
NATIONAL RADIO ASTRONOMY OBSERVATORY
SOCORRO, NEW MEXICO

VERY LARGE ARRAY PROGRAM

VLA COMPUTER MEMORANDUM NO. 146

USE OF THE HERMITIAN PROPERTY
IN THREE-DIMENSIONAL MAP PROCESSING

B. G. Clark
May 1978

To minimize storage and data thrashing in making three-
dimensional maps, we would like the transposing memory (the place the
data is stored between the row transform and the column transform)
to be the size of a single map (say 2 k x 2 k real numbers). After
the transforms are completed in the first two dimensions (u,v-»x,y)
and the outputs are stored on disk, a simple DFT would take care
of the third (short) dimension.

If we were not using the Hermitian property, we would have
to make the transposing memory 2 k x 2 k complex numbers, twice
as much. The procedure for saving this memory is well-known in
one dimension and readily generalized to three.

The procedure described below was generated by reading the
IBM RHARM documentation from bottom to top. For simplicity I
neglect the edge effects.

Suppose we have a half-solid, with the other half understood
to be the Hermitian conjugate.

s'
m = -N+l,-N+2,--- ,0,1,---,N-1
n = 0,1,2,--- ,N-1
r = -M+l,---- ,M-1

Xmnr

We generate a new solid Y of the same dimensionality by

iX N e m , n+j, r
mnr

-iX N e m,n--,r

. nI TT —N N
n<2

. nI TT —N N
n — 2

mnr X + X + i (Z + Z)mnr -m,N-n,-r mnr -m,N-n,-r

We then may FFT Y in any order we please. If we do the m and n
directions first, the transposing memory required is N*(2N-1) complex
words, or (2N)2 real words, as required. Define B to be the Fourier
transform of Y.

„ . ,mj nk , r£.N-l N-l M-l 2tti (-J- + — + —)„ 2N N 2MB = Z Z Z Y ejkfc M=-N+l n=0 r=-M+l mnr
„ . .mi nk r£.

_H - 1 N-l M-X 2N + N + 2M

m=-N n=0 r=-M+l \nr6
„ . .mj nk . rJL

* ~ 2N + N 2M + Z Z Z X e mnr
_ . ,mj nk , rl.

.rv v v . 27Tl(2i +:T + m)+ i[Z Z Z Z e mnr
_ . .mj , nk . r£.

-27Tl(™ + nr +. v v v _* 2N N 2M+ Z Z Z Z e 1mnr 1

„ . .mj 2kn r£.27vi (—— + — + —)
r i r _ k2N 2N 2M ■.Re{B „} = Re{Z Z Z X e }}k<l mnr

which is just what we want for the even (note the 2kn) map points.

(N.B. - having tired of writing indices and ranges on the sums, I
omit them in the cases where they are relatively obvious.)

2

_ . ,mj nk 2*1 + — + —) r i _ 2 N N 2M-,Im{B n} = Re{I 1 1 Z e }mnr

r 2= Re{l U iXm ri n=0

N . n _ .nk
“ -1 17Tn 27T1“ ^

N 8 S m,n+ — , r
xt i • n _ .nk
■-1 , i’ri 2"ii n+ sN <-i)x n e e Jm,n- — ,r

2iri (!!i +
2N 2M ,

e /

».t t -» • /2h+lx
N-X ~2N~ " -2k-l

= Re{E E f E iX e 2N (i) * 1
m rL », ninr

N

n=2
N n •>„ • /2h±i>

2V , (2N)n 2k+l1

+ n=0 mnr6 (l> J
_ . ,mj rZ.
2,,l(2 S + 2i) ,e i

 ̂ . ,2k+l . mj . rJl,
N_1 v 2iri n + += Re{E I E (-1) X e >m r n=0 mnr

So

<-l)k im

is just what we want for the odd-numbered (note the 2k+l) map points.
Therefore, to halve the size of the transposing memory, we have

to increase the work of the input convolution, as the same data must
be either convolved twice or the result of the first convolution
must be saved for later use.

3

