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The vla sorting engine has as its taslc the ordering of spectral line 
and continuum data in (u*v) sequencing to facilitate griddlng the data 
tor Fast Fourier Transforming (FFT> into a map of the radio source. It 
also has the task of breaking out frequency channels, a job which perhaps 
can be shared with other processors.

in specifying the architecture of the computer system for this 
proDlem we need to consider first the requirements, of- the griddlng 
machine, since this will put constraints on tne ordering and layout of 
visibility data records* Second, we need to consider the source and 
ordering of tne data records arriving from the spectral line array 
processor CAP) via the MOOCOwp minicomputers "Cora" and "Corbin.”
Finally* we need to give some thougnt to the sorting process .Itself? in 
order to get an idea of throughput times and memory requirements to be 
expected.

1.1. a Hypothetical Griddlng Engine
It ..As not our intention to design any part of the mapping system at 

this time, but we must have better than a vague notion of the 
requirements of the first stage of that process: the griddlng. It is 
supposed that, the griddlng machine will prepare a two-dimensional array 
of data, of size ranging up to 8192 X 8192 complex numbers# perhaps 
truncated to half that size if we take advantage of the Heraiitian 
property of the visibility function:

VCu,v) = v*c~u,-v).

It is also a necessary requirement for the griddlng engine that the data 
fee convolved with some function C(u,v) having limited range in the (u,v) 
domain. If the present continuum mapping system is any guide, that range 
can be as large as 6 X 6  grid points, meaning that 6 columns at a time of 
the array must reside in fast memory. For the 8192 map size, this 
requires fast storage capable of holding 49152 complex numbers, toe 
anticipate'the roost common map size to be 1024 x 1024, whence it would be 
practical to organize visibility data records with no more than 8 
frequency channels per record. CFor the larger maps, this leads to an 
obvious inefficiency unless the user is content to map only a fragment of 
his data, or to have the channels averaged together*) If input records 
contain more than one frequency channel, then mass storage is required to 
trold the gridded data for all channels but the one currently being 
snapped. Most probably, mass storage will be required anyway for the 
three-dimensional transforms Crequired to correct for the map curvature
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It is also <jo11 cipated that calit'ratioo will be accomplished by the 
^ridding enoinef usitvj a concept similar to the antenna gain tables in 
current use in toe continuum system, inus, records must bear sucri
Information as the antenna pair and a date/tinje stamp, in addition to thd 
(«j,v,w) coordinate. it data records contain 8 frequency channels# with J 
oytes (32 hits) per complex visibility# the overhead tor these additionaL 
data can be Kept to 2/»% (assuming 8 bytes of overhead per record). If 1 
further breakout of frequency channels is desired* one should use instead 
an indexing scheme whereby the record's position in the data base 
dictates the location of its identifying information.

Prom this *e conclude that visibility data records to be nandled by 
tne sorting and gr.ldding engines should be broken down into at least 32 
different data sets (8 frequency channels per record), assuming 256 
channels. Further breakdown may be desirable, but at the expense of 
separating ident i f icat ion data fro:n the visibility data.

1.2. Cora ana Corbin
It would be nighly desirable tor the proposed system to tie in with 

the two MODCOMP J1 minicomputers, Cora and Corbin, which will receive 
visibility data fron the Array Processor. Cora and Corbin are limited tq 
64k words of memory# and are somewnat inhibited by a maximum OMA data 
transfer rate of Mbytes/second. Nevertheless, it is felt they can
perform useful functions as an adjunct to the various sorting algorithms 
discussed below. They should be able to accomplish a 32-way split into 
frequency groups, as an assist to the customary external sorting 
algorithm; they should also be able to accomplish a random-access store 
of records to facilitate the "pldgeonhoiing" process.

