tort drives.

1,7, Cost Estimates

jhe following are cost estimates for two possible configurations
involving the MuhCOHP computers:

Configuration A Dual-port drives
3 %uDCOMP 4138 (100 MByte) disks + controllers $78K
t "UOCOfrP 4138 disk, no controller . , . , -- . 19K
I woDCOMP 781w computer, 32 Kwords kKOS memory oK
J tfuDCO?*P-DEC CPU 1link (est, 2 man-months effort) T 5K

$1™)8ft

Cor'.r faurotior. * — Sincle—-port drives » uerioheral control switches

\ 434 ¢ O ttyte) olsks control lers § OX
4 _-AoncOHP 49wb Peripheral control switches e e - . 12K
I un)COf*P 78 1 computer, K*ords MOS r.-enory.............. 6*
I yoOCOtfP-UEC CPU link. (pst. 2 man-months effort) 5k
$1 15K

It is not clear that tne tFfOUCOMP 4i3c*"s can be obtained for tne price
shown; our estl®™ate is based upon a recent NRAO procurement of single
oort drives at this cost (Ofc> supplier: AMPEX). Our Tfigure for the
single-port configuration is a little 7ore fTir™ (manufacturer®s list
Orices); hence it is the configuration shov-n in the diagram.

the sorting machine <"ill have to hr equivalent to a DEC 11/60 or

AO">CO:—p since memory oiQPPino is reguired, and the rapid data
transfer rate obtainable xiil be useful, though not absolutely necessary,
Vios memory 1is tne *.ost econoT-ical# and is suggested. The largest

capacity disK drives obtainable are tne CALCOtop THIDENT series, model
r-Bv>0, we Tind that A-PtX makes an eaul valent device, but it is not
Known whether it interfaces to a mwinicomputer, The CALCur-P drives have
oeen interface™ to JEC-H"s; the availability ot interfaces and software
may ta*e DtC-tl"s mjch T;iOre attractive than their competitors# we
tentatively suggest the following configuration:

Sorting Engine

OKC 11/6”~ computer# with 256 KBytes mgs memory - - - - - - - $39

> CAICokP r-3w0 oisK drives# without controllers . . . * e e« 120K

Ncontrollers for the above R T
S173K

The total estimated hardwarre cost, assuming configuration 3*

is $208K, This does not include software development, *hich we roughly
estimate at about a man year®s effort -- this is highly gualified:

it *ikes no provision for additional complexity introduced by the
desire of occasional users to snare observational time, use of multiple
subarrays, processing of calibration sources, and the numerous error
cnecXs that, would go into a polished, sophisticated system.

uetfience

Shutn, D.t. (1JV3) / Vol. 3,
Aadisori-".es ley* heading* "-ass.