Xt is assumed it w i n  be possible for the AP to feed data to Cora
and Corbin in one or tw0 frequency groups (256 or 128 channels)# with .
baselines ordered in any way desired, por instance, they could arrive id
order of the desired (u,v) sorting key. *

1*3. Some Assumptions
Let us suppose that computers are selected for the sorting machine 

which are capable of virtual memory addressing, and that context 
switching between address spaces (64 Kbytes in size, say) requires very 
little effort, "e assume the program can reside outside the address 
space. Aie suppose the computers are capable of interfacing to large 
capacity disk drives having capacities of 409 Mbytes# average see* times 
of “4v) msec, and byte transfer times of ~i usec/byte,
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tiiSK Sorting
ut the various approaches avai lable for achieving trie desired (Ufv) 

or ier ina, perhaps the customary 'ethod should be explorer! firsts that of 
sort inn the data into "strings" ut correctly sequenced records# followed 
by merging the strings into on? correctly sequenced data set# Let;

Nf = Total nutter ot frequency channels (256 assumed earlier) 
riu = Total number of (u#v) data points in entire data set
S = uata set size, bytes = 4..»f*fou, roughly 
F = Number of partitions of S into frequency groups 
B = Amount of core available for buffers during merge 
x = BlocKinq factor of data records (we will read X at one 

time)
= Merge order 

p = .\iun'cer ot rerqe passes through entire data set 
L = Logical record size* bytes (holding wf/F complex numbers +• 

overhead)
Lp = Physical record size# bytes
tc = Comoute time to compare 2 sorting keys
ts = Disk; seek ti«ne
tt = Data transfer time during I/O

We will neglect for the moment the problem of internally sorting the data 
records*. (This will perhaps be accomplished coroplelety by Cora and 
Corbin.)- Assuning now that we have sorted strings of length x records# we 
proceed to make p passes through each frequency group (S/F bytes long)# 
merging the strings of length x until there is one string for each 
frequency grouiip# of length n u  records, t o  simplify the discussion we 
assume

pNU S M »

Thus
p = loq Nu*

M
In practice (and in the time estimates below)# we round p up to the next 
greater integer* This does not result in the optimum merge pattern for 
the given number of records# a problem taken up by Knuth (1973# ppt 
361--378)* Tne total number of 1/0 operations for a merge of Mu records 
is then

fcio(Per freq, group) =2,(nu/x).log n u #
M

where we count both input and output operations* For the entire data 
set# we roust accomplish this ¥ ti^es# and so we write for the total 
number of I/O operations



4

= 2, (ri + t ) . (S/H).log N’u,

*here *e have assumed tne available buffer space, B, Is occupied by rt+i 
buffers (m input, 1 cutout), each holding x. records of lengthb, wio is 
minimized for h=4, a result which is Independent of the data set size, 
buffer size# and number of frequency groups.

The total I/O time for merging is
iio = ftio.ts + 2. p , S . 1.1

= 2,(107 rtuKS.lCM+i).fs/H + tti*
to

The total compute time Is

Tc = F,p,Nu.(fc-l).tc + F ,p • fru , tt

= (log Mu)t(S/L),l(M-i)#tc f ttj,
■M

where *e assume the same transfer time for core-core transfers as for 
core-disk. Putting some numbers in for ts, tt, and tc, let:

ts - 4^ msec/IO operation#
tt = 1 usec/byte,
tc = 3 usec/byte,

we see that the ratio

2,C(M+i),ts/B + tt]

C(M-i)#tc ♦ tt)/L
is considerably greater than unity* for just about any choice ot Mr B# 
and l* Thus# 10 time dominates the throughput time in the normal merging 
process. We can safely assume that roost compute time can be overlapped 
with disk seeking, whence it disappears from consideration, except 
perhaps for arguing for 1 winicomputer in place of 2* We now arrive at 
TABlE I, which shows total merging time as a function of merge order# M# 
and buffer size# B,

From table I# we conclude that it is marginally possible for one
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minicomputer with the capability ot virtually .addressing > 512 k bytes of 
me«ory to handle tr.e sorting task. in dolnq so we have alossed over some 
^rovare-ciependent considerations: 1) Can the computer perform direct 
;fte*nory access data rea^s and writes from and to disk of blocks ot memory 
exceeding the range of directly addressable storage? (Probably not. 
ihts is only 64 Kbvtes on son«e machines.) 2) is there a penalty assessed 
in data trans'fer whenever a disk track boundary is reached? (We are 
suoposlng not; there would be a penalty only vhen the heads must move 
tron cylinder to cylinder.) 3) since the merge time is heavily dependent 
upon seek time# we have ignored the saving that would result from having 
the input data set on several different spindles# with perhaps separate 
data paths (via separate disk controllers).

Aside from time# one must also consider disk space occupied by the 
data sets during the sort/merge. If we break the 12 hour sample into F 
portions# it is necessary to have (F+l) times the space occupied by one 
portion during the merge. For F=32# this is an extra 3.1%. Also# the 
approach taken to handling tne data in the real world is not to *ait 
until a full 12 hour load has been accumulated before starting the merge; 
instead, we want to begin the first stage of merging as soon as enough 
data accumulate to warrant the effort. When m sorted strings of length M 
records are accumulated# we want to perform pass 2 of the merge

2
operation.* creating a data set of size h , ana so forth. Assuming we 
can merge as fast as the data flow, as Table I suggests# we will be left 
at the end of 12 hours with data strings of varying lengths let us sayr M

2
strinas of length h , h-1 strings of length n , and so forth, including
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'•*1 strings of length * This leaves us >ith some Cleaning-uo to do:

2
one •'<-*av -sierge or w recorcs# ore ''-way ir*erge ot « records, and so 
forth, up to an — way neroe of the last stage. The traction of tne 
merging effort l*tt to do atter completion ot a 12 hour observation is 
then: '

7 p p + 1
K + * » -f • • . + M H ** M fs

P P
P.^ P.CH-D.M

*Mch, for 'A = Br p = 7 (best case in Table l) *orks out to 16.3% of the 
total tine. «.nile this is going on* of course# *e can be doing trte first 
fe« merges required tor the next 12 nour observation. But we are left 
with an extra ~2*' Per cent, storage requirement# in addition to the 16% 
delay. Requests to make maps during the merging process ve think would 
require pretty sophisticated coordination in order not to disrupt the 
proceedings while making most of the pieces of partially merged strings 
available for processing.

1.5. Keysorting and Pidgeonhoies
For both of these tecnniaues (which we shall see are very similar)# 

it is advantageous to k^ep the frequency channels together during the 
(u,v) sort# and then to break their out later.

The keysorting process becomes practical when the length of records 
is large. Then one simply records for each record the place where it has 
been written# together with the key on which he desires to sort. When 
all data records are stored# a sort of the key records takes place? 
whence the data records are simply retrieved according to the pointers 
kept with the keys, storage of data records is sequential? retrieval is 
random# with each read operation requiring time for head seeking. For

6
1.6 x 19 data records of length 1024 bytes (256 complex numbers*r it 
would require roughly 1/2 hour sequentially to write the data# and 17*8 
hours to retrieve them# assuming# as above# tt - 1 usec/Byte# and ts - 40 
msec/head seek. Thus# two independent data Paths are called for*

The operation of breaking out frequencies into F different groups 
requires filling F large buffers# to be written into F different places 
on disk storage. Taking F=32 and assuming, say, 4 KBytes/buffer, the 
output side of this operation requires 390000 head seeks#' at the rate of 
4v*;ns/seek# or 4.32 hours. In practice# we would break the input data set 
into several chunks while data Is being collected# and overlap the 
operation of frequency breakout. This has the virtue of cutting down on 
extra disk storaae to just those disk spindles required to retain the



col lectei'.i data as if ĉ . ies in# ► iius t nose involved in emptyino oat a to 
tne frequency breakout ,ri a c n i n e •

Kiuiva 1 OMt in its dep> jruis on tne sorting enoine is a "nid jeonnole" 
sort# wnereov the oaf* are ’».ritt.°r, selectively on different parts of the 
cisK# so t • > a t t n e y car1! he retrieved sequentially in ( u # v ) order. This is 
nade possible by a priori Knowledge of the baseline projections vnich 
determine tne sort Key iu,v). m a t  is to say, we could, in principle# 
carry out the <ey sort ahead of ti~e. v,e also then allocate exactly what 
disk area is reeien# so pointers can be stored with tne keys* A slightly 
Tore flexible approach would be not to worry about# say# the v 
coordinate# and group tne data into tertaps 2^48 oins# each for a s^all 
range in u. (Say# \^7A birs tor a half-plane# taking into account the 
Her»*.itian property of the visibility function.) mow# as each 2 56 
frequency ( i ^4 Byte) recoro is received# i.t is written onto one of the 
I V'i disk partitions. It is pest to allocate clusters of# say# '/Q 
records, as nee den. ‘ibis leans to n: u c n less waste than allocation 
accordion to estimated storage requirements per bin; statistical 
fluctuations in the record counts lead to nigh coonce of overflowing one 
or no re bins vnen the rins are on the average only 60 to 7 0% filled. It 
is su a-nested that one frequency channel be sacrificed t.o hold tne (u#v) 
coordinate# and another to hold a bacKward link# linking tne record to 
its predecessors belonging to the sare range in u coordinate. One aid 
can oe dra^n fro:n a priori knowledge of the sorting keys: in any 
10-second interval tne optimum seek pattern is very similar to the see* 
pattern in the preceding interval. It is possible in principle tor tne 
pidaeonnoi ing computer to reguest its input records in the order 
optimizing head seeKs on tne output nisk drives# tbus ensuring that a 
bac<log will not occur. At the rate of 351 records/10 seconds, we can 
allow a heao seex "budget" of 2S.S msec/record.

I'idaeonhol ing# like keysortlng# also reauires the F-way breakout of 
data records after tne storaoe is completed. Penalty in titr-e is slight 
(**4 hours) for the breakout# and the cost in storage to nold the data 
during breakout can be kept to the sa^e level as tne kevsort technique.

1.6. A Hardware Configuration

one configuration which s.eems to satisfy the needs of all approaches 
to the sorting problem appears in Figure 1.

The machinery would have «if f e rInd functions# depending upon the 
choice of sorting algoritrn. For the classical sort/merge# Cora and 
Corbin would be responsible for writing out the data into F distinct 
frequency orouos on their disk storage units. For f = 32# this would mean 
(assuming a butter capacity of Kbytes for each computer)# the 123 
second workload of 1 ftk Kbytes would be divided into 3 core loads# 
requiring 3? disk head seeks apiece# or 9b seeks/to seconds (a budget of 
lw4 Tsec/see< allowed). Part of the tirce# Cora and Corbin access a large 
orrouo of adjacent data belonging to one frequency group# and feed it to
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tne sorting e>!ine. m e  datd ar° sot o^attcallv sorter by (u» v), a 
service provided py r, ne array processor in conjunction with doss (tois 
none or. a 1 second record oasis). if>e next mact ine r-eroes the sorted 10 
second groups into longer ones on tr.e 1 r v;ay out to reside op. tne 
I a r qe-caoac i r y nis* units. 'we u revise t ' so indies or Megaoyte
capacity, 6 of which are required for Holding 12 nours' data# l for 
scratch, and 3 for Keeuinq previous observations, Tne ^p^ory required 
for tre sorter snotjio re on the upper end of the scale 128*512 KBytes tor 
•n,) r e efficient o ? e r a t i o n .

For the pidgeonho 1 ino process, Cora and Corbin *• o u 1 d carry out 176 
seeKs apiece/I’ seconos (budoet of 56 Tsec/seeK), (in reality, it would 
he more 1 i Ke 17b seeks/6 seconds (buoqet of 34 msec/seek), to allow? more 
flexibility for the array processor.) Tne -AP /.ould provide records of 
256 frequency channels in some oroer (requested ny Cora and Corbin) that 
optimizes disic access. When one entire disk o^ck (holding records)
is filled (aoout every 4^ minutes) it is turned over to the sorter for 
emptying; nean^n 1 le tne other disK is being written tv Cord or Corbin, 
rhe sorter then proceeds with tne frequency breakout* Assuming a 32-way 
split, with 4 k bytes /bo f. fer (128 Kbytes for buffers), tne 12&'<h* writes 
and 24vH) rea^s >.ouJa occupy it for 9.6 minutes. It must also perform tne 
same service for the other 4H00/' records coding over from the other 
processor, wo ten Ail l reauire a total ot 19.2 minutes, assumina no 
overlap in the 1/0•

The purpose of tne *>OPCOi'P 7 w U  computer is to provide an interface 
between the v)OCv>^P systems and the ot^er vendor (UfcIC, say). Another 
possibility fs to replace the Peripheral control switch system with one 
navlno dual-nort disKs, cutting down on the number of controllers. This 
alternative nas the penalty of going to larder disKs, since the 49 tooyte 
drives are not available with oual ports. since the sectoring of the 
aisKs will differ from manufacturer to manufacturer, it will probably not 
be possible to configure the system *ith different manufacturers' 
coi*1 outers on either side of the oual -tort drives.

1,7, Cost Estimates

jhe following are cost estimates for two possible configurations 
involving the MuhCOHP computers:

Configuration A Dual-port drives

3 !’«uDC0MP 4138 ( 1 0 0  MByte) disKs + controllers $78K
t ^UOCOfrP 4138 disk, no controller . , . , .............. .. . 19K
I woDCOMP 781 w computer, 32 Kwords kOS memory oK
J tfuDCO?*P-DEC CPU link (est, 2 man-months effort) . , , , • 5K

$l*)8ft



C o r'. r i aurot i or. * —  S i nc 1 e-po r t drives *» uerioheral  control switches

'V 4134 c 19 t" t  y  t  e ) o l s k s  c o n t r o l  l e r s . . . . . . . . . . . . S 92K
•i .-AoncOHP 49v.»b Peripheral control switches . . . . . . . . .  12K
I un)COf-*P 78 1^ computer, K*ords MOS r.-enory..............  6*
I yoOCOtfP-UEC CPU link. (pst. 2 man-months e f f o r t ) .........  5 k

$1 15K

It is not clear that tne tfOUCOMP 4i3c*'s can be obtained for tne price 
shown; our est 1 '’•ate is based upon a recent NRAO procurement of single 
oort drives at this cost (Ofc> supplier: AMPEX). Our figure for the 
single-port configuration is a little ^ore fir’" (manufacturer's list 
□ rices); hence it is the configuration shov-n in the diagram.

the sorting machine •''ill have to hr equivalent to a DEC 11/60 or 
AO'>C0:-p since memory oiQPPino is reguired, and the rapid data
transfer rate obtainable xiil be useful, though not absolutely necessary, 
Vios memory is tne *.ost econoT-ical# and is suggested. The largest 
capacity disK drives obtainable are tne CALCOtop THIDENT series, model 
r-Bv>0, we find that A-PtX makes an eaui valent device, but it is not 
Known whether it interfaces to a rr in icomput er, The CALCur-’P drives have 
oeen interface^ to jEC-H's; the availability ot interfaces and software 
may t a * e DtC-tl's mjch f;iOre attractive than their competitors# we 
tentatively suggest the following configuration:

Sorting Engine

OKC 11/6^ computer# with 256 KBytes m g s memory . . . . . . . .  $39k
\\> CAlCokP r-3w0 oisK drives# without controllers . . . * • •  120K 
^controllers for the above . . • • . • . . * ................

S 1 7 3 K

The total estimated hardwarre cost, assuming configuration 3* 
is $2o8K, This does not include software development, *hich we roughly 
estimate at about a man year's effort -- this is highly gualified: 
it * ikes no provision for additional complexity introduced by the 
desire of occasional users to snare observational time, use of multiple 
subarrays, processing of calibration sources, and the numerous error 
cnecXs that, would go into a polished, sophisticated system.
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